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The two-matrix problem

Miklós Telek

1 Introduction

There are two real-valued square matrices G0 and G1. Do they describe a valid rational
arrival process (RAP) with row vector ν?

That is,

νeG0t1G1eG0t2G1 . . .eG0tk G11≥ 0 (1)

for all k ≥ 1 and all t1, t2, . . . , tk ∈ R+, where 1 is the column vector of ones.

Continuous-time Markov arrival processes (MAPs) are efficiently used to model
point processes with dependent interarrival times [11]. Any interarrival time of a MAP
is phase-type (PH) distributed [10]. A non-Markovian generalization of MAPs is the
rational arrival processes (RAPs) [2], whose interarrival time is matrix exponentially
(ME) distributed [1].

The advantage of using Markovian stochastic models, like PH distribution and
MAP, is in their simple stochastic interpretation via an underlying continuous-time
Markov chain (CTMC), which modulates the terminating event of the PH distribution
and the arrival event of the MAP. The advantage of using non-Markovian models, like
RAP and ME distribution, is that they describe a broader class of stochastic models [4,
6,3,8].

The relation of PH and ME distributions has been investigated for a long time [12,7,
9,13], while the relation of MAPs and RAPs is much less explored. The most important
open problems are

– the validity of RAP models and
– the minimal Markovian representation of valid RAP models.

This note is devoted to the first problem.
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2 Problem statement

Definition 1 A ME distribution [1] is a distribution on R+ such that its density function
is a matrix exponential function of the parameter

f(ν ,G0)(t) =−ν eG0t G01, (2)

where ν is a row vector and G0 is a square matrix of size m < ∞.

The (ν ,G0) pair defines a ME exponential distribution, if and only if f(ν ,G0)(t)≥ 0
for all t ∈R+, which we refer to as ME non-negativity criteria, and

∫
∞

0 f(ν ,G0)(t)dt ≤ 1.

Definition 2 A (ν ,G0) pair is Markovian, if ν ≥ 0, the diagonal elements of G0 are
negative, the rest of its elements are non-negative and G01≤ 0.

Any Markovian (ν ,G0) pair satisfies the ME non-negativity criteria.

Definition 3 A PH distribution is a ME distribution which has a finite Markovian rep-
resentation.

Definition 4 A RAP [2] is a point process whose joint density of consecutive interar-
rival times is a matrix exponential function of the variables

f(ν ,G0,G1)(t1, . . . , tk) = νeG0t1G1eG0t2G1 . . .eG0tk G11, (3)

where ν is a row vector and G0 and G1 are square matrices of size m < ∞.

The triple (ν ,G0,G1) represents a RAP if and only if f(ν ,G0,G1)(t1, . . . , tk) ≥ 0 for
all k ≥ 1 and t1, t2, . . . , tk ∈ R+, which we refer to as RAP non-negativity criteria, and∫

∞

0 . . .
∫

∞

0 f(ν ,G0,G1)(t1, . . . , tk)dtk . . .dt1 ≤ 1.

Definition 5 The (ν ,G0,G1) triple is Markovian, if ν ≥ 0, G1 ≥ 0, the diagonal ele-
ments of G0 are negative, the rest of its elements are non-negative and G01≤ 0.

Any Markovian (ν ,G0,G1) triple satisfies the RAP non-negativity criteria.

Definition 6 A MAP is a RAP which has a Markovian representation.

There are infinitely many different vector-matrix pairs representing a ME distribu-
tion and infinitely many different vector-matrix-matrix triples representing a RAP [5].
If (ν ,G0,G1) of size m, (φ ,C0,C1) of size n and matrix W of size n×m are such that
ν = φW, C0W = WG0, C1W = WG1, 1n = W1m, then (ν ,G0,G1) and (φ ,C0,C1)

represent the same RAP, because

f(ν ,G0,G1)(t1, . . . , tk) = νeG0t1G1eG0t2G1 . . .eG0tk G11= φWeG0t1G1eG0t2G1 . . .eG0tk G11

= φeC0t1 WG1eG0t2G1 . . .eG0tk G11= φeC0t1C1WeG0t2G1 . . .eG0tk G11

= . . .= φeC0t1C1eC0t2C1 . . .eC0tk C11= f(φ ,C0,C1)(t1, . . . , tk).

This transformation can be used to obtain an equivalent Markovian representa-
tion (φ ,C0,C1) of the RAP, which is defined by a non-Markovian representation
(ν ,G0,G1).
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3 Discussion

To check the ME non-negativity criteria is a difficult task already. There are many nec-
essary conditions for (ν ,G0) (e.g., the eigenvalues of G0 have negative real part, there
is a real eigenvalue among the eigenvalues with maximal real part, etc.), but sufficient
conditions are difficult to find. For a subset of ME distributions, the characterization
theorem of O’Cinneide [12] provides a sufficient condition, which proves that any ME
distribution with strictly positive density function in (0,∞) and with unique real eigen-
value with maximal real part has a finite-dimensional Markovian representation. Addi-
tionally, [9] recommends a method for constructing such Markovian representation for
ME distributions satisfying the conditions of O’Cinneide’s characterization theorem.

Consequently, to check if (ν ,G0) defines a ME distribution one needs to apply the
numerical procedure to transform (ν ,G0) into a Markovian representation according to
[13] and if the procedure succeeds then the answer is positive.

In spite of the related efforts, the counterparts of these results, which we summarize
as a conjecture and a challenge, are not available for RAPs.

Conjecture 1 Any RAP with strictly positive joint density function for t1, . . . , tk ∈ (0,∞)

and G0 with unique real eigenvalue with maximal real part has a finite-dimensional
Markovian representation.

Challenge 1 Develop a procedure for transforming (ν ,G0,G1) into a Markovian rep-
resentation if the conditions of Conjecture 1 hold.

A possible way to transform ν and G0 into a potentially larger Markovian represen-
tation could be the same as in [9]. Following this approach, our efforts in Challenge 1
failed because we could not find the associated Markovian representation of G1.
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