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Abstract

The paper investigates the relation of random clock based and
numerical inverse Laplace transformation based transient analysis of
Continuous time Markov chains (CTMCs) and Markov fluid models
(MFMs) and proves that these methods are identical. This identity
leads to new intuitive understanding about the analysis approaches.
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1 Introduction

For many stochastic models, it is much harder to compute the transient
distribution at a given point in time than the stationary distribution. The
two main numerical analysis approaches for transient analysis of Markov
modulated stochastic models are

• the Laplace transform domain description of the model behaviour and
its numerical inverse Laplace transformation (NILT) and

∗This work is partially supported by the OTKA K-138208 project and the Artificial
Intelligence National Laboratory Programme.
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• the introduction of a clock with random delay, whose distribution ap-
proximates the time point of interest, and the stationary analysis of
the extended stochastic model composed by the original model and the
clock.

Both of these approaches are based on weight functions, which charac-
terize the numerical properties of the methods. In case of the random clock
based methods, the weight functions are the density functions of the clock
distributions.

These two analysis methods are considered to be essentially different by
the majority of the stochastic modelling community. For example, exact
Laplace domain description based NILT is typically considered to be “exact”,
while the random clock based methods are commonly assumed to be “approx-
imate”. The different perceptions of these methods are also related with the
typical weight functions applied by the two approaches. In clock augmented
stochastic models, the weight function of the clock is non-negative. Random
clock methods with a potentially negative weight function is perceived to be
“dirty hack”, while NILT is considered to be “valid” in spite of the fact that
the weight functions of the most common NILT methods (e.g., Euler method
[2], Gaver method [16]) have alternating signs.

Furthermore, the weight functions of many NILT methods exhibit am-
plified waving behaviour with increasing order (most dominantly the Euler
method), while the typical weight functions of the clock augmented models
(e.g. Erlang density function) nicely converge to the unit impulse. This
way, the random clock based approach is considered to be “asymptotically
correct”, while the NILT based analysis is considered to be “numerically
unstable” with increasing order.

Considering Continuous time Markov chains (CTMCs) and Markov fluid
models (MFMs), the paper proves the identity of these two approaches for
the most common case, when the weight functions of the NILT method and
the random clock method are matrix exponential functions. We conjecture
that the identity of these analysis approaches extends to more stochastic
processes, but the focus of the present paper is restricted to CTMCs and
MFMs.

The class of NILT methods with matrix exponential weight functions
(MEWFs) is not exhaustive but it contains the most efficient methods, e.g.
the methods of the Abate-Whitt framework [2] (e.g., Euler method [1], Gaver
method [16], Talbot method [17], CME method [12]) as well as NILT methods
based on the derivatives of the Laplace transform function.

The random clock based analysis approach has been introduced in [18],
and has been efficiently used for the transient analysis of quasi birth death
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processes [19] and MFMs [5]. The weight functions of the random clock based
analysis literature are exclusively matrix exponential functions. The case
when the clock is Erlang distributed is commonly referred to as Erlangization
[15], and when the clock is concentrated matrix exponential distributed is
referred to as ME-fication [5].

The rest of the paper is organized as follows. Section 2 introduces a gen-
eral framework using MEWFs, and it explains the role of the weight function
in the NILT and in the random clock based analysis method. As a simple
application of the introduced framework, Section 3 proves the identity of
the two analysis approaches for CTMCs. The same identity of the two ap-
proaches is proved for a more complex Markov modulated stochastic process,
the MFM, in Section 4. Section 5 concludes the paper.

2 The general framework

This section introduces a MEWF based approximate analysis of a function
at (time) t. It discusses the two main cases, when the matrix of the MEWF
is diagonalizable and non-diagonalizable. The last two subsections explain
the relation of the NILT and the random clock based approach with the
approximate analysis using MEWFs.

2.1 Weight function based approximate analysis of h(t)

Let h(t) be a matrix valued function (h : R1 → Rn1×n2). There are many
practically interesting cases when h(T ) is hard/not possible to compute, but

hN(T ) =

∫ ∞
t=0

h(Tt)fN(t)dt =

∫ ∞
t=0

h(t)fN(t/T )/Tdt (1)

can be computed, where

fN(t) = αeAta (2)

is a real MEWF with a = −A1 and 1 is the column vector of ones. The
size of row vector α and column vector 1 is N and the size of matrix A is
N×N . fN(t) is Markovian when α ≥ 0, a ≥ 0 and the off-diagonal elements
of A are non-negative. We assume that the eigenvalues of A have negative
real parts, the fN(t) weight function is normalized (i.e.,

∫∞
0
fN(t)dt = 1)

and is centered at one (i.e.,
∫∞
0
tfN(t)dt = 1). α1 = 1 ensures that fN(t) is

normalized. Intuitively, when fN(t) is a close approximate (in some sense)
of the Dirac impulse function at one then hN(T ) is a close approximate of
h(T ).
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If fN(t) is normalized and is centered at one, then fN(t/T )/T =
αeAt/Ta/T is a normalized MEWF (

∫∞
0
fN(t/T )/Tdt = 1), which is centered

at T (
∫∞
0
tfN(t/T )/Tdt = T ). We interchangeably use the two integrals of

(1) in the sequel.
Based on the spectral decomposition of A, with eigenvalues −βi, we have

the following two cases.

• If A is not diagonalizable, then fN(t) can be written as

fN(t) = αeAta =

#β∑
i=1

#βi∑
j=1

ηijt
j−1e−βit, (3)

where #β is the number of different eigenvalues of A, and #βi is the
multiplicity of eigenvalue βi. That is

∑#β
i=1 #βi = N .

• If A is diagonalizable, then

fN(t) = αeAta =
N∑
n=1

ηne
−βnt. (4)

Since αeAta is real, the βn eigenvalues and the associated coefficients are
real or complex conjugate pairs.

2.2 Special weight functions

MEWF ref. eigenvalue sign diagonalizable Markovian

Euler [2] complex alternating yes no

CME [11] complex non-negative yes no

Gaver [16] real alternating yes no

CMER [13] real non-negative no no

Erlang [6] real positive no yes

Table 1: Classification of the most efficient MEWFs

Table 1 presents a classification of the most efficient MEWFs applied in
NILT and random clock methods. We refer to [11] and [13] for more detailed
comparisons of these MEWFs. The following subsections provide further
details on the Erlang and the CME MEWFs, as representatives of MEWFs
with non-diagonalizable and diagonalizable matrices, respectively.
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2.2.1 Erlangization

The transient analysis method with Erlang distributed weight function is
commonly referred to as Erlangization [15]. The order N Erlang distributed
weight function has the form

fErlN (t) =
NN tN−1e−Nt

(N − 1)!
, (5)

which is normalized and centralized at one. This fN(t) function has the
following two representations.

According to (2), fErlN (t) = αeAta with

α = e1 and A =


−N N
−N N

. . . . . .

−N

 , (6)

where ek denotes the kth unit vector, and according to (3), fErlN (t) =∑#β
i=1

∑#βi
j=1 ηijt

j−1e−βit with

#β = 1, #β1 = N, β1 = N, η1j =

{
0 if j < N,
NN

(N−1)! if j = N.
(7)

That is, the Erlang distributed weight function is an example of the case
when A is not diagonalizable.

2.2.2 ME-fication

The transient analysis method with concentrated non-negative MEWF is
referred to as ME-fication in [5]. For odd N , such MEWF has the form

fN(t) = c e−λt
(N−1)/2∏
j=1

cos2
(
ωλt− φj

2

)
, (8)

which is non-negative by construction. For a given setting of the
ω, φ1, . . . , φ(N−1)/2 parameters, c and λ are set to make fN(t) normalized
and centered at one. Based on a trigonometric-exponential transformation
[11], fN(t) can also be written in the following two forms

fN(t) = c e−λt
(N−1)/2∏
j=1

cos2
(
ωλt− φj

2

)
=

N∑
n=1

ηne
−βnt = αeAta, (9)

with α =
[
η1
β1
, η2
β2
, . . . , ηN

βN

]
and A = Diag〈−βn〉. That is, in this case, fN(t)

is also a matrix exponential function, but matrix A is diagonalizable.
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2.3 Inverse Laplace transformation

One of the most generic cases when h(T ) is not possible to compute but (1)
can be computed, is the case when only the Laplace transform (LT) of h(t),

h∗(s) =

∫ ∞
t=0

e−sth(t)dt, (10)

is known and we are interested in h(T ). Assuming that the symbolic inverse
LT of h∗(s) is not available, NILT needs to be applied to approximate h(T ).

For later use, we also define the matrix generalization of the Laplace
transform as

H∗(M) =

∫ ∞
t=0

h(t)⊗ e−Mtdt =

∫ ∞
t=0

h(t)⊗
∞∑
k=0

(−t)k

k!
Mkdt, (11)

where M is a square matrix of size N and ⊗ denotes the Kronecker product.
That is, H∗ : RN×N → Rn1N×n2N .

2.3.1 NILT using Abate-Whitt framework methods

The most commonly applied NILT methods belong to the, so called, Abate-
Whitt framework [2]. According to this framework, the order N approximate
of h(t) at point T is obtained based on h∗(s) as

h(T ) ≈ hN(T ) :=
N∑
n=1

ηn
T

h∗
(
βn
T

)
, (12)

where the coefficients ηn and βn are determined by the order (N) and the
NILT method (e.g., Euler [1], Gaver [16], Talbot [17], CME [12]) and they
are independent of the function h∗(s). Substituting (10) into (12) gives

hN(T ) =

∫ ∞
0

h(tT ) · fN(t)dt, (13)

where

fN(t) =
N∑
n=1

ηne
−βnt = αeAta, (14)

with α =
[
η1
β1
, η2
β2
, . . . , ηN

βN

]
and A = Diag〈−βn〉.

That is, the Abate-Whitt framework methods are associated with
MEWFs whose matrix A is diagonalizable.
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2.3.2 NILT using the derivatives of the Laplace transform

Some NILT methods, which are not part of the Abate-Whitt framework,
evaluate also the derivatives of the Laplace transform function for NILT
[9, 1] (see [12, Sec. 4.2] for a recent summary) as follows

h(T ) ≈ hN(T ) :=

#β∑
i=1

#βi∑
j=1

1

(−T )j−1
ηij
T

dj−1

dsj−1
h∗ (s)

∣∣∣∣
s=

βi
T

, (15)

where #β is the number of different values at which the LT function and
its derivatives are evaluated and #βi − 1 is the highest derivative of the LT
function which is evaluated at point βi. The overall number of evaluations
of the LT function and its derivatives is

∑#β
i=1 #βi = N .

Based on the definition of the Laplace transform in (10), we have

dn

dsn
h∗(s) =

∫ ∞
t=0

dn

dsn
e−sth(t)dt =

∫ ∞
t=0

(−t)ne−sth(t)dt. (16)

From which, (15) takes the form

hN(T ) =

#β∑
i=1

#βi∑
j=1

1

(−T )j−1
ηij
T

∫ ∞
t=0

(−t)j−1e−tβi/Th(t)dt (17)

=

∫ ∞
0

h(t) · 1

T
fN(t/T )dt =

∫ ∞
0

h(tT ) · fN(t)dt,

where

fN(t) =

#β∑
i=1

#βi∑
j=1

ηijt
j−1e−βit.

Consequently, NILT methods using the derivatives of the Laplace trans-
form are associated with MEWFs whose matrix A is non-diagonalizable.

The most common application of NILT using the derivatives of the
Laplace transform is the case of Erlang weight function, when the parameters
of (15) are set according to (7). In this case,

h(T ) ≈ hErlN (T ) :=
1

(−T )N−1

NN

(N−1)!

T

dN−1

dsN−1
h∗ (s)

∣∣∣∣
s=N

T

. (18)

Utilizing (16) again, it can be re-written as

hErlN (T ) =
1

(−T )N−1
NN

(N − 1)!T

∫ ∞
t=0

(−t)N−1e−tN/Th(t)dt (19)

=

∫ ∞
t=0

1

T

NN(t/T )N−1

(N − 1)!
e−tN/Th(t)dt =

∫ ∞
0

1

T
fErlN (t/T )h(t)dt,
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where fErlN (t) is the order N Erlang density function concentrated at one,
which be represented according to (5) and (6).

2.3.3 NILT with matrix exponential weight functions

The two special cases presented in the previous subsections can be summa-
rized in the following general theorem.

Theorem 1. Let fN(t) = αeAta be a normalized MEWF which is centered
at one. The NILT approximation of matrix h(T ) of size n1 × n2 using the
MEWF fN(t) is

h(T ) ≈ hN(T ) =

∫ ∞
t=0

h(Tt)fN(t)dt = (In1 ⊗α) H∗(−A/T ) (In2 ⊗ a/T ),

(20)
where In denotes the unity matrix of size n.

Proof. Using (11), we have

(In1 ⊗α) H∗(−A/T ) (In2 ⊗ a/T ) = (In1 ⊗α)

∫ ∞
t=0

h(t)⊗ etA/Tdt (In2 ⊗ a/T )

=

∫ ∞
t=0

h(t) ·αetA/Ta/Tdt =

∫ ∞
t=0

h(t) fN(t/T )/Tdt =

∫ ∞
t=0

h(tT ) fN(t)dt.

The above discussed two special cases, the case when A is diagonalizable
and the case when fN(t) = fErlN (t) can be obtained as follow.

A is diagonalizable

When α =
[
η1
β1
, η2
β2
, . . . , ηN

βN

]
and A = Diag〈−βn〉, then fN(t) =

∑N
n=1 ηne

−βnt

and from Theorem 1 we have

(In1 ⊗α) H∗(−A/T ) (In2 ⊗ a/T ) =

∫ ∞
t=0

h(t) fN(t/T )/Tdt

=

∫ ∞
t=0

h(t)
N∑
n=1

ηn
T
e−βnt/Tdt =

N∑
n=1

ηn
T

h∗
(
βn
T

)
.
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A is composed of a single Jordan block

When α and A are defined according to (6), then a = −A1 =
[0, . . . , 0, N ]T = NeN

T and the Jordan decomposition of −A/T has the
form


(−T/N)0

(−T/N)1

. . .

(−T/N)N−1


︸ ︷︷ ︸

S−1

·


N/T 1

N/T 1

. . .
. . .

N/T


︸ ︷︷ ︸

JN (N/T )

·


(−N/T )0

(−N/T )1
. . .

(−N/T )N−1


︸ ︷︷ ︸

S

, (21)

where Jn(λ) denotes the size n Jordan block of eigenvalue λ. Based on this
decomposition of −A/T , we write

(In1 ⊗α) H∗(−A/T ) (In2 ⊗ a/T ) =

∫ ∞
t=0

h(t) ·αetA/Ta/Tdt

=

∫ ∞
t=0

h(t) ·N/Te1S−1e−tJN (N/T )SeN
Tdt

=

∫ ∞
t=0

h(t) ·N/T (−N/T )N−1e1e
−tJN (N/T )eN

Tdt

= N/T (−N/T )N−1(In1 ⊗ e1) h∗(JN(N/T )) (In2 ⊗ eNT )

= (−1)N−1
NN

TN
1

(N − 1)!

dN−1

dsN−1
h∗(s)

∣∣
s=N/T

, (22)

where we used H∗(−A/T ) = H∗(S−1JS) = (In1 ⊗S−1)H∗(J)(In2 ⊗S) in the
second step and

H∗(JN(λ)) =


h∗(λ) h∗′(λ)/1! h∗′′(λ)/2! · · · h∗(N−1)(λ)/(N−1)!

h∗(λ) h∗′(λ)/1!
. . .

...
. . . . . .

...
h∗(λ) h∗′(λ)/1!

h∗(λ)

 ,

from [10], in the last step. The expression obtained in (22) is identical with
(18).

In summary, when A is diagonalizable it is enough to compute h∗(s) with
scalar parameters (which are the eigenvalues of A), while in general, we need
to compute H∗(−A/T ) with matrix parameter if A is not diagonalizable.
We distinguish these two cases also in the sequel.
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2.4 Stochastic models augmented with a random clock

The random clock based analysis approach is introduced in [18]. Its main
steps are as follows:

• augment the stochastic model with a random clock, whose density func-
tion approximates the unit impulse at the time instant of interest,

• start the stochastic model and the clock,

• when the clock expires reset both the clock and the stochastic model
to its initial state, and continue these cycles forever,

• evaluate the stationary distribution of this cyclic model,

• based on the stationary distribution of the cyclic model compute the
distribution of the stochastic model at the embedded clock instances.

The application details of this analysis approach are provided in the following
sections for different stochastic processes.

3 Transient analysis of CTMC

The transient analysis of CTMCs is rather well established. In spite of that,
in this section we consider the NILT and random clock based analysis ap-
proaches of CTMCs and prove the following theorem.

Theorem 2. Consider the transient distribution of the CTMC with initial
probability vector π and generator Q at time T . The numerical computations
of this transient distribution with the random clock method and with NILT
are identical when the same MEWF, fN(t) = αeAta, is used.

Proof. In the following subsections, we show that the random clock based
analysis approach results in (30), while the NILT based analysis results in
(39), which are identical.

3.1 Background

For a CTMC, X(t) ∈ S, with S = |S| states (S < ∞), generator Q and
initial probability vector π, the evolution of the transient probability vector,
p(t), whose jth element is pj(t) = Pr(X(t) = j), is governed by the ordinary
differential equation

d

dt
p(t) = p(t)Q, with initial value p(0) = π. (23)
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The solution of (23) is

p(t) = πeQt = π
∞∑
k=0

tk

k!
Qk. (24)

The most common way to compute p(T ) is via (24), but in this paper we
focus on the NILT and the random clock based methods.

3.1.1 Laplace transform domain description

The LT of p(T ) is

p∗(s) =

∫ ∞
0

e−stp(t)dt = π(sI−Q)−1. (25)

3.1.2 Stationary distribution

When Q is the generator of an irreducible CTMC, then Q1 = 0, that is, zero
is an eigenvalue of Q, and the other S − 1 eigenvalues of Q have negative
real parts. In this case, p(t) converges to the stationary distribution of the
CTMC, p = limt→∞ p(t), which is a proper probability distribution (p is
non-negative and p1 = 1). The stationary distribution, p, can be obtained
as the solution of the linear system pQ = 0, p1 = 1.

3.1.3 Transient CTMC

When Q is a transient generator of a CTMC, then all eigenvalues of Q have
negative real parts and p(t) converges to limt→∞ p(t) = 0.

For the treatment of the transient case, we define p̃(t) =
∫ t
τ=0
p(τ)dτ .

Integrating (23) from 0 to t, we obtain that p̃(t) satisfies

d

dt
p̃(t) = π + p̃(t)Q, with initial value p̃(0) = 0. (26)

In this case, p̃(t) converges to p̃(∞) = limt→∞ p̃(t) =
∫∞
τ=0
p(τ)dτ , which is

the solution of 0 = π + p̃(∞)Q (obtained from (26) at the t → ∞ limit).
That is

p̃(∞) = π(−Q)−1, (27)

where Q is non-singular, since its eigenvalues have negative real parts.
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3.2 CTMC augmented with a random clock

In this subsection, we approximate p(T ) with the random clock approach and
denote the result with p(N)(T ). To compute p(N)(T ), we extend the CTMC
with a random clock whose weight function is fN(t/T )/T = αeAt/Ta/T ,
where fN(t/T )/T is normalized and centralized at T . Extending the CTMC
with the random clock, results in an extended CTMC process, X̂(t), with
generator

Q̂ =
Q⊕A/T 1⊗ a/T
π ⊗α −1

.

If α, a and the non-diagonal elements of A are non-negative, then the ex-
tended process is a CTMC as well, but we do not assume this property in
the current paper.

The Q̂ generator describes the process evolution on a state space of size
SN + 1. The first SN states describe the parallel evolution of the original
CTMC and the clock, and the last state is used to reset the CTMC into its
initial distribution and to reset the clock. The time to reset the model is ex-
ponentially distributed with parameter one. Since the performance measure
of interest of the random clock method is the behaviour of the process at em-
bedded clock points, the particular choice of the reset time parameter does
not play any role. The stationary vector of this extended model, p̂ = [p̄, p4]
(where vector p̄ is of size SN and p4 is a scalar), is the solution of the linear
system

p̂Q̂ = 0, p̂1 = 1.

According to the block structure of Q̂, p̄ satisfies

p̄(Q⊕A/T ) + p4(π ⊗α) = 0, (28)

from which

p̄ = −p4(π ⊗α)(Q⊕A/T )−1. (29)

We note that Q⊕A is a transient generator, since the eigenvalues of Q have
non-positive real parts and the eigenvalues of A have negative real parts,
consequently, all eigenvalues of Q⊕A have negative real parts.

Theorem 3. The stationary embedded distribution of the original CTMC at
a clock event is

p(N) = −(π ⊗α)(Q⊕A/T )−1(I⊗ a/T ). (30)
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Proof. The distribution of the original CTMC at a clock event can be com-
puted as

p
(N)
i = lim

t→∞
lim
δ→0

Pr(X̂(t) = {i, ·} and the clock expires in (t, t+δ) )

Pr(the clock expires in (t, t+δ))

= lim
t→∞

lim
δ→0

∑N
n=1 Pr(X̂(t) = {i, n})(anδ/T + σ(δ))∑S

k=1

∑N
n=1 Pr(X̂(t) = {k, n})(anδ/T + σ(δ))

= lim
t→∞

∑N
n=1 Pr(X̂(t) = {i, n})an/T∑S

k=1

∑N
n=1 Pr(X̂(t) = {k, n})an/T

=

∑N
n=1 p̄i,nan/T∑S

k=1

∑N
n=1 p̄k,nan/T

,

where σ(·) is an error term such that lim
δ→0

σ(δ)/δ = 0, and an denotes the nth

entry of vector a. The vector composed of these elements, p(N) = {p(N)
i },

can be written as

p(N) =
p̄(I⊗ a/T )

p̄(1⊗ a/T )
=
−(π ⊗α)(Q⊕A/T )−1(I⊗ a/T )

−(π ⊗α)(Q⊕A/T )−1(1⊗ a/T )
, (31)

where we substituted (29) in the second step. To simplify the denominator,
we write

(Q⊕A/T )(1⊗ 1) = (Q⊗ I)(1⊗ 1) + (I⊗A/T )(1⊗ 1) (32)

= 0⊗ 1− 1⊗ a/T = −1⊗ a/T, (33)

from which −(Q⊕A/T )−1(1⊗a/T ) = (1⊗1). Using this, the denominator
of (31) becomes (π ⊗ α)(1 ⊗ 1) = 1, which results in the statement of the
theorem.

3.3 Transient analysis with NILT

In this subsection, we approximate p(T ) with NILT and denote the results
with pN(T ).

3.3.1 NILT when A is diagonalizable

When A is diagonalizable, the Abate-Whitt framework method with coeffi-
cients ηn and βn approximates the transient probability vector of the CTMC
at time T , based on its LT, p∗(s), as follows

p(T ) ≈ pN(T ) =
N∑
n=1

ηn
T
p∗
(
βn
T

)
=

N∑
n=1

ηn
T
π

(
βn
T

I−Q

)−1
. (34)
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3.3.2 NILT when A is not diagonalizable

When A is not diagonalizable, Theorem 1 can be used to approximate p(T ),
which requires the computation of P∗(−A/T ) =

∫∞
0
p(t) ⊗ eAt/Tdt. In the

special case of CTMCs, direct methods can compute P∗(−A/T ) based on
(24), but to introduce an analysis approach which is applicable for more
complex Markov modulated models, we utilize only (23).

Theorem 4. When p(t) satisfies (23) then

P∗(−A/T ) = −(π ⊗ IN)(Q⊕A/T )−1. (35)

Proof. Let v(t) = p(t)⊗ u(t), where u(t) of size N ×N satisfies the ODE

d

dt
u(t) = u(t) A/T, with initial value u(0) = IN . (36)

On the one hand, u(t) = etA/T from the solution of (36). On the other hand,
v(t) satisfies

d

dt
v(t) = v(t)(Q⊕A/T ),with initial value v(0) = π ⊗ IN , (37)

according to (23) and (36). Similar to (26), ṽ(t) =
∫ t
τ=0
v(τ)dτ satisfies

d

dt
ṽ(t) = v(0) + ṽ(t)(Q⊕A/T ), with initial value ṽ(0) = 0. (38)

Using (27) and the fact that (Q ⊕A/T ) is a transient generator, ṽ(t) con-
verges to ṽ(∞) = limt→∞ ṽ(t) = −(π ⊗ IN)(Q ⊕A/T )−1. From which, we
have

P∗(−A/T ) =

∫ ∞
t=0

p(t)⊗ eAt/Tdt =

∫ ∞
t=0

p(t)⊗ u(t)dt =

∫ ∞
t=0

v(t)dt = ṽ(∞),

which results in the theorem.

Finally, for the NILT based transient analysis of CTMCs, we obtain

p(T ) ≈ pN(T ) = (I1 ⊗α)P∗(−A/T )(IS ⊗ a/T ) (39)

= −(π ⊗α)(Q⊕A/T )−1(IS ⊗ a/T ).
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4 Transient analysis of Markov fluid models

This section applies the same analysis steps for MFMs as Section 3 for
CTMCs. Unfortunately, the analysis of MFMs is more complex than the
analysis of CTMCs. To help the reader through this complex analysis, Sec-
tion 3 and 4 are synchronized in their subsection structure and analytical
discussion. That is, the goals of the subsections of Section 4 are the same as
goals of the related subsections in Section 3.

First we state that the transient analysis of MFMs with NILT and with
random clock are identical, and in consecutive subsections, we present the
analysis details of the two approaches.

Theorem 5. The transient fluid density and empty buffer probability of the
MFM with initial probability vector π, generator Q and fluid rate matrix R
computed by the random clock method and by NILT are identical when the
same MEWF, fN(t) = αeAta, is used.

Proof. In the following subsections, we show that the random clock based
analysis results in (73) and (74), and the NILT based analysis results in (84)
and (85), which are identical.

4.1 Background

MFMs are (X(t), Y (t)) vector valued Markov processes, where X(t) ∈ S =
{1, 2, . . . , S} is a CTMC with generator Q and Y (t) ∈ R+ is referred to as
fluid level. Y (t) increases with ri while X(t) = i and Y (t) > 0. To keep the
subsequent discussion reasonably simple, we apply the following assumptions:

• Y (t) is not upper bounded (infinite buffer fluid model),

• Pr(X(0) = i) = πi,

• Y (0) = 0,

• ri 6= 0,

• the states are numbered such that the first S+ states have positive
rates and the next S− states have negative rates where S = S+ + S−.
Accordingly, the block structure of the generator and the rate matrices

are Q =
Q+ Q+−
Q−+ Q−

and R =
R+

R−
.

The fluid density and empty buffer probability vectors, p(t, x) and `(t),
whose jth elements are defined as
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• pj(t, x) = ∂
∂x

Pr(Y (t) < x,X(t) = j) for j ∈ S, and

• `j(t) = Pr(Y (t) = 0, X(t) = j) for j ∈ S−,

satisfy the following differential equations and initial conditions:
For x > 0,

∂

∂t
p(t, x) +

∂

∂x
p(t, x)R = p(t, x)Q with p(0, x) = 0, (40)

for x = 0 and t > 0

p+(t, 0)R+ = `(t)Q−+ with p+(0, 0) = δ̂π+R−1+ , `(0) = π− , (41)

and

d

dt
`(t) = `(t)Q− − p−(t, 0)R− with `(0) = π−, (42)

where δ̂ represents the Dirac impulse at zero. In contrast to the case of
CTMCs, easy to compute numerical methods are not available for p(t, x)
and `(t).

4.1.1 Laplace transform domain description

The LT domain description of the fluid density and the empty buffer prob-
ability vectors are p∗(s, x) =

∫∞
t=0

e−stp(t, x)dt and `∗(s) =
∫∞
t=0

e−st`(t)dt.
The analysis of these vectors is based on an essential measure, which is as-
sociated with the first visit to level zero. Let γ = min(t|Y (t) = 0, t > 0) be
the first time when the fluid level decreases to zero. The return measure of
interest is

Ψij(t) = Pr(γ < t,X(γ) = j|Y (0) = 0, X(0) = i),

where i ∈ S+ and j ∈ S−. The matrix formed of these elements is
Ψ(t) = {Ψij(t)} and its LT is Ψ∗(s) =

∫∞
t=0

e−stΨ(t)dt, which satisfies the
non-symmetric algebraic Riccati equation (NARE) [8]

0 = Q+(s)Ψ∗(s) + Ψ∗(s)Q−(s) + Ψ∗(s)Q−+(s)Ψ∗(s) + Q+−(s), (43)

with

Q+(s) = R−1+ (Q+ − sI) , Q+−(s) = R−1+ Q+− ,

Q−+(s) = −R−1− Q−+ , Q−(s) = −R−1− (Q− − sI) .
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There are efficient numerical solution methods to compute Ψ∗(s) based on
(43) [7]. Having computed Ψ∗(s), the matrix characterizing the fluid increase
is obtained as [4]

K∗(s) = Q+(s) + Ψ∗(s)Q−+(s). (44)

When the initial probability vector is π = [π+,π−] and the initial fluid
level is zero, the LTs are given by [3]

`∗(s) = (π+Ψ∗(s) + π−) (sI−Q− −Q−+Ψ∗(s))−1 , (45)

p∗(s, x) = (π+ + `∗(s)Q−+)eK∗(s)x
[
R−1+ ,−Ψ∗(s)R−1−

]
. (46)

4.1.2 Stationary distribution

When Q is an irreducible generator with stationary distribution satisfying
pQ = 0, and p1 = 1, and pR1 < 0, then the stationary distribution of this
MFM, p(x) = lim

t→∞
p(t, x) and ` = lim

t→∞
`(t), is obtained as follows [14]. The

stationary distribution, `, is the solution of the linear system

` (Q− + Q−+Ψ) = 0, `1 + `Q−+ (−K)−1
[
R−1+ ,−ΨR−1−

]
1 = 1, (47)

and

p(x) = `eKx
[
R−1+ ,−ΨR−1−

]
, (48)

where Ψ = Ψ∗(s)|s=0 and K = K∗(s)|s=0.
In the special case, where the generator of the modulating Markov chain

is Q0 (instead of Q) when the buffer is empty, (40) remains valid, but instead
of (41) and (42) we have

p+(t, 0)R+ = `(t)Q0
−+ with p+(0, 0) = δ(0)π+R−1+ , and

d

dt
`(t) = `(t)Q0

− − p−(t, 0)R− with `(0) = π−,

from which the stationary empty buffer distribution, vector `, is obtained as
the solution of the linear system

`
(
Q0
− + Q0

−+Ψ
)

= 0, `1 + `Q0
−+ (−K)−1

[
R−1+ ,−ΨR−1−

]
1 = 1. (49)

The stationary fluid density, p(x), can be computed from (48) using this
vector `.
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4.1.3 Transient Markov fluid model

When Q is a transient generator whose eigenvalues have strictly negative real
parts, then lim

t→∞
p(t, x) = 0 and lim

t→∞
`(t) = 0. In this case, we are interested

in p̃(t, x) =
∫ t
τ=0
p(τ, x)dτ and ˜̀(t) =

∫ t
τ=0
`(t)dτ . Integrating (40)-(42) from

0 to t gives

∂

∂t
p̃(t, x) +

∂

∂x
p̃(t, x)R = p̃(t, x)Q with p̃(0, x) = 0,

p̃+(t, 0)R+ = π+ + ˜̀(t)Q−+,

d

dt
˜̀(t)− π− = ˜̀(t)Q− − p̃−(t, 0)R− with ˜̀(0) = 0,

where we used
∫ t
0−
p+(τ, 0)R+dτ =

∫ 0+

0−
p+(τ, 0)R+dτ +

∫ t
0+
p+(τ, 0)R+dτ =

π+ +
∫ t
0+
`(τ)Q−+dτ in the second equation.

For the stationary limits p̃(∞, x) = lim
t→∞

p̃(t, x) and ˜̀(∞) = lim
t→∞

˜̀(t), the

characterizing equations can be decomposed to the following matrix block
equations

d

dx
p̃+(∞, x)R+ = p̃+(∞, x)Q+ + p̃−(∞, x)Q−+, (50)

d

dx
p̃−(∞, x)R− = p̃−(∞, x)Q− + p̃+(∞, x)Q+−, (51)

p̃+(∞, 0)R+ − π+ = ˜̀(∞)Q−+, (52)

−π− = ˜̀(∞)Q− − p̃−(∞, 0)R−. (53)

Theorem 6. The solution of (50) - (53) is

˜̀(∞) = −(π+Ψ + π−) (Q− + Q−+Ψ)−1 , (54)

p̃+(∞, x) = (π+ + ˜̀(∞)Q−+)eKxR−1+ , (55)

p̃−(∞, x) = −(π+ + ˜̀(∞)Q−+)eKxΨR−1− , (56)

where Ψ is the solution of

0 = R−1+ Q+Ψ−ΨR−1− Q− −ΨR−1− Q−+Ψ + R−1+ Q+−, (57)

and

K = R−1+ Q+ −ΨR−1− Q−+. (58)

Proof. Substituting ˜̀(∞), p̃+(∞, x) and p̃−(∞, x) into (50) - (53) gives the
statements of the theorem.
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While (27) is a widely known result, Theorem 6 is new according to the
author’s latest knowledge. Furthermore, the structural similarity of (45)-
(46) and (54)-(56) and the fact that Q − sI is a transient generator for
s > 0 suggest that the analysis of transient processes and the LT domain
description of the same processes are closely related, but this relation is not
investigated in the current work.

4.2 Markov fluid model augmented with a random
clock

Similar to the case of CTMC, we augment an MFM characterized by the
initial probability vector π, the generator matrix Q and the fluid rate matrix
R, with a random clock whose weight function, fN(t/T )/T = αeAt/Ta/T , is
normalized and centralized at T [5]. The state space of the MFM augmented
with a random clock has a block of size SN , which describes the parallel
evolution of the original MFM and the clock; and a block of size one, which
is used for resetting the model after a clock event.

We need the following definitions for the steady-state distribution of the
clock augmented MFM of size SN + 1, (X̂(t), Ŷ (t)). Let ˆ̀ and p̂(x) be the
steady-state fluid density and the empty buffer probability vectors of the
extended MFM (X̂(t), Ŷ (t)), whose jth elements are

p̂j(x) = lim
t→∞

d

dx
Pr(Ŷ (t) ≤ x, X̂(t) = j), for x ≥ 0, (59)

ˆ̀
j = lim

t→∞
Pr(Ŷ (t) = 0, X̂(t) = j). (60)

The extended model is such that, the original MFM and the clock evolves
parallel until a clock event. At a clock event, the process moves to state
SN + 1 and a reset process starts, during which the fluid level decreases to
zero at rate −1. After reaching fluid level zero in state SN+1 an exponential
transition takes place at rate one to the initial state of the next cycle. Since
the performance measure of our interest is the behaviour of the augmented
MFM at clock events, the rate at which the fluid level decreases to zero and
the parameter of the exponentially distributed time spent in the reset state
do not play roles.

At the end of the reset process, the original CTMC is set to state j with
probability πj, the fluid level is 0, and the state vector of the clock is reset to
its initial state, α. After a reset, the parallel evolution of the original model
and the clock and the reset phase repeat in consecutive cycles.

Fig. 1 demonstrates the evolution of the MFM augmented with a ran-
dom clock. The extended MFM, (X̂(t), Ŷ (t)), follows a cyclic behaviour of
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Fluid level

Fluid evolves according to the original MFM Fluid is forced back to level 0 at state SN+1

time
θ θθ

State State 

State
SN+1

SN+1
SN+1

exp(1)

Figure 1: A sample path of the fluid level process of the extended MFM

stochastically identical cycles (separated by vertical dashed lines in Fig. 1).
In each cycle, the extended MFM starts from level 0 and with initial proba-
bility vector π and spends an fN(t/T )/T distributed time (denoted by θ in
the figure) in the subset of the first SN states. In the figure, cycle 1 and 3
starts with a positive rate, cycle 2 starts with a negative rate, and in cycle
1 and 2 the clock expires at a positive fluid level, while in cycle 3 it expires
when the fluid level is zero.

Unfortunately, to empty the fluid buffer for the end of the reset phase the
extended MFM has a fluid level dependent behaviour, which means that the
extended model is governed by different generator and rate matrix when the
fluid level is positive, Q̂ and R̂, and when the buffer is empty, Q̂0 and R̂0.
The block structure of these matrices are

Q̂ =

SN 1

Q̄ 1⊗ a/T
0 0

=

SN 1

Q⊕A/T 1⊗ a/T
0 0

, R̂ =

SN 1

R̄ 0

0 −1
=

SN 1

R⊗ I 0

0 −1
,

Q̂0 =
Q̄ 1⊗ a/T

π ⊗α −1
=

Q⊕A/T 1⊗ a/T
π ⊗α −1

, R̂0 =
R̄ 0

0 −1
=

R⊗ I 0

0 −1
,

where the numbers outside the blocks indicate the dimension of the matrix
blocks considering that the diagonal blocks are square matrices.

The number of states with positive rate is S+N and the number of states
with negative rate is S−N + 1. Based on the sign of the fluid rates of the
original MFM, we can decompose matrix Q̄ = Q ⊕A/T into the following
blocks

Q⊕A/T = Q⊗ IN + IS ⊗A/T =
Q+ ⊕A/T Q+− ⊗ IN

Q−+ ⊗ IN Q− ⊕A/T
,
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where the subscripts of the identity matrices indicate their size, e.g., IS is of
size S.

The fluid rate dependent block structure of Q̂, R̂, Q̂0 and R̂0 are

Q̂ =

SN 1

Q̄ 1⊗ a/T
0 0

=

S+N S−N 1

Q+ ⊕A/T Q+− ⊗ IN 1+ ⊗ a/T

Q−+ ⊗ IN Q− ⊕A/T1− ⊗ a/T
0 0 0

=

S+NS−N + 1

Q̂+ Q̂+−

Q̂−+ Q̂−
,

Q̂0 =
Q̄ 1⊗ a/T

π ⊗α −1
=

Q+ ⊕A/T Q+− ⊗ IN 1+ ⊗ a/T

Q−+ ⊗ IN Q− ⊕A/T1− ⊗ a/T
π+ ⊗α π− ⊗α −1

=
Q̂0

+ Q̂0
+−

Q̂0
−+ Q̂0

−
,

R̂ = R̂0 =
R̄ 0

0 −1
=

R+ ⊗ I 0 0

0 R− ⊗ I 0

0 0 −1

=
R̂+

R̂−
.

Based on this partitioning of the extended state space, we partition vec-
tors ˆ̀ and p̂(x) as follows

ˆ̀︸︷︷︸
S−×N+1

= [ ¯̀︸︷︷︸
S−×N

, `4︸︷︷︸
1

] , (61)

p̂(x)︸︷︷︸
S×N+1

= [p̂+(x)︸ ︷︷ ︸
S+×N

, p̂−(x)︸ ︷︷ ︸
S−×N+1

] = [p̄(x)︸︷︷︸
S×N

, p4(x)︸ ︷︷ ︸
1

] = [p̄+(x)︸ ︷︷ ︸
S+×N

, p̄−(x)︸ ︷︷ ︸
S−×N

, p4(x)︸ ︷︷ ︸
1

] (62)

According to Section 4.1.2, the stationary distribution of such fluid level
dependent MFM is ˆ̀ and p̂(x), where ˆ̀ is the solution of the linear system

ˆ̀
(
Q̂0
− + Q̂0

−+Ψ̂
)

= 0 , (63)

ˆ̀1 + ˆ̀Q̂0
−+

(
−K̂

)−1 [
R̂−1+ ,−Ψ̂R̂−1−

]
1 = 1, (64)

and

p̂(x) = ˆ̀Q̂0
−+e

K̂x
[
R̂−1+ ,−Ψ̂R̂−1−

]
. (65)

Matrices Ψ̂ and K̂ are obtained from Q̂ and R̂ in the same way as Ψ and K
are obtained from Q and R. That is,

0 = R̂−1+ Q̂+Ψ̂− Ψ̂R̂−1− Q̂− − Ψ̂R̂−1− Q̂−+Ψ̂ + R̂−1+ Q̂+−, (66)

K̂ = R̂−1+ Q̂+ − Ψ̂R̂−1− Q̂−+. (67)
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The size SN part of the stationary solution of the size SN + 1 extended
model is easily computed for CTMCs in (29). The following lemma provides
the related relations for MFMs.

Lemma 1. Let Ψ̄ and K̄ be obtained from

0 = R̄−1+ Q̄+Ψ̄− Ψ̄R̄−1− Q̄− − Ψ̄R̄−1− Q̄−+Ψ̄ + R̄−1+ Q̄+−, (68)

K̄ = R̄−1+ Q̄+ − Ψ̄R̄−1− Q̄−+, (69)

then Ψ̂ =
[
Ψ̄,Ψ4

]
and K̂ = K̄, where Ψ4 is of size S+N × 1.

Proof. Decomposing (66) and (67) according to the block structure of Q̂ and
R̂ results in the lemma.

Using the decomposition of matrices Q̂0 and Ψ̂ and vector ˆ̀, (63) can be
written as

0 = ˆ̀
(
Q̂0
− + Q̂0

−+Ψ̂
)

= [¯̀, `4]

(
Q− ⊕A/T 1− ⊗ a/T
π− ⊗α −1

+
(Q−+ ⊗ IN)Ψ̄ (Q−+ ⊗ IN)Ψ4

(π+ ⊗α)Ψ̄ (π+ ⊗α)Ψ4

)
,

from which

¯̀= `4
(
−(π− ⊗α)− (π+ ⊗α)Ψ̄

) (
(Q− ⊕A/T ) + (Q−+ ⊗ IN)Ψ̄

)−1︸ ︷︷ ︸
def
= ~̀

= `4~̀.

(70)

Also in this case, (Q−⊕A/T ) + (Q−+⊗ IN)Ψ̄ is non-singular, when the
eigenvalues of A have negative real parts.

Based on (65), (70) and the Ψ̂ = Ψ̄ Ψ4 decomposition of Ψ̂, we have

p̄(x) = ˆ̀Q̂0
−+e

K̂x
[
R̂−1+ ,−Ψ̄

(
R−1− ⊗ IN

)]
(71)

= [¯̀, `4]
Q−+ ⊗ IN
π+ ⊗α

eK̂x
[(

R−1+ ⊗ IN
)
,−Ψ̄

(
R−1− ⊗ IN

)]
= `4

(
~̀(Q−+ ⊗ IN) + (π+ ⊗α)

)
︸ ︷︷ ︸

def
=
⇒
`

eK̂x
[(

R−1+ ⊗ IN
)
,−Ψ̄

(
R−1− ⊗ IN

)]︸ ︷︷ ︸
def
=
⇒
R

= `4
⇒
` eK̂x

⇒
R. (72)

For CTMCs, the normalizing condition was easily computer based on
(32). The normalizing condition of MFMs is more complex, that is why we
introduce the normalizing constant C in the following results.
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Theorem 7. The stationary embedded fluid density and empty buffer prob-
ability, p

(N)
j (x) and `

(N)
j , at a clock event are obtained from the related sta-

tionary density and probability mass of (X̂(t), Ŷ (t)) as

`(N) = C~̀
(
IS− ⊗ a/T

)
, (73)

p(N)(x) = C
⇒
` eK̂x

⇒
R (IS ⊗ a/T ) , (74)

where C is a normalizing constant.

Proof. This theorem is a counterpart of Theorem 3 and its proof follows a

similar pattern. For `
(N)
j , we have

`
(N)
j = lim

δ→0
lim
t→∞

∑N
n=1 Pr(transition to SN+1 in (t, t+δ), Ŷ (t) = 0, X̂(t) = (j, n))

Pr(transition to SN+1 in (t, t+δ))

= lim
δ→0

lim
t→∞

N∑
n=1

Pr(transition to SN+1 in (t, t+δ), Ŷ (t) = 0, X̂(t) = (j, n))

S∑
k=1

N∑
n=1

(∫ ∞
y=0

Pr(tr. to SN+1 in (t, t+δ), Ŷ (t) = y, X̂(t) = (k, n))dy

+ Pr(tr. to SN+1 in (t, t+δ), Ŷ (t) = 0, X̂(t) = (k, n))

)
.

When X̂(t) = (j, n), the probability that the (X̂(t), Ŷ (t)) process moves to
state SN+1 in (t, t+δ) is (δan/T + σ(δ)). Using this infinitesimal behaviour,
the last expression can be rewritten as

`
(N)
j = lim

δ→0

∑N
n=1

ˆ̀
(j,n) (δan/T + σ(δ))∑S

k=1

∑N
n=1

(∫∞
y=0

p̂(k,n)(y)dy + ˆ̀
(k,n)

)
(δan/T + σ(δ))

=

∑N
n=1

ˆ̀
(j,n)an/T∑S

k=1

∑N
n=1

(∫∞
y=0

p̂(k,n)(y)dy + ˆ̀
(k,n)

)
an/T

. (75)

The proof of (74) follows a similar pattern. The only difference is that

the p
(N)
j (x) density value is transformed to the probability of being in a small
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environment of x, as follows

p
(N)
j (x)∆ + σ(∆) =

Pr(the fluid level is in (x, x+∆) and the MFM state is j at a tr. to SN+1)

= lim
δ→0

lim
t→∞

Pr(the fluid level is in (x, x+∆) and the MFM state is j
at time t and transition to SN+1 in (t, t+δ))

Pr(transition to SN+1 in (t, t+δ))

= lim
δ→0

∑N
n=1

(
p̂(j,n)(x)∆ + σ(∆)

)
(δan/T + σ(δ))∑S

k=1

∑N
n=1

(∫∞
y=0

p̂(k,n)(y)dy + ˆ̀
(k,n)

)
(δan/T + σ(δ))

=

∑N
n=1

(
p̂(j,n)(x)∆ + σ(∆)

)
an/T∑S

k=1

∑N
n=1

(∫∞
y=0

p̂(k,n)(y)dy + ˆ̀
(k,n)

)
an/T

. (76)

Dividing (76) by ∆ and taking the limit ∆→ 0 results in

p
(N)
j (x) =

∑N
n=1 p̂(j,n)(x)an/T∑S

k=1

∑N
n=1

(∫∞
y=0

p̂(k,n)(y)dy + ˆ̀
(k,n)

)
an/T

. (77)

The vector form of (75) and (77) are

`(N) =
¯̀
(
IS− ⊗ a/T

)
¯̀
(
1S− ⊗ a/T

)
+
∫∞
y=0
p̄(y)dy (1N ⊗ a/T )

, (78)

p(N)(x) =
p̄(x) (IS ⊗ a/T )

¯̀
(
1S− ⊗ a/T

)
+
∫∞
y=0
p̄(y)dy (1N ⊗ a/T )

. (79)

Substituting (70) and (71) into these expressions give

`(N) =
`4~̀

(
IS− ⊗ a/T

)
`4~̀

(
1S− ⊗ a/T

)
+
∫∞
y=0

`4
⇒
` eK̂y

⇒
Rdy (1N ⊗ a/T )

, (80)

p(N)(x) =
`4
⇒
` eK̂x

⇒
R (IS ⊗ a/T )

`4~̀
(
1S− ⊗ a/T

)
+
∫∞
y=0

`4
⇒
` eK̂y

⇒
Rdy (1N ⊗ a/T )

. (81)

Simplifying with `4, using
∫∞
y=0

eK̂ydy = −K̂−1 and 1/C = ~̀
(
1S− ⊗ a/T

)
−

⇒
` K̂−1

⇒
R (1S ⊗ a/T ), we obtain (73) and (74).
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4.3 Transient analysis with NILT

4.3.1 NILT when A is diagonalizable

To approximate the transient behaviour of the MFM at time T based on its
LT in (45) and (46), we write

`(T ) ≈ `N(T ) =
N∑
n=1

ηn
T
`∗
(
βn
T

)
(82)

=
N∑
n=1

ηn
T

(
π+Ψ∗

(
βn
T

)
+ π−

)(
sI−Q− −Q−+Ψ∗

(
βn
T

))−1
,

p(T, x) ≈ pN(T, x) =
N∑
n=1

ηn
T
p∗
(
βn
T
, x

)
(83)

=
N∑
n=1

ηn
T

(
π+ + `∗

(
βn
T

)
Q−+

)
eK∗(βnT )x

[
R−1+ ,−Ψ∗

(
βn
T

)
R−1−

]
.

4.3.2 NILT when A is not diagonalizable

Similar to the CTMC case, when A is not diagonalizable we utilize Theo-
rem 1 for which we need to compute L∗ (−A/T ) =

∫∞
0
`(t) ⊗ eAt/Tdt and

P ∗ (−A/T, x) =
∫∞
0
p(t, x)⊗ eAt/Tdt.

Theorem 8. L∗ (−A/T ) and P ∗ (−A/T, x) can be computed as

L∗ (−A/T ) = −
(
(π+ ⊗ IN)Ψ̄ + (π− ⊗ IN)

) (
Q− ⊕A/T + (Q−+ ⊗ IN)Ψ̄

)−1
,

P ∗+ (−A/T, x) = ((π+ ⊗ IN) +L∗ (−A/T ) (Q−+ ⊗ IN))eK̄x(R−1+ ⊗ IN),

P ∗− (−A/T, x) = −((π+ ⊗ IN) +L∗ (−A/T ) (Q−+ ⊗ IN))eK̄xΨ̄(R−1− ⊗ IN).

Proof. The proof follows the same pattern as the one of Theorem 4. We
introduce the transient MFM with generator Q̄ = Q⊕A/T and R̄ = R⊗IN
and apply Theorem 6.

From Theorem 1 and 8, the NILT based approximation of `(T ) and
p(T, x) are

`(T ) ≈ `N(T ) = (I1 ⊗α)L∗(−A/T )(IS− ⊗ a/T ), (84)

p(T, x) ≈ pN(T, x) = (I1 ⊗α)P ∗(−A/T, x)(IS ⊗ a/T ), (85)

where I1 ⊗α (= 1⊗α = α) is written to refer to the Kronecker product
structure of Theorem 1 and P∗(−A/T, x) = [P∗+(−A/T, x),P∗−(−A/T, x)].

From Theorem 8, we can also compute the normalizing constant of The-
orem 7.
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Lemma 2. The normalizing constant of Theorem 7 satisfies

C =
1

~̀
(
1S− ⊗ a/T

)
−
⇒
` K̂−1

⇒
R (1S ⊗ a/T )

= 1.

Proof. From Theorem 8 and (84), we have

`N(T )1S− = (I1 ⊗α)L∗(−A/T )(IS− ⊗ a/T )1S− =

−
(
(π+ ⊗α)Ψ̄ + (π− ⊗α)

) (
Q− ⊕A/T + (Q−+ ⊗ IN)Ψ̄

)−1
(1S− ⊗ a/T ) =

~̀
(
1S− ⊗ a/T

)
.

Similarly, from (85) we have∫ ∞
0

pN+(T, x)dx1S+ = (I1 ⊗α)

∫ ∞
0

P∗+(−A/T, x)dx(IS+ ⊗ a/T )1S+ =

((π+ ⊗α) + (I1 ⊗α)`∗ (−A/T )︸ ︷︷ ︸
=~̀

(Q−+ ⊗ IN))

∫ ∞
0

eK̄xdx(R−1+ ⊗ IN)(1S+ ⊗ a/T ) =

⇒
` (−K̄)−1(R−1+ ⊗ IN)(1S+ ⊗ a/T ),

and∫ ∞
0

pN−(T, x)dx1S− = (I1 ⊗α)

∫ ∞
0

P∗−(−A/T, x)dx(IS− ⊗ a/T )1S− =

−
⇒
` (−K̄)−1Ψ̄(R−1− ⊗ IN)(1S− ⊗ a/T ),

where
⇒
` is defined in (72). Using the relation∫ ∞
0

pN(T, x)dx1S =

[∫ ∞
0

pN+(T, x)dx,

∫ ∞
0

pN−(T, x)dx

]
1S =

⇒
` (−K̄)−1

[
(R−1+ ⊗ IN),−Ψ̄(R−1− ⊗ IN)

]︸ ︷︷ ︸
=
⇒
R

(1S− ⊗ a/T ),

we can write

1 =

∫ ∞
0

fN(t/T )/Tdt =

∫ ∞
0

fN(t/T )/T

(
`(t)1S− +

∫ ∞
0

p(t, x)dx1S

)
︸ ︷︷ ︸

=1

dt

= `N(T )1S− +

∫ ∞
0

pN(T, x)dx1S = ~̀
(
IS− ⊗ a/T

)
−
⇒
` K̂−1

⇒
R (1S ⊗ a/T ) .
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5 Conclusion

The paper proves the identity of the NILT and the random clock based
analysis of CTMCs and MFMs when the same MEWF is used.

This identity leads to a new interpretation of the two analysis approaches.
The properties of the analysis methods based on NILT and random clock
do not depend on the approach, but they depend on the applied MEWF.
Historically, MEWFs with alternating signs were used for NILT and non-
negative MEWFs for random clock based analysis, which resulted in different
perceptions of the two approaches.

Due to the identity of the approaches, the remaining open problem of
the transient analysis Markov modulated stochastic processes is to find the
appropriate MEWF. An additional research goal is to prove that the iden-
tity of NILT and clock based transient analysis extends to other stochastic
processes.
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