The two-matrix problem

Miklós Telek

1 Introduction

There are two real-valued square matrices G_0 and G_1 . Do they describe a valid rational arrival process (RAP) with row vector v?

That is,

$$v e^{\mathbf{G}_0 t_1} \mathbf{G}_1 e^{\mathbf{G}_0 t_2} \mathbf{G}_1 \dots e^{\mathbf{G}_0 t_k} \mathbf{G}_1 \mathbb{1} \ge 0 \tag{1}$$

for all $k \ge 1$ and all $t_1, t_2, \ldots, t_k \in \mathbb{R}^+$, where $\mathbb{1}$ is the column vector of ones.

Continuous-time Markov arrival processes (MAPs) are efficiently used to model point processes with dependent interarrival times [11]. Any interarrival time of a MAP is phase-type (PH) distributed [10]. A non-Markovian generalization of MAPs is the rational arrival processes (RAPs) [2], whose interarrival time is matrix exponentially (ME) distributed [1].

The advantage of using Markovian stochastic models, like PH distribution and MAP, is in their simple stochastic interpretation via an underlying continuous-time Markov chain (CTMC), which modulates the terminating event of the PH distribution and the arrival event of the MAP. The advantage of using non-Markovian models, like RAP and ME distribution, is that they describe a broader class of stochastic models [4, 6,3,8].

The relation of PH and ME distributions has been investigated for a long time [12,7, 9,13], while the relation of MAPs and RAPs is much less explored. The most important open problems are

- the validity of RAP models and
- the minimal Markovian representation of valid RAP models.

This note is devoted to the first problem.

Miklós Telek

Department of Networked Systems and Services, Budapest University of Technology and Economics, Hungary. E-mail: telek@hit.bme.hu

2 Problem statement

Definition 1 A *ME distribution* [1] is a distribution on \mathbb{R}^+ such that its density function is a matrix exponential function of the parameter

$$f_{(\mathbf{v},\mathbf{G}_0)}(t) = -\mathbf{v} \ e^{\mathbf{G}_0 t} \ \mathbf{G}_0 \mathbb{1},\tag{2}$$

where v is a row vector and \mathbf{G}_0 is a square matrix of size $m < \infty$.

The $(\mathbf{v}, \mathbf{G}_0)$ pair defines a ME exponential distribution, if and only if $f_{(\mathbf{v}, \mathbf{G}_0)}(t) \ge 0$ for all $t \in \mathbb{R}^+$, which we refer to as ME non-negativity criteria, and $\int_0^{\infty} f_{(\mathbf{v}, \mathbf{G}_0)}(t) dt \le 1$.

Definition 2 A (v, G_0) pair is *Markovian*, if $v \ge 0$, the diagonal elements of G_0 are negative, the rest of its elements are non-negative and $G_0 \mathbb{1} \le 0$.

Any Markovian (v, G_0) pair satisfies the ME non-negativity criteria.

Definition 3 A *PH distribution* is a ME distribution which has a finite Markovian representation.

Definition 4 A *RAP* [2] is a point process whose joint density of consecutive interarrival times is a matrix exponential function of the variables

$$f_{(\mathbf{v},\mathbf{G}_{0},\mathbf{G}_{1})}(t_{1},\ldots,t_{k}) = \mathbf{v}e^{\mathbf{G}_{0}t_{1}}\mathbf{G}_{1}e^{\mathbf{G}_{0}t_{2}}\mathbf{G}_{1}\ldots e^{\mathbf{G}_{0}t_{k}}\mathbf{G}_{1}\mathbb{1},$$
(3)

where v is a row vector and \mathbf{G}_0 and \mathbf{G}_1 are square matrices of size $m < \infty$.

The triple $(\mathbf{v}, \mathbf{G}_0, \mathbf{G}_1)$ represents a RAP if and only if $f_{(\mathbf{v}, \mathbf{G}_0, \mathbf{G}_1)}(t_1, \dots, t_k) \ge 0$ for all $k \ge 1$ and $t_1, t_2, \dots, t_k \in \mathbb{R}^+$, which we refer to as RAP non-negativity criteria, and $\int_0^{\infty} \dots \int_0^{\infty} f_{(\mathbf{v}, \mathbf{G}_0, \mathbf{G}_1)}(t_1, \dots, t_k) dt_k \dots dt_1 \le 1$.

Definition 5 The (v, G_0, G_1) triple is *Markovian*, if $v \ge 0$, $G_1 \ge 0$, the diagonal elements of G_0 are negative, the rest of its elements are non-negative and $G_0 \mathbb{1} \le 0$.

Any Markovian (v, G_0, G_1) triple satisfies the RAP non-negativity criteria.

Definition 6 A MAP is a RAP which has a Markovian representation.

There are infinitely many different vector-matrix pairs representing a ME distribution and infinitely many different vector-matrix-matrix triples representing a RAP [5]. If $(v, \mathbf{G}_0, \mathbf{G}_1)$ of size m, $(\phi, \mathbf{C}_0, \mathbf{C}_1)$ of size n and matrix \mathbf{W} of size $n \times m$ are such that $v = \phi \mathbf{W}$, $\mathbf{C}_0 \mathbf{W} = \mathbf{W} \mathbf{G}_0$, $\mathbf{C}_1 \mathbf{W} = \mathbf{W} \mathbf{G}_1$, $\mathbb{1}_n = \mathbf{W} \mathbb{1}_m$, then $(v, \mathbf{G}_0, \mathbf{G}_1)$ and $(\phi, \mathbf{C}_0, \mathbf{C}_1)$ represent the same RAP, because

$$\begin{aligned} f_{(\mathbf{v},\mathbf{G}_{0},\mathbf{G}_{1})}(t_{1},\ldots,t_{k}) &= \mathbf{v}e^{\mathbf{G}_{0}t_{1}}\mathbf{G}_{1}e^{\mathbf{G}_{0}t_{2}}\mathbf{G}_{1}\ldots e^{\mathbf{G}_{0}t_{k}}\mathbf{G}_{1}\mathbb{1} = \phi\mathbf{W}e^{\mathbf{G}_{0}t_{1}}\mathbf{G}_{1}e^{\mathbf{G}_{0}t_{2}}\mathbf{G}_{1}\ldots e^{\mathbf{G}_{0}t_{k}}\mathbf{G}_{1}\mathbb{1} \\ &= \phi e^{\mathbf{C}_{0}t_{1}}\mathbf{W}\mathbf{G}_{1}e^{\mathbf{G}_{0}t_{2}}\mathbf{G}_{1}\ldots e^{\mathbf{G}_{0}t_{k}}\mathbf{G}_{1}\mathbb{1} = \phi e^{\mathbf{C}_{0}t_{1}}\mathbf{C}_{1}\mathbf{W}e^{\mathbf{G}_{0}t_{2}}\mathbf{G}_{1}\ldots e^{\mathbf{G}_{0}t_{k}}\mathbf{G}_{1}\mathbb{1} \\ &= \ldots = \phi e^{\mathbf{C}_{0}t_{1}}\mathbf{C}_{1}e^{\mathbf{C}_{0}t_{2}}\mathbf{C}_{1}\ldots e^{\mathbf{C}_{0}t_{k}}\mathbf{C}_{1}\mathbb{1} = f_{(\phi,\mathbf{C}_{0},\mathbf{C}_{1})}(t_{1},\ldots,t_{k}). \end{aligned}$$

This transformation can be used to obtain an equivalent Markovian representation $(\phi, \mathbf{C}_0, \mathbf{C}_1)$ of the RAP, which is defined by a non-Markovian representation $(\mathbf{v}, \mathbf{G}_0, \mathbf{G}_1)$.

3 Discussion

To check the ME non-negativity criteria is a difficult task already. There are many necessary conditions for (v, G_0) (e.g., the eigenvalues of G_0 have negative real part, there is a real eigenvalue among the eigenvalues with maximal real part, etc.), but sufficient conditions are difficult to find. For a subset of ME distributions, the characterization theorem of O'Cinneide [12] provides a sufficient condition, which proves that any ME distribution with strictly positive density function in $(0, \infty)$ and with unique real eigenvalue with maximal real part has a finite-dimensional Markovian representation. Additionally, [9] recommends a method for constructing such Markovian representation for ME distributions satisfying the conditions of O'Cinneide's characterization theorem.

Consequently, to check if (v, G_0) defines a ME distribution one needs to apply the numerical procedure to transform (v, G_0) into a Markovian representation according to [13] and if the procedure succeeds then the answer is positive.

In spite of the related efforts, the counterparts of these results, which we summarize as a conjecture and a challenge, are not available for RAPs.

Conjecture 1 Any RAP with strictly positive joint density function for $t_1, ..., t_k \in (0, \infty)$ and \mathbf{G}_0 with unique real eigenvalue with maximal real part has a finite-dimensional Markovian representation.

Challenge 1 Develop a procedure for transforming (v, G_0, G_1) into a Markovian representation if the conditions of Conjecture 1 hold.

A possible way to transform v and G_0 into a potentially larger Markovian representation could be the same as in [9]. Following this approach, our efforts in Challenge 1 failed because we could not find the associated Markovian representation of G_1 .

References

- S. Asmussen and M. Bladt. Renewal theory and queueing algorithms for matrix-exponential distributions. In *Matrix-analytic methods in stochastic models*, volume 183 of *Lecture Notes in Pure and Appl. Math.*, pages 313–341, 1997.
- S. Asmussen and M. Bladt. Point processes with finite-dimensional conditional probabilities. *Stochastic Processes and their Applications*, 82:127–142, 1999.
- N. G. Bean, M. Fackrell, and P. Taylor. Characterization of matrix-exponential distributions. *Stochastic Models*, 24(3):339–363, 2008.
- M. Bladt and M. F. Neuts. Matrix-exponential distributions: Calculus and interpretations via flows. Stochastic Models, 19(1):113–124, 2003.
- P. Buchholz and M. Telek. On minimal representation of rational arrival processes. Annals of Operations Research, 202(1):35–58, 2013.
- M. Fackrell. Fitting with matrix-exponential distributions. *Stochastic Models*, 21(2-3):377–400, 2005.
 Q.-M. He and H. Zhang. On matrix exponential distributions. *Advances in Applied Probability*,
- 39(1):271–292, 2007.
 G. Horváth, I. Horváth, and M. Telek. High order concentrated matrix-exponential distributions. *Stochastic Models*, 36(2):176–192, 2020.
- I. Horváth and M. Telek. A constructive proof of the phase-type characterization theorem. *Stochastic Models*, 31(2):316–350, 2015.
- M. Neuts. Probability distributions of phase type. In *Liber Amicorum Prof. Emeritus H. Florin*, pages 173–206. University of Louvain, 1975.
- 11. M. F. Neuts. A versatile Markovian point process. Journal of Applied Probability, 16(4):764-779, 1979.
- C. O'Cinneide. Characterization of Phase-type distributions. *Stochastic Models*, 6(1):1–57, 1990.
 P. Reinecke and M. Telek. Does a given vector-matrix pair correspond to a PH distribution? *Performance Evaluation*, 81:40 51, 2014.