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Abstract. Fluid queueing models with finite capacity buffers are ap-
plied to analyze a wide range of real life systems. There are well estab-
lished numerical procedures for the analysis of these queueing models
when the load is lower or higher than the system capacity, but these
numerical methods become unstable as the load gets close to the sys-
tem capacity. One of the available numerical procedures is the additive
decomposition method proposed by Nail Akar and his colleagues.
The additive decomposition method is based on a separation of the eigen-
values of the characterizing matrix into the zero eigenvalue, the eigenval-
ues with positive real part and the eigenvalues with negative real part.
The major problem of the method is that the number of zero eigenvalues
increases by one at saturation. In this paper we present an extension of
the additive decomposition method which remain numerically stable at
saturation as well.
Key words: Markov fluid queue, additive decomposition method.

1 Introduction

Intuitively it is quite clear that infinite buffer queueing systems remain stable as
long as the system load is below the system capacity. It is also widely accepted
that finite buffer systems remain stable also when the system load is higher than
the system capacity. This second statement suggests that finite buffer systems
can be easily analyzed for any load level. In contrast, it turns out that standard
solution methods suffer from severe numerical instabilities at the region where
the load is close to the system capacity. It is interesting to note that analysis
methods of finite buffer queueing systems used for the dimensioning of telecom-
munication network components are typically used for evaluating models close
to saturation.

Apart of this practical issue, the common analysis approaches of finite buffer
queueing systems exclude the case of saturation, because the discussion is re-
stricted to the case when the load is below the system capacity and it is com-
monly left for the reader to invert the buffer content process if the load is higher
than the system capacity. Unfortunately, this approach does not help when the
load is equal to the system capacity.



In this paper we consider Markov fluid queues (MFQs) with finite fluid
buffers. There is a wide literature devoted to this subject (see e.g., [1–6]) for
the case when the load is different from the capacity, but the case of satura-
tion is considered only recently in [7] for the method proposed by Soares and
Latouche in [3, 8]. Here we investigate an other analysis method, the additive
decomposition, which is proposed in [5], [6]. We propose an modification of the
method which remains applicable in case of saturation.

The rest of the paper is organized as follows. Section 2 introduces Markov
fluid queues (MFQs) with finite buffer and their analytical description. The
next section discusses the additive decomposition method. The first subsection
of Section 3 presents the solution method applicable for systems below and
above saturation. The next subsection contains the proposed modification of
the procedure for the case of saturation. Section 4 demonstrates the numerical
properties of the standard and the proposed analysis methods. The paper is
concluded in Section 5.

2 Markov fluid queue

The evolution of Markov fluid queue with single fluid buffer is determined by
a discrete state of the environment and the continuous fluid level in the fluid
buffer. The Z(t) = {M(t), X(t); t ≥ 0} process represents the state of the MFQ,
where M(t) ∈ S is the (discrete) state of the environment and X(t) ∈ [0, b] is
the fluid level in the fluid buffer at time t, where b denotes the buffer size. The
fluid level cannot be negative or greater than b. We define π̂j(t, x), p̂j(t, 0) and
p̂j(t, b) to describe the transient fluid densities at fluid level x and the transient
probability masses of the fluid distribution at idle and full buffer as follows

π̂j(t, x) = lim
∆→0

Pr(M(t) = j, x ≤ X(t) < x+∆)

∆
,

p̂j(t, x) = Pr(M(t) = j,X(t) = x) x = 0, b.

One of the main goal of the analysis of MFQ is to compute the stationary fluid
density πj(x) = lim

t→∞

π̂j(t, x) and fluid mass at idle and full buffer pj(x) =

lim
t→∞

p̂j(t, x), x = 0, b. The row vector π(x) = {πj(x)}, satisfies [9]

d

dx
π(x)R = π(x)Q , (1)

where matrixQ = {Qij} is the transition rate matrix of the environment process,
and the diagonal matrix R = diag〈Rj〉 is composed by the fluid rates Rj , j ∈ S.
Rj rate determines the rate at which the fluid level changes (increases when
Rj > 0 or decreases when Rj < 0) when the environment is in state j. In this
paper we assume that matrix Q determines an irreducible Markov chain and
exclude the case of Rj = 0. If there are states in the model where the fluid level
remains constant then a censored process needs to be defined and investigated



where sojourns in states with constant fluid level are excluded. Details of the
censored analysis method can be find e.g. in [4]. A consequence of the exclusion
of states with constant fluid level is that matrixR is non-singular. We denote the
set of states with positive fluid rates by S+ and the set of states with negative
fluid rates by S−.

Kulkarni investigated the properties of the characterizing matrix of (1) in
[1]. First of all, he defined the stability condition of infinite buffer MFQs. Let γ
be the stationary distribution of the CTMC with generator matrix Q. γ is the
solution of the linear system γQ = 0, γ1I = 1, where 1I is the column vector of
ones of appropriate size. An infinite buffer MFQ is stable if it “drift” is negative,
where the drift is d = γR1I.

Further more differential equation in (1) suggests to find the solution of
the fluid density function in a matrix exponential form. To find the matrix
exponential solution [1] defines the relation of the number of states with positive
and negative fluid rates and the number of eigenvalues of matrix QR−1 with
positive and negative real parts. These results are summarized in Table 1.

d < 0 d = 0 d > 0

positive eigenvalues |S−| − 1 |S−| − 1 |S−|

negative eigenvalue |S+| |S+| − 1 |S+| − 1

zero eigenvalue 1 2 1

Table 1. Drift related properties of finite MFQs, where |S−| (|S+|) is the number of
states with negative (positive) fluid rate

The initial vector of the matrix exponential solution is determined by the
boundary conditions.

pi(0) = 0 for i ∈ S+, pi(b) = 0 for i ∈ S−, (2)

and

−πi(0)Ri +
∑

j∈S−

pj(0)Qji = 0, πi(b)Ri +
∑

j∈S+

pj(b)Qji = 0. (3)

(2) states that the fluid level cannot be 0 when the fluid rate is positive and
it cannot be b when the fluid rate is negative. For i ∈ S− the first part of (3)
means that the fluid level can be 0 due to a state transition of the environment
from an other state with negative fluid rate or due to the fact that the fluid level
reduced to 0 in a state with negative fluid rate. For i ∈ S+ the first part of (3)
represents that the fluid level can start increasing from 0 due to the fact that the
process stayed in a state with negative fluid rate at level 0 and a state transition
occurred to a state with positive fluid rate. The second part of (3) contains the
counterpart statements for buffer level b.



3 The additive decomposition method

A numerically stable approach to the analysis of MFQs is the additive decom-
position method [6]. It will be summarized in the following section. It’s stability
is based on the separation of the eigenvalues of the matrices in equation 1. The
original additive decomposition algorithm from [6] can not be applied for fluid
queues at saturation directly.

3.1 Fluid queues at non-zero drift

Due to the fact that states with constant fluid rates are excluded we can multiply
both sides of (1) with R−1. If we denote QR−1 with A, this will result in the
following differential equation:

d

dx
π(x) = π(x)A (4)

The usual way of solving equations like (4) is based on it’s spectral represen-
tation:

π(x) = eλxΓ

λ is a scalar and Γ is a row vector. Substituting this form to (1), we find:

λΓ = λA (5)

After finding the eigenvalues λi and eigenvectors Γi one may search for π(x)
as the sum of the results of (4), with ai parameters:

π(x) =
∑

i

aie
λixΓi (6)

The limitation of this method may appear when we want to fit the formula
to the boundary conditions at the buffer limit. The arising equations will define
the ai parameters in (6), hence they are crucial for solving the problem. If the
buffer limit is large (b → ∞), than if λi > 0 → eλib → ∞ moreover if λj < 0,
then eλjb → 0. This will result in badly conditioned linear equations for ai.

The additive decomposition method solves this problem by separating the
eigenvalues based on their sings, and by handling them separately. In [6] a pro-
cedure is described with which one may transform A into a blockmatrix form.
(It uses Schur-decomposition and solves a Lyapunov-equation in order to find
it.)

Y−1AY =





0 0 0
0 A− 0
0 0 A+



 (7)

A− (A+) is a square matrix, and all of it’s eigenvalues are negative (positive).
Let us denote different parts of Y−1 with the following notations



Y =





L0

L−

L+



 (8)

L0 is the first row of Y−1 while L− and L+ have the same amount of rows
as A− and A+ respectively. In [6] it is proven, that the following form is also a
complete solution of the differential equation (4):

π(x) = a0L0 + a−e
A

−
xL− + a+e

−A+(b−x)L+

a0 is a scalar and a− and a+ are row vectors with the same number of columns
as A− and A+ respectively. They are the parameters we need to define from the
boundary conditions. The linear equations in this case are numerically stable,
because all of the eigenvalues of A− and −A+are negative.

3.2 Fluid queues at saturation

The additive decomposition method was developed for fluid queues with non-
zero mean drift, but the procedure as it is described in the previous subsection
does not work in case of saturation. A slight enhancement is needed in order to
apply the procedure for MFQs at saturation.

Theorem 1. In A’s normal Jordan form, there is one Jordan-block belonging

to the zero eigenvalue, and it’s size is 2× 2.

Proof. The numbers of eigenvalues of different signs are given in [1] and are sum-
marized in Table 1. The multiplicity of the zero eigenvalue is 2 in saturation.
Now we need to show that there is a single (linear independent) eigenvector as-
sociated with the zero eigenvalue, because in this case the Jordan decomposition
contains a Jordan block of size 2.

The left eigenvector associated with the zero eigenvalue satisfies

αQR−1 = 0

Multiplying both sides with R shows that α should also be the left eigenvector
of Q associated with the zero eigenvalue. Due to the fact that Q defines an
irreducible Markov chain it has only a single (linear independent) eigenvector
associated with the zero eigenvalue and it is γ.

Corollary 1. It is not possible to transform A to the same form as in (7).

In case of a MFQ in saturation, instead of having a single matrix element
associated with the zero eigenvalue, we have a Jordan-block of size 2 × 2 in
the similar decomposition of A as the one in (7). Hence one needs to modify
the original method for MFQs at saturation. The proposed modification is to
transform A to the following form

Y−1AY =





A0 0 0
0 A− 0
0 0 A+



 , (9)



where A0 corresponds to the 0 eigenvalues. Consequently L0 will have two rows,
a0 will have two elements in (8), and the expression for π(x) changes to

π(x) = a0e
A0xL0 + a−e

A
−
xL− + a+e

−A+(b−x)L+

Unfortunately, this formula is not stable for large buffer limits. This happens,
because one the off-diagonal elements of the Jordan-block A0 are nonzero. For
example, if it is an upper tridiagonal matrix then

A0 =

(

0 a12
0 0

)

→ eA0x =

(

1 a12x
0 1

)

,

and a12x → ∞ as x → ∞, therefore this matrix will be badly conditioned for
large buffer limits. Thus one might experience numerical problems when fitting
the parameters of the system to the boundary conditions.

4 Numerical examples

We analyzed the numerical properties of the algorithms for finite buffer MFQs
using our MATLAB implementations, which are parts of the BuTools package
(available at http://webspn.hit.bme.hu/∼butools/). We compared the proposed
procedure (Section 3.2), with the original additive decomposition method (Sec-
tion 3.1) at two different drift values, one far from zero and one close to zero.

4.1 Comparison of methods when the drift is far from zero

First we evaluated the MFQ with buffer size b = 30, generator matrix and fluid
rate matrix

Q =

−4 0 2 1 1
3 −6 0 2 1
1 3 −5 1 0
3 1 1 −7 2
1 1 0 1 −3

, R =

1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

,

respectively. The stationary distribution of the CTMC characterized by Q is
γ = (0.314, 0.142, 0.154, 0.143, 0.247) and the drift is d = −0.00933. To quantify
the difference between the results of the methods we used the following error
measure:

∆ =
∑

i∈S

∫ b

0

|πO
i (x) − πM

i (x)|dx +
∑

i∈S

|pOi (0)− pMi (0)|+
∑

i∈S

|pOi (b)− pMi (b)| ,

where πO
i (x) and πM

i (x) correspond to the fluid density for state i at level x for
the original and the modified algorithms. pOi (0) and pMi (0) are the probabilities
for the empty buffer and pOi (b) and pMi (b) are for the full buffer. The fluid density
curves computed by the two methods are depicted in Figure 1.

We also calculated the difference between the methods for systems with state
space cardinalities of 20 and 50. The results were similar. The average error was
∆ ∼ 10−5.
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Fig. 1. The fluid density functions (πi(x) versus fluid level x) of the example with non-
zero drift (b = 30, d = −0.00933). The left graph corresponds to the method proposed
in [6], the right graph corresponds to the method proposed in Section 3.2.

4.2 Comparison of the methods when the drift is close to zero

In our second example the buffer size is b = 30 the generator matrix and the
fluid rate matrix are

Q =

−5 3 1 0 1
5 −8 0 2 1
1 0 −4 2 1
4 1 0 −6 1
1 0 0 2 −3

, R =

1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

.

The stationary distribution for this CTMC process is γ =
(0.349, 0.151, 0.087, 0.163, 0.250) and the drift is d = −1.11 · 10−16. The
original method proposed in [6] and summarized in Section 3.1 failed in
the phase of decomposition according to the signs of the eigenvalues using
the standard numerical precision of MATLAB, while the modified method
completes. The obtained fluid density curve is depicted in Figure 2. When the
drift is close to zero the original procedure gets numerically instable as it is
clearly visible on the figure.

4.3 Analysis of a communication system with RED

We analyze a communication system using the proposed method. The fluid level
represents the amount of data in the buffer, and the data arrival and service
processes are modulated by an environmental Markov chain with generator Q.
There are N identical users in the system. They are either in the ON or in
the OFF state. In the ON state they transmit data at rate r, otherwise they
do not. The sojourn time in state ON (OFF) is exponentially distributed with
parameter α (β). The service speed of the server is c, and reject incoming data
with probability 1−s, consequently data arrive to the server at rate r∗s. This last
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Fig. 2. The fluid density function (πi(x) versus fluid level x) for a queue with zero drift
(d = −1.11 · 10−16, b = 30)

functional property is referred to as ”random early detection” (RED) mechanism
[10]. The RED method filters the input data as a function of the fluid level,
namely s(x) is a function of the fluid level x. Assuming that s(x) is a piecewise
constant function the multi region version of the adaptive decomposition method
[6] and its modification for the case of zero drift in Section 3.2 allows to analyze
the described communication systems. The limits of the constant regions of s(x)
are denoted by xj (j = 0, 1, . . . , k), such that x0 = 0 and xk = B.

Due to the identity of the N users a MFQ with N + 1 states describe the
system behavior with generator matrix

Q =

















−Nβ Nβ 0 0 0 0
α −α− (N − 1)β (N − 1)β 0 0 0
0 2α −2α− (N − 2)β (N − 2)β 0 0
0 0 ... ... ... 0
0 0 0 (N − 1)α −(N − 1)α− β β
0 0 0 0 Nα −Nα

















,

and fluid rate matrix

R(x) =

















−c 0 0 0 0
0 rs(x) − c 0 0 0 0
0 0 2rs(x) − c 0 0 0
0 0 ... ... ... 0
0 0 0 0 (N − 1)rs(x) − c
0 0 0 0 0 Nrs(x) − c

















.

One of the most important performance measure of this system is the loss.
The loss is the amount of lost data. Loss may be caused by two phenomenons.
The first is the filtering of the RED mechanism. When n users are ON the loss
rate is L1 = (1 − s)nr. The second reason for the loss is the finite buffer. The
server may also loose data when the buffer is full. As the buffer is served with
speed c, the loss rate due to the finite buffer capacity is L2 = snr− c. These two
parts of the loss can be computed as



L1 =
B
∫

0

ri(1− s(x))fi(x)dx +
∑

j,k

p(xj , k)rk(1 − s(xj),

L2 =
∑

k

p(B, k)(s(B)rk − c)

where fix is the stationary probability density for state i, and p(xj , k) is the
probability at threshold level xj for state k. Based on these loss rates the loss
ratio is

L =
L1 + L2

B
∫

0

rifi(x)dx +
∑

j,k

p(xj , k)rk

.

We analyze the performance measures of interest through the MFQ model
and the additive decomposition method. The model parameters are α = 2/3 1

s
,

β = 1 1
s
, r = 12.2kbps, N = 25, c = 190kbps and B = 30kb. Without RED fil-

tering (s(x) = 1) the drift is d = 183kbps, and with decreasing RED acceptance
probability the drift is decreasing to d = −c at s(x) = 0. We considered 2 kinds of
piecewise constant functions for s(x). The (0, B) interval was divided into 3 and 6
identical subintervals. E.g., in the first case x1 = 10, x2 = 20, x3 = 30 and vector
(s1, s2, s3) contains the acceptance probabilities for the intervals (0, 10), (10, 20),
(20, 30), respectively. Figure 3 depicts the fluid density functions for different
s(x) functions. In the first graph s(x) = 1, in the second graph (s1, s2, s3) =
(0.905, 0.8041, 0.72), in the third graph (s1, s2, s3) = (1, 0.8127, 0.76), in the
fourth graph (s1, s2, s3, s4, s5, s6) = (0.908, 0.7936, 0.72, 0.69, 0.65, 0.54). The as-
sociated loss rations are 0.0121, 0.0995, 0.0492 and 0.100.

5 Conclusions

The problem of analyzing finite buffer MFQs in saturation has been considered
recently in [7]. In that paper the numerical procedure by Soares and Latouche
[3, 8] was generalized for the case of saturation. In this paper we considered the
additive decomposition procedure by Nail et al. [5, 6] and generalized for the
case of saturation.

The proposed modification seems to eliminate the numerical instabilities of
the method for drift values close to zero and for moderate buffer sizes. The case of
extremely large buffers still results in numerical problems, because in saturation
a Jordan block of size 2× 2 associated with the zero eigenvalue, which results in
an exponentially increasing coefficient.
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