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Abstrat. Markov Regenerative Stohasti Petri Nets (MRSPN) have

been reently introdued in the literature with the aim of ombining

exponential and non-exponential �ring times into a single model. How-

ever, the realizations of the general MRSPN model, so far disussed,

require that at most a single non-exponential transition is enabled in

eah marking and that its assoiated memory poliy is of enabling type.

The present paper extends the previous models by allowing the memory

poliy to be of age type and by allowing multiple general transitions to

be simultaneously enabled, provided that their enabling intervals do not

overlap. A �nal ompletely developed example, that ouldn't have been

onsidered in previous formulations, derives the losed form expressions

for the transient state probabilities for a queueing system with preemp-

tive resume (prs) servie poliy.
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1 Introdution

Markov Regenerative Stohasti Petri Nets are de�ned as the lass of Stohasti

Petri Nets (SPN) whose marking proess is mapped into a Markov Regenerative

Proess (MRGP) [11, 8℄. The onept of MRSPN was �rst proposed by Choi

et al. in [7℄, when they reognized that the Deterministi and Stohasti PN

(DSPN) model, de�ned by Ajmone and Chiola in [2℄, ould be onsidered as a

member of this lass.

In the DSPN [2℄, at most one deterministi transition is enabled in eah mark-

ing, and the deterministi transitions are assigned an enabling memory poliy

(after the taxonomy in [1℄). The steady state solution algorithm, provided in [2℄,

was then revisited in [16℄ and some strutural extensions were proposed in [10℄.

Choi et al. [7℄ developed the transient analysis of the same DSPN model, based

on the transient equations of the underlying Markov regenerative proess. In [8,

13℄, deterministi transitions were replaed by generally distributed transitions,

while in [9℄, the ase of multiple deterministi transitions of enabling memory

type ativated in the same marking was onsidered.



The analysis tehnique developed for this lass of models, onsists in iden-

tifying a sequene of regeneration points and by analysing the behavior of the

marking proess between any two suessive regeneration points. The restrition

of the marking proess between two suessive regeneration points is alled the

subordinated proess [16℄. All the models disussed in the mentioned referenes

require that the generally distributed (or deterministi) transitions are assigned

a �ring poliy of enabling memory type [1℄. The enabling memory poliy means

that eah time the transition beomes enabled its �ring time is resampled from

the original distribution and the time spent without �ring in prior enabling

periods is lost. In [2, 16, 7, 8℄, the subordinated proesses are restrited to be

Continuous Time Markov Chains (CTMC), while the steady state analysis of

semi-Markov subordinated proesses has been investigated in [9℄.

The aim of this paper is to introdue a new lass of models, alled AgeMR-

SPN, haraterized by the fat that generally distributed transitions have an age

memory poliy, and multiple general transitions an be simultaneously enabled

provided that a dominant transition exists whose enabling period determines the

ourrene of two suessive regeneration time points. It will be shown that the

above assumptions entail that the subordinated proesses an be reward semi-

Markov proesses. The age memory poliy means that eah time the transition

beomes enabled its �ring time is resumed from the previously attained value,

so that the time possibly spent without �ring in prior enabling periods is not

lost. The age memory poliy needs to be invoked to model preemptive resume

(prs) servie strategies, where the server is able to reover the exeution of an

interrupted job by keeping memory of the work already performed so that, upon

restart, only the residual servie needs to be ompleted.

A general losed form analytial solution for the transient state probabili-

ties is derived in the Laplae transform domain. For the speial ase, in whih

the generally distributed transitions have an exponential polynomial (EP) �ring

time, an e�etive algorithm is developed. The numerial omputation requires

a ombination of symboli and numerial steps and is, in the present state of

developement, restrited to small ase examples.

After introduing the notation and the de�nition of an AgeMRSPN in Setion

2, an analytial proedure for deriving the losed form transient equation for the

transition probability matrix is presented in Setion 3. Setion 4 is devoted to

illustrate a detailed derivation of the transient probabilities in a M/G/1/2/2

queuing system with prs servie. This example revisits the ase already studied

in [2, 7, 8℄, but introdues modeling features that ouldn't have been onsidered

in the framework of the previous methodologies.

2 Markov Regenerative Stohasti Petri Nets

The untimed model is a marked Petri Net (PN) represented by a tuple PN =

(P; T; I; O;H;M); where P is the set of plaes, T the set of transitions, I , O and

H the input, output and inhibitor funtions respetively, and M is the marking.

The reahability set R(M

0

) is the set of all the markings that an be generated



from an initial marking M

0

. The marking proess M(x) denotes the marking

oupied by the PN at time x.

It is shown in [1℄ that, when a transition is assigned a non-exponential �ring

time, the nature of the marking proessM(x) is univoally identi�ed if amemory

poliy is attahed to eah transition. The memory poliy spei�es how the proess

is onditioned upon the past. Following [1℄, the memory poliy is realized through

a memory variable a

k

, assoiated to eah transition t

k

. The memory variable is a

funtional that depends on the time during whih t

k

has been enabled aording

to the following three alternatives [1℄:

{ Resampling poliy - The memory variable a

k

is reset to zero at any hange

of marking.

{ Enabling memory poliy - The memory variable a

k

aounts for the work

performed by the ativity orresponding to t

k

from the last epoh in whih

t

k

has been enabled. When transition t

k

is disabled (even without �ring) a

k

is reset.

{ Age memory poliy - The memory variable a

k

aounts for the work per-

formed by the ativity orresponding to t

k

from its last �ring up to the

urrent epoh and is reset only when t

k

�res.

At the entrane in a new marking, the residual �ring time is omputed for eah

enabled timed transition given its memory variable, so that the next marking is

determined by the minimal residual �ring time among the enabled transitions

(rae poliy [1℄). Sine the three mentioned poliies are equivalent for an expo-

nential distribution, due to the memoryless property, the orresponding memory

variable an be assumed identially zero. The set of transitions an be parti-

tioned into a subset of exponential transitions (EXP) and a subset of generally

distributed transitions (GEN).

A regeneration time point in a time homogeneous stohasti proess is the

epoh of entrane in a state in whih the Markov property holds (i.e. the future

evolution does not depend on the past history but only on the present state).

A stohasti proess for whih a sequene of regeneration time points an be

identi�ed is alled a Markov Regenerative Proess [8, 11℄.

De�nition 1. Aording to the semantis in [1℄, a regeneration time point in

the marking proessM(x) is the epoh of entrane in a marking M

(n)

in whih

all the memory variables are equal to 0. A SPN whose marking proessM(x) is

a Markov Regenerative Proess is alled a Markov Regenerative SPN (MRSPN).

The portion of the marking proess on�ned between any two suessive regener-

ation time points is alled the subordinated proess [16℄. The sublassMRSPN

�

,

de�ned in [8℄, is obtained by restriting De�nition 1 aording to the following

spei�ations: i) in eah marking, at most a single GEN transition is enabled

being all the other transitions EXP; ii) the memory poliy assoiated to ev-

ery GEN transition is of enabling memory type. As a onsequene of the above

spei�ations all the subordinated proesses are CTMC's. In order to remove the



above restritions, to some extent, the notion of ative and dominant transition

is introdued [6℄.

De�nition 2. A transition is ative when its memory variable is greater than

zero; the ativity yle of a transition is the period of time in whih the transition

is ative. A transition is dominant with respet to a subordinated proess if its

ativity yle determines the two suessive regeneration time points in whih

the subordinated proess is on�ned.

It has been shown in [6℄, that a solvable lass of MRSPN orresponds to models

in whih the ativity yles of the GEN transitions do not overlap, and the

subordinated proesses are semi-Markovian.

De�nition 3. An AgeMRSPN is a MRSPN in whih:

i The set T is partitioned into EXP and GEN transitions;

ii To any GEN transition t

g

a generally distributed random variable 

g

, with

Cumulative Distribution Funtion G

g

(y), and a memory variable a

g

with

age memory poliy is assoiated.

iii The regeneration intervals between any two suessive regeneration time

points are dominated by a single age memory GEN transition and the sub-

ordinated proesses are semi-Markov.

A single realization of the marking proess M(x) an be represented by the

following timed exeution sequene:

T

E

= f (�

�

0

;M

(0)

) ; (�

�

1

;M

(1)

) ; : : : ; (�

�

i

;M

(i)

) ; : : :g (1)

where �

�

i

represents a regeneration time point and M

(i)

the entered marking. By

De�nition 1, �

�

i

is suh that at the entrane in M

(i)

all the memory variables are

zero. The suessive regeneration time point �

�

i+1

is derived from �

�

i

as follows:

1. If no GEN transition is enabled in marking M

(i)

, �

�

i+1

is the �rst time after

�

�

i

that a state hange ours.

2. If an age memory GEN transition t

g

starts its ativity yle in markingM

(i)

and the subordinated proess is dominated by t

g

, �

�

i+1

is the �ring time of

t

g

.

In the ase 1) above, the subordinated proess between two onseutive regener-

ation time points is a single step CTMC sine only EXP transitions are enabled

and any �ring provides the next regeneration point.

In the ase 2) above, during [�

�

i

; �

�

i+1

), the PN an evolve in the subset of

R(M

0

) reahable from M

(i)

, during the ativity yle of the dominant GEN

transition t

g

and the subordinated proess inside this interval is semi-Markov.

De�nition 3 has two major impliations. Sine the subordinated proess is

semi-Markov, multiple general transitions an be simultaneously enabled inside

the �ring proess of t

g

, provided that their ativity yles do not overlap [6℄.

The seond impliation is that, during the subordinated proess, the dominant



age memory GEN transition needs not to be ontinuously enabled; in fat, the

assoiated memory variable is not reset even if the transition is disabled before

�ring. In order to trak the enabling/disabling ondition of the dominant GEN

transition t

g

, we introdue a reward (indiator) variable whih is equal to 1

in those markings in whih t

g

is enabled and equal to 0 in those markings in

whih t

g

is not enabled. The binary reward variables are then grouped into a

reward vetor and the subordinated proesses are formulated in terms of semi-

Markov reward models [17, 3℄. The memory variable a

g

orresponding to the

dominant GEN transition is omputed as the aumulated reward in the semi-

Markov reward subordinated proess and the suessive regeneration time point

(the �ring epoh of t

g

) ours when the memory variable a

g

aumulates a

time equal to the �ring time 

g

of the orresponding transition. Resorting to

the omputational properties of stohasti reward models [3℄, the df of the

suessive regeneration time point is evaluated as the �rst time at whih the

funtional a

g

hits an absorbing barrier of height 

g

.

The �ring of the dominant GEN transition t

g

in the subordinated proess

starting in the regeneration marking i, an only our in a state k in whih the

reward variable is equal to one (t

g

is enabled). After the �ring of t

g

in state

k, the suessor marking ` is determined by the branhing probability matrix

�

(g)

= [�

(g)

k`

℄ [7, 9℄, where:

�

(g)

k`

= Prf next marking is ` j urrent marking is k; t

g

�res g (2)

By virtue of the time homogeneity, and without loss of generality, any two su-

essive regeneration time points an be supposed to be x = �

�

0

= 0 and x = �

�

1

.

Let us de�ne the following matrix valued funtions [8, 11℄:

V(x) = [V

ij

(x)℄ suh that V

ij

(x) = PrfM(x) = j jM(�

�

0

) = ig

K(x) = [K

ij

(x)℄ " K

ij

(x) = PrfM

(1)

= j ; �

�

1

� xjM(�

�

0

) = ig

E(x) = [E

ij

(x)℄ " E

ij

(x) = PrfM(x) = j ; �

�

1

> xjM(�

�

0

) = ig

(3)

Matrix V(x) is the transition probability matrix and provides the probability

that the stohasti proess M(x) is in marking j at time x given it was in i at

x = 0. The matrix K(x) is the global kernel of the MRGP and provides the df

of the event that the next regeneration marking is M

(1)

= j at time �

�

1

, given

marking i at �

�

0

= 0. Finally, the matrix E(x) is the loal kernel sine desribes

the behavior of the marking proess M(x) inside two onseutive regeneration

time points. The generi element E

ij

(x) provides the probability that the proess

is in state j at x starting from i at �

�

0

= 0 before the next regeneration time

point. From the above de�nitions:

X

j

[K

ij

(x) + E

ij

(x)℄ = 1

As spei�ed by (3), for eah state M

(i)

= i, the entries of the i-th row of the

matries K(x) and E(x) depend only on the behavior of the subordinated pro-

ess starting from M

(i)

, given that M

(i)

is a regeneration state. If M

(i)

annot



be a regeneration state, the orresponding entries are irrelevant. The transient

behavior of the MRSPN an be evaluated by solving the following generalized

Markov renewal equation [11, 8℄:

V(x) = E(x) + K � V(x) (4)

where K � V(x) is a onvolution matrix, whose (i; j)-th entry is:

[K � V(x)℄

ij

=

X

k

Z

x

0

dK

ik

(y)V

kj

(x � y) (5)

By denoting the Laplae Stieltjes transform (LST) of a funtion F (x) by F

�

(s) =

R

1

0

e

�sx

dF (x), Equation (4) beomes:

V

�

(s) = E

�

(s) + K

�

(s) V

�

(s) (6)

whose solution is:

V

�

(s) = [I � K

�

(s)℄

�1

E

�

(s) (7)

The steady state solution an be evaluated as lim

s!0

V

�

(s).

3 Transient analysis of the subordinated proess

LetM

(i)

= i be a regeneration marking aording to De�nition 1. In the AgeMR-

SPN model, only two lasses of subordinated proesses an be enountered:

1. Single step CTMC.

2. Reward Semi-Markov Proess.

3.1 Subordinated single step CTMC

In the regeneration marking i only EXP transitions are enabled. The next regen-

eration time point is the epoh of jump into any one of the immediately reahable

states. The subordinated proess starting from state i is a CTMC with a sin-

gle transient state (state i with initial probability equal to 1) and a number of

absorbing states equal to the number of immediately reahable states.

Let T

(i)

e

be the set of EXP transitions enabled in the regeneration marking

i, �

e

the transition rate of transition t

e

2 T

(i)

e

, and �

i

=

P

t

e

2T

(i)

e

�

e

. The entry

K

ij

(x) provides the probability of reahing the suessive regeneration state j

before time x. The entry E

ij

(x) gives the probability of being in state j at time

x starting from i, before the next regeneration time point. Sine, in this ase,

any �ring provides a new regeneration time point, the only nonzero entry of the

i-th row of matrix E(x) orresponds to j = i. In the LST domain, the following

expressions hold:

K

�

ij

(s) =

�

e

�

i

+ s

�

(e)

ij

E

�

ij

(s) = Æ

ij

s

�

i

+ s

(8)

where Æ

ij

is the Kroneker delta.



3.2 Subordinated Reward Semi-Markov Proess

At x = �

�

0

= 0 the dominant age memory GEN transition t

g

starts its �ring

proess in the regeneration state i (a

g

= 0). The suessive regeneration time

point �

�

1

is the epoh of �ring of t

g

and this event ours as the aumulated

reward (memory variable) a

g

reahes the value 

g

for the �rst time.

Let 
(i) be the subset of R(M

0

) grouping the states of the subordinated

proess (i.e. the states reahable from i before �ring t

g

). For notational onve-

niene we do not renumber the states in 
(i) so that all the subsequent matrix

funtions have the dimensions (N � N ) (ardinality of R(M

0

)), but with the

signi�ant entries loated in position (k; `) only, with k; ` 2 
(i).

Let Z

(i)

(x) (x � 0) be the semi-Markov proess de�ned over 
(i) and r

(i)

the orresponding binary reward vetor. With this notation, r

(i)

k

= 1 (0) means

that t

g

is enabled (not enabled) in state k, and the memory variable a

g

inreases

at a rate r

(i)

k

when Z

(i)

(x) = k. The subordinated proess oinides with Z

(i)

(x)

when the initial state is state i with probability 1 (PrfZ

(i)

(0) = ig = 1).

Let Q

(i)

(x) = [Q

(i)

k`

(x)℄ be the kernel of the semi-Markov proess Z

(i)

(x).

The initial probability vetor is Q

(i)

0

= [0; 0; : : : ; 1

i

; : : : ; 0℄ (a vetor with all

the entries equal to 0 but entry i equal to 1). We denote by H the time duration

until the �rst embedded time point in the semi-Markov proess starting from

state k at time 0 ( Z

(i)

(0) = k ). The generi element (for k; ` 2 
(i))

Q

(i)

k`

(x) = Pr

n

H � x; Z

(i)

(H

+

) = ` jZ

(i)

(0) = k

o

is the distribution of H supposed that a transition from state k to state ` took

plae at the embedded time point. If diagonal elements in Q

(i)

(x) are nonzero

the next embedded time point an be determined by a transition from state k

to state k. The distribution of H is:

Q

(i)

k

(x) =

X

`2
(i)

Q

(i)

k`

(x) (k = 1; :::; n)

and, �nally, the probability of jumping from state k to ` at time H = x is:

dQ

(i)

k`

(x)

dQ

(i)

k

(x)

= Pr

n

Z

(i)

(x

+

) = ` jH = x; Z

(i)

(0) = k

o

Let us �x the value of the random �ring time 

g

= y and let us introdue two

matrix funtions: F

(i)

(x; y) and P

(i)

(x; y) so de�ned:

F

(i)

k`

(x; y) = PrfZ

(i)

(�

��

1

) = ` ; �

�

1

� x jZ

(i)

(0) = k ; 

g

= yg

(9)

P

(i)

k`

(x; y) = PrfZ

(i)

(x) = ` ; �

�

1

> x jZ

(i)

(0) = k ; 

g

= yg



{ P

(i)

k`

(x; y) is the probability of being in state ` at time x before absorption at

the barrier y, starting in state k at x = 0, and being 

g

equal to a onstant

value y.

{ F

(i)

k`

(x; y) is the probability that t

g

�res from state ` (hitting the absorbing

barrier y in `) before x, starting in state k at x = 0, and being 

g

equal to

a onstant value y.

{ �

(g)

is the branhing probability matrix and represents the suessor mark-

ing ` that is reahed by �ring t

g

in state k (the �ring of t

g

an only our in

a state k in whih r

(i)

k

= 1).

From (9), it follows:

X

`

[F

(i)

k`

(x; y) + P

(i)

k`

(x; y) ℄ = 1

Due to the partiular struture of the initial probability vetor Q

(i)

0

, the entries

of the i-th row of the matries K(x) and E(x) are related to F

(i)

(x; y) and

P

(i)

(x; y) by the following expressions:

K

ij

(x) =

Z

1

y=0

X

k

F

(i)

ik

(x; y)�

(g)

kj

dG

g

(y)

(10)

E

ij

(x) =

Z

1

y=0

P

(i)

ij

(x; y) dG

g

(y)

Evaluation of F

(i)

k`

(x; y) and P

(i)

k`

(x; y) an be inferred from [15, 4℄. We inlude

the derivation for ompleteness. In order to avoid unneessarily umbersome

notation in the following expressions, we neglet the expliit dependene on the

partiular subordinated proess by eliminating the supersript. It is however

taitly intended, that all the quantities r, Q(x), F(x; y), P(x; y), � and 
 refer

to the spei� proess subordinated to state i.

Derivation of F(x; y) Conditioning on H = h , let us de�ne:

F

k`

(x; y jH = h) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Æ

k`

U

�

x �

y

r

k

�

if : h r

k

� y

X

u2


dQ

ku

(h)

dQ

k

(h)

F

u`

(x� h; y � hr

k

) if : h r

k

< y

(11)

where U(x) is the unit step funtion. In (11), two mutually exlusive events are

identi�ed. If r

k

6= 0 and h r

k

� y, a sojourn time equal to y is aumulated

before leaving state k, so that the �ring time (next regeneration time point) is

�

�

1

= y=r

k

. If h r

k

< y then a transition ours to state u with probability



dQ

ku

(h)=dQ

k

(h) and the residual servie (y � hr

k

) should be aomplished

starting from state u at time (x � h). Taking the LST transform of (11) with

respet to x, we get:

F

�

k`

(s; y jH = h) =

8

>

>

>

>

<

>

>

>

>

:

Æ

k`

exp(�sy=r

k

) if : h r

k

� y

exp(�sh)

X

u2


dQ

ku

(h)

dQ

k

(h)

F

�

u`

(s; y � hr

k

) if : h r

k

< y

(12)

Unonditioning with respet to h, (12) beomes:

F

�

k`

(s; y) = Æ

k`

�

1 � Q

k

�

y

r

k

��

exp(�sy=r

k

) +

X

u2


Z

y

r

k

h=0

exp(�s h) F

�

u`

(s; y � hr

k

) dQ

ku

(h) (13)

Taking the Laplae transform (LT) with respet to y (denoting by w the trans-

form variable), and evaluating the integrals we obtain, for the double LST-LT

transform F

��

k`

(s; w), the following expression:

F

��

k`

(s; w) = Æ

k`

r

k

[1 � Q

�

k

(s + w r

k

) ℄

s + w r

k

+

X

u2


Q

�

ku

(s + w r

k

)F

��

u`

(s; w) (14)

Derivation of P(x; y) The derivation follows the same pattern as for the

funtion F(x; y). Conditioning on H = h , let us de�ne:

P

k`

(x; y jH = h) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

Æ

k`

�

U(x) � U

�

x �

y

r

k

��

if : h r

k

� y

Æ

k`

[U(x)� U(x� h)℄ +

X

u2


dQ

ku

(h)

dQ

k

(h)

P

u`

(x� h; y � hr

k

)

if : h r

k

< y

(15)

In (15), two mutually exlusive events are identi�ed. If r

k

6= 0 and y � h r

k

, then

the proess spends all its time up to absorption in the initial state k. If h r

k

< y

then a transition ours to state u with probability dQ

ku

(h)=dQ

k

(h) and then

the proess jumps to state ` in the remaining time (x � h) before ompleting

the residual work (y � hr

k

). Taking the LST transform of (15) with respet to



x, we get:

P

�

k`

(s; y jH = h) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

Æ

k`

[1 � exp(�sy=r

k

)℄

if : h r

k

� y

Æ

k`

�

1 � e

�sh

�

+ e

�sh

X

u2


dQ

ku

(h)

dQ

k

(h)

P

�

u`

(s; y � hr

k

)

if : h r

k

< y

(16)

Unonditioning (16) with respet to h, taking the LT transform with respet

to y (denoting w the transform variable), and �nally evaluating the integrals

we obtain that the double LST-LT transform P

��

k`

(s; w) satis�es the following

equation:

P

��

k`

(s; w) = Æ

k`

s [1 � Q

�

k

(s + w r

k

) ℄

w(s + w r

k

)

+

X

u2


Q

�

ku

(s + w r

k

)P

��

u`

(s; w) (17)

EP distributed �ring time Let us de�ne an exponential polynomial (EP) dis-

tribution G

E

(y) as a distribution with rational Laplae transform whose density

an be expressed as:

g

E

(y) =

n

X

p=1

m�1

X

r=0



pr

y

r

e

��

p

y

(18)

where n is the number of distint eigenvalues (�

p

), m is the supremum of the

eigenvalue multipliities, and 

pr

is a onstant oeÆient

1

. When the dominant

GEN transition is assoiated with an EP random �ring time, an eÆient om-

putational proedure an be envisaged for handling the Laplae inverse trans-

formation with respet to w and the integration with respet to G

E

(y).

Theorem 1. When the �ring time is an EP r.v. with density funtion g

E

(y)

(18), the entries of the kernel matries an be evaluated as follows:

E

�

ij

(s) =

n

X

p=1

m�1

X

r=0

(�1)

r



pr

d

r

P

��

ij

(s; w)

dw

r

�

�

�

�

�

w=�

p

(19)

K

�

ij

(s) =

n

X

p=1

m�1

X

r=0

(�1)

r



pr

d

r

P

k

F

��

ik

(s; w)�

(i)

kj

dw

r

�

�

�

�

�

w=�

p

(20)

where the derivative of order r = 0 simply means the substitution of the value

w = �

p

in the r.h.s.

1

The de�nition of EP r.v. given here requires the Laplae transform to be rational

and is more restritive than the de�nition of expolynomial distributions proposed in

[9℄ in onnetion with MRSPN.



Proof. When 

g

is an EP r.v. Equation (10) beomes:

E

�

ij

(s) =

Z

1

y=0

P

�

ij

(s; y) dG

E

(y) =

Z

1

y=0

g

E

(y)P

�

ij

(s; y) dy =

n

X

p=1

m�1

X

r=0



pr

Z

1

y=0

y

r

e

��

p

y

P

�

ij

(s; y) dy =

n

X

p=1

m�1

X

r=0

(�1)

r



pr

Z

1

y=0

d

r

d�

r

p

e

��

p

y

P

�

ij

(s; y) dy =

n

X

p=1

m�1

X

r=0

(�1)

r



pr

d

r

d�

r

p

Z

1

y=0

e

��

p

y

P

�

ij

(s; y) dy =

n

X

p=1

m�1

X

r=0

(�1)

r



pr

d

r

P

(i)��

ij

(s; �

p

)

d�

r

p

(21)

from whih the �rst part of the theorem (equation 19) follows. The proof for

K

�

ij

(s) follows the same pattern.

This approah is very e�etive, when the multipliity of the eigenvalues is equal

to 1, sine the inverse Laplae transformation and integration in (21) redues to

a simple substitution; otherwise the symboli derivation is required. A wellknown

and onvenient sublass of EP distributions is the lass of PH distributions aris-

ing from the time to absorption of CTMC's with at least one absorbing state.

When all the GEN �ring times are PH random variables and the subordinated

proesses are CTMC's, the transient state probabilities an be alternatively eval-

uated by expanding the state spae R(M

0

) taking into aount all the possible

stage ombinations of eah PH transition. A ompletely automated tool that

implements the state spae expansion tehnique is in [12℄.

3.3 Derivation of V(x)

The evaluation of the entries of the state transition probability matrix V(x)

requires the following steps to be performed:

{ Derivation of the double Laplae transform matrix funtions F

��

k`

(s; w) and

P

��

k`

(s; w), aording to Equations (14) and (17), respetively.

{ Evaluation of the LST transforms F

�

k`

(s; y) and P

�

k`

(s; y) by symboli inverse

Laplae transformation with respet to the �ring time variable w.

{ Evaluation of the LST transforms K

�

(s) and E

�

(s) by unonditioning the

results of the previous step with respet to the distribution of the �ring time

G

g

(y) (Equation 10).

{ Symboli matrix inversion and matrix multipliation by using a standard

pakage (e.g. MATHEMATICA) in order to obtain V

�

(s) (Equation 7).



{ Time domain solution obtained by a numerial inversion of the entries of

V

�

(s), resorting to the Jagerman's method [14℄ (for the sake of uniformity,

this step has been implemented in MATHEMATICA language).

When G

g

(y) is an EP, Theorem 1 an be applied instead of steps 2 and 3. In

the partiular ase in whih the subordinated proess Z(t) is a CTMC, all the

sojourn time distributions beome exponential and Equations (14) and (17) an

be simpli�ed aordingly [6℄. Due to the required symboli and numerial steps,

the proedure outlined in the previous points is e�etive only for small values of

the ardinality of the reahability set.

4 M/G/1/2/2 with Preemptive Resume Servie

The M/D/1/2/2 queueing system has been onsidered as a benhmark example

in the reent literature on non-Markovian SPN. The example has been intro-

dued in [2℄, where the steady state solution was derived. The transient analysis

for the same system was arried on in [7℄ and the model was extended by al-

lowing GEN servie times in [8℄. The e�et of di�erent preemption poliies has

been studied in [5℄ and the analysis of the M/D/1/2/2 queueing system with

prs servie poliy is in [6℄. In the following, we apply the proedure developed in

the previous Setion to the ase of prs servie poliy and generally distributed

servie time.

4.1 Model assumptions

Figure 1a shows a PN desribing the M/G/1/2/2 system in whih any new

job preempts the job under servie. We assume that the servie poliy is of

prs type: a preempted job is resumed as soon as the server beomes idle, but

the prior work is not lost and the residual servie time needs to be ompleted.

Plae p

1

ontains the ustomers thinking, while plae p

2

ontains the number

of submitted jobs (inluding the one under servie). Starting from the initial

marking s

1

= (2 0 0 1) (Figure 1b), t

1

is the only enabled transition. Firing of t

1

represents the submission of the �rst job and leads to state s

2

= (1 1 1 0). In s

2

transitions t

2

and t

3

are ompeting. t

2

represents the servie of the submitted

job and its �ring returns the system to the initial state s

1

. t

3

represents the

submission of the seond job and its �ring disables t

2

by removing one token

from p

3

(the �rst job beomes dormant). In s

3

= (0 2 0 1) one job is under

servie and one job is dormant, and the only enabled ativity is the servie of

the ative job. Firing of t

4

leads the system again in s

2

, where the dormant job

is reovered. Assuming the thinking time of both ustomers to be EXP with

parameter �, t

1

is assoiated an exponential �ring rate equal to (2�) and t

3

a

�ring rate equal to �. Transitions t

2

and t

4

are assigned a GEN servie time with

distribution G

g

(x) and an age memory poliy.

Eah time t

2

is disabled without �ring (t

3

�res before t

2

) the memory variable

a

2

is not reset. Hene, as the seond job ompletes (t

4

�res), the system returns
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Figure 1 - Preemptive M/G/1/2/2 queue with idential ustomers

in s

2

remembering the value of a

2

, so that the time to omplete the interrupted

job an be evaluated as the residual servie time given a

2

. a

2

ounts the total

time during whih t

2

is enabled before �ring, and is equal to the umulative

sojourn time in s

2

. The assignment of the age memory poliy to t

2

realizes a prs

servie mehanism.

The regeneration time points in the marking proessM(x) orrespond to the

epohs of entrane in markings in whih the memory variables assoiated to all

the transitions are equal to zero. By inspeting Figure 1b), the regeneration time

points result to be the epohs of entrane in s

1

and of entrane in s

2

from s

1

. s

3

an never be a regeneration marking, sine the memory variable a

2

is not reset

at the entrane in s

3

: the proess an sojourn in s

3

only between two suessive

regeneration points (Figure 2).

The proess subordinated to state s

1

is a single step CTMC (being EXP the

only enabled transition t

1

) and inludes the only immediately reahable state

s

2

. The proess subordinated to state s

2

is dominated by the GEN age memory

transition t

2

and inludes the states s

3

and s

2

reahable from s

2

before �ring of

t

2

. Sine s

2

is the only state in whih t

2

is enabled, the orresponding reward rate

vetor is r

(2)

= [0 1 0℄. Finally, the only relevant nonzero entry of the branhing

probability matrix is �

(2)

21

= 1, sine �ring of t

2

an only our from state s

2

leading to state s

1

.

A possible realization of the marking proess subordinated to state s

2

is

shown in Figure 2: the subordinated proess is semi-Markov sine t

4

is GEN.

The memory variable a

2

grows whenever the proess sojourns in state s

2

, and

the �ring of t

2

is determined by the �rst passage time of a

2

aross the absorbing

barrier of height 

2

.
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Figure 2 - A possible realization of the proess subordinated to state s

2

4.2 Numerial Results

The losed form LST expressions of K(x) and E(x) for the prs M/G/1/2/2

queuing systems are derived in detail, onsidering two spei� lasses of GEN

�ring times (namely: the uniform and the EP). Let us build up the K

�

(s) and

E

�

(s) matries row by row by onsidering separately all the states that an be

regeneration states and an originate a subordinated proess. Sine s

3

an never

be a regeneration state the third row of the above matries is irrelevant.

1) - The starting regeneration state is s

1

- No GEN transition is enabled in s

1

and the next regeneration state an only be state s

2

. Applying (8) we obtain:

K

�

11

(s) = 0 K

�

12

(s) =

2�

s + 2�

K

�

13

(s) = 0

and

E

�

11

(s) =

s

s + 2�

E

�

12

(s) = 0 E

�

13

(s) = 0

(22)

2) - The starting regeneration state is s

2

- Transition t

2

is the dominant transition

and the next regeneration time point is the epoh of �ring of t

2

. t

2

is an age

memory GEN transition with Cdf G

g

(y), hene, the onditions of Setion 3.2.

are met. The subordinated proess (Figure 2) omprises states s

2

and s

3

and is

a semi-Markov proess whose kernel is:

Q

�

(s) =

�

�

�

�

�

�

�

�

0 0 0

0 0

�

s + �

0 G

�

g

(s) 0

�

�

�

�

�

�

�

�



whereG

�

g

(s) is the LST transform of the distribution funtion G

g

(y). The reward

vetor is r

(2)

= [0; 1; 0℄, and the only nonzero entry of the branhing probability

matrix is �

(2)

21

= 1. Let us introdue the following notation:

H

g

(s) = s+ �� �G

�

g

(s) (23)

The non-zero entries of the 2nd row of F

��

(s; w) and P

��

(s; w) matries are

obtained by applying Equations (14) and (17):

F

��

22

(s; w) =

1

s+ w + �� �G

�

g

(s)

=

1

w +H

g

(s)

P

��

22

(s; w) =

s=w

s+ w + �� �G

�

g

(s)

=

s=w

w +H

g

(s)

(24)

P

��

23

(s; w) =

�(1�G

�

g

(s))=w

s+ w + �� �G

�

g

(s)

=

�(1�G

�

g

(s))=w

w +H

g

(s)

Uniformly distributed servie time Let G

U

(y) indiate a uniform distri-

bution de�ned between �(� 0) and �(> �). The non preemptive M/G/1/2/2

queue with uniformly distributed servie time has been studied by Choi at al.

in [8℄. The extension to the prs servie poliy is developed in the following.

The LST transform of G

U

(y) is given by:

G

�

U

(s) =

1

s

1

� � �

(e

��s

� e

��s

)

and substituting the atual value of G

�

U

(s) = G

�

g

(s) in (23), we get:

H

U

(s) = s+ �� �G

�

U

(s) = s+ ��

�

s

1

� � �

(e

��s

� e

��s

)

Aording to the steps mentioned in Setion 3.3, the symboli inversion of Equa-

tions (24) is performed with respet to the transform variable w, followed by an

integration with respet to the distribution of the servie time G

U

(y). The in-

verse transformation with respet to w provides:

F

�

22

(s; y) = e

�yH

U

(s)

P

�

22

(s; y) =

s

H

U

(s)

(1� e

�yH

U

(s)

)

P

�

23

(s; y) =

�(1�G

�

U

(s))

H

U

(s)

(1� e

�yH

U

(s)

)

Applying the integration step expressed by (10), the LSTmatrix funtionsK

�

(s)

and E

�

(s) beome:
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Figure 3 - Transient behavior of the state probabilities with uniformly distributed

servie time.

K

�

(s) =

�

�

�

�

�

�

�

�

�

�

0

2�

s + 2�

0

1

H

U

(s)

1

� � �

(e

��H

U

(s)

� e

��H

U

(s)

) 0 0

0 0 0

�

�

�

�

�

�

�

�

�

�

(25)

and

E

�

(s) =

�

�

�

�

�

�

�

�

�

�

�

s

s + 2�

0 0

0

s

H

U

(s)

(1�K

�

21

(s))

�(1�G

�

U

(s))

H

U

(s)

(1�K

�

21

(s))

0 0 0

�

�

�

�

�

�

�

�

�

�

�

(26)

The LST of the transition probability matrix V

�

(s) is obtained by solving (7).

Finally, the time domain probabilities are alulated by numerially inverting

(7) by resorting to the Jagerman method [14℄. The plot of the state probabilities

versus time for states s

1

and s

3

is depited in Figure 3, for a submitting rate

� = 2, and for two di�erent set of values (� = 0, � = 1) and (� = 0:5, � = 1).

Figure 3 emphasizes the e�et of the oeÆient of variation of the servie time

on the state probabilities; a redued oeÆient of variation results in a more

pronouned alternating behavior of the state probabilities.
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Figure 4 - Transient behavior of the state probabilities with Erl 2 distributed ser-

vie time.

EP distributed servie time Let us onsider the same preemptive M/G/1/2/2

in whih the servie time has an Erlang distribution of order 2 (Erl 2). The LST

G

�

E

(s) of the Erl 2 with parameter � is:

G

�

E

(s) =

�

�

s+ �

�

2

(27)

By substituting (27) into (23), we get:

H

E

(s) = s+ �� �G

�

E

(s) = s+ �� �

�

�

s+ �

�

2

The 1st and the 3rd row of the K

�

(s) and E

�

(s) matries do not depend on the

partiular GEN distribution and remain unhanged. The nonzero entries of the

seond row an be obtained, as before, by a symboli inverse transformation with

respet to w followed by an the integration with respet to G

g

(y). Alternatively,

sine G

g

(y) = G

E

(y) is EP, we an apply Theorem 1 to Equations (24).

K

�

21

(s) = (�1)�

2

dF

��

22

(s; w)

dw

�

�

�

�

w=�

=

�

2

(� +H

E

(s))

2

(28)

E

�

22

(s) = (�1)�

2

dP

��

22

(s; w)

dw

�

�

�

�

w=�

=

s(2� +H

E

(s))

(� +H

E

(s))

2

(29)

E

�

23

(s) = (�1)�

2

dP

��

23

(s; w)

dw

�

�

�

�

w=�

=

�(1�G

�

E

(s))(2� +H

E

(s))

(� +H

E

(s))

2

(30)



In this example, only EXP and PH �ring times are onsidered. Hene, the tran-

sient probabilities an also be obtained by the well known method of the state

spae expansion [12℄. However, if t

2

has a PH �ring time but t

4

is non-PH, then

only the above equations an be applied.

Similarly to the former ase, the LST of the state probabilities are obtained

by solving (7). The time domain probabilities are alulated by numerially

inverting (7) by resorting to the Jagerman method [14℄. The plot of the state

probabilities versus time for states s

1

and s

3

(with � = 2, orresponding to a

mean servie time 2=� = 1, and � = 0:5.) are depited in Figure 4 (dotted line).

For the sake of omparison the results obtained by applying the method of the

expanded CTMC [12℄ are reported in dashed line.

5 Conlusion

We have de�ned a new lass of MRSPN alled AgeMRSPN, whih allow the

inlusion of GEN transitions with assoiated age memory poliy. This extension

was motivated by the need of modeling systems in whih the exeution of tasks

may follow a preemptive resume poliy.

We have shown that the marking proess subordinated to two onseutive

regeneration time points an be, in general, a reward semi-Markov proess. A

binary reward variable is introdued to distinguish the states in whih the ex-

eution of the servie is interrupted and the states in whih the exeution is

resumed with no loss of prior work. The transient analysis of a reward semi-

Markov proess has been derived in detail, in order to show how to obtain a

double LT-LST losed form expression for the transient state probabilities of

the general proess.

An M/G/1/2/2 queuing system, onsidered as a ase study example in pre-

vious literature [2, 7, 8, 5, 6℄, has been examined for the �rst time by introduing

servie poliies of prs type and GEN �ring distributions.
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