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Abstra
t. Markov Regenerative Sto
hasti
 Petri Nets (MRSPN) have

been re
ently introdu
ed in the literature with the aim of 
ombining

exponential and non-exponential �ring times into a single model. How-

ever, the realizations of the general MRSPN model, so far dis
ussed,

require that at most a single non-exponential transition is enabled in

ea
h marking and that its asso
iated memory poli
y is of enabling type.

The present paper extends the previous models by allowing the memory

poli
y to be of age type and by allowing multiple general transitions to

be simultaneously enabled, provided that their enabling intervals do not

overlap. A �nal 
ompletely developed example, that 
ouldn't have been


onsidered in previous formulations, derives the 
losed form expressions

for the transient state probabilities for a queueing system with preemp-

tive resume (prs) servi
e poli
y.
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1 Introdu
tion

Markov Regenerative Sto
hasti
 Petri Nets are de�ned as the 
lass of Sto
hasti


Petri Nets (SPN) whose marking pro
ess is mapped into a Markov Regenerative

Pro
ess (MRGP) [11, 8℄. The 
on
ept of MRSPN was �rst proposed by Choi

et al. in [7℄, when they re
ognized that the Deterministi
 and Sto
hasti
 PN

(DSPN) model, de�ned by Ajmone and Chiola in [2℄, 
ould be 
onsidered as a

member of this 
lass.

In the DSPN [2℄, at most one deterministi
 transition is enabled in ea
h mark-

ing, and the deterministi
 transitions are assigned an enabling memory poli
y

(after the taxonomy in [1℄). The steady state solution algorithm, provided in [2℄,

was then revisited in [16℄ and some stru
tural extensions were proposed in [10℄.

Choi et al. [7℄ developed the transient analysis of the same DSPN model, based

on the transient equations of the underlying Markov regenerative pro
ess. In [8,

13℄, deterministi
 transitions were repla
ed by generally distributed transitions,

while in [9℄, the 
ase of multiple deterministi
 transitions of enabling memory

type a
tivated in the same marking was 
onsidered.



The analysis te
hnique developed for this 
lass of models, 
onsists in iden-

tifying a sequen
e of regeneration points and by analysing the behavior of the

marking pro
ess between any two su

essive regeneration points. The restri
tion

of the marking pro
ess between two su

essive regeneration points is 
alled the

subordinated pro
ess [16℄. All the models dis
ussed in the mentioned referen
es

require that the generally distributed (or deterministi
) transitions are assigned

a �ring poli
y of enabling memory type [1℄. The enabling memory poli
y means

that ea
h time the transition be
omes enabled its �ring time is resampled from

the original distribution and the time spent without �ring in prior enabling

periods is lost. In [2, 16, 7, 8℄, the subordinated pro
esses are restri
ted to be

Continuous Time Markov Chains (CTMC), while the steady state analysis of

semi-Markov subordinated pro
esses has been investigated in [9℄.

The aim of this paper is to introdu
e a new 
lass of models, 
alled AgeMR-

SPN, 
hara
terized by the fa
t that generally distributed transitions have an age

memory poli
y, and multiple general transitions 
an be simultaneously enabled

provided that a dominant transition exists whose enabling period determines the

o

urren
e of two su

essive regeneration time points. It will be shown that the

above assumptions entail that the subordinated pro
esses 
an be reward semi-

Markov pro
esses. The age memory poli
y means that ea
h time the transition

be
omes enabled its �ring time is resumed from the previously attained value,

so that the time possibly spent without �ring in prior enabling periods is not

lost. The age memory poli
y needs to be invoked to model preemptive resume

(prs) servi
e strategies, where the server is able to re
over the exe
ution of an

interrupted job by keeping memory of the work already performed so that, upon

restart, only the residual servi
e needs to be 
ompleted.

A general 
losed form analyti
al solution for the transient state probabili-

ties is derived in the Lapla
e transform domain. For the spe
ial 
ase, in whi
h

the generally distributed transitions have an exponential polynomial (EP) �ring

time, an e�e
tive algorithm is developed. The numeri
al 
omputation requires

a 
ombination of symboli
 and numeri
al steps and is, in the present state of

developement, restri
ted to small 
ase examples.

After introdu
ing the notation and the de�nition of an AgeMRSPN in Se
tion

2, an analyti
al pro
edure for deriving the 
losed form transient equation for the

transition probability matrix is presented in Se
tion 3. Se
tion 4 is devoted to

illustrate a detailed derivation of the transient probabilities in a M/G/1/2/2

queuing system with prs servi
e. This example revisits the 
ase already studied

in [2, 7, 8℄, but introdu
es modeling features that 
ouldn't have been 
onsidered

in the framework of the previous methodologies.

2 Markov Regenerative Sto
hasti
 Petri Nets

The untimed model is a marked Petri Net (PN) represented by a tuple PN =

(P; T; I; O;H;M); where P is the set of pla
es, T the set of transitions, I , O and

H the input, output and inhibitor fun
tions respe
tively, and M is the marking.

The rea
hability set R(M

0

) is the set of all the markings that 
an be generated



from an initial marking M

0

. The marking pro
ess M(x) denotes the marking

o

upied by the PN at time x.

It is shown in [1℄ that, when a transition is assigned a non-exponential �ring

time, the nature of the marking pro
essM(x) is univo
ally identi�ed if amemory

poli
y is atta
hed to ea
h transition. The memory poli
y spe
i�es how the pro
ess

is 
onditioned upon the past. Following [1℄, the memory poli
y is realized through

a memory variable a

k

, asso
iated to ea
h transition t

k

. The memory variable is a

fun
tional that depends on the time during whi
h t

k

has been enabled a

ording

to the following three alternatives [1℄:

{ Resampling poli
y - The memory variable a

k

is reset to zero at any 
hange

of marking.

{ Enabling memory poli
y - The memory variable a

k

a

ounts for the work

performed by the a
tivity 
orresponding to t

k

from the last epo
h in whi
h

t

k

has been enabled. When transition t

k

is disabled (even without �ring) a

k

is reset.

{ Age memory poli
y - The memory variable a

k

a

ounts for the work per-

formed by the a
tivity 
orresponding to t

k

from its last �ring up to the


urrent epo
h and is reset only when t

k

�res.

At the entran
e in a new marking, the residual �ring time is 
omputed for ea
h

enabled timed transition given its memory variable, so that the next marking is

determined by the minimal residual �ring time among the enabled transitions

(ra
e poli
y [1℄). Sin
e the three mentioned poli
ies are equivalent for an expo-

nential distribution, due to the memoryless property, the 
orresponding memory

variable 
an be assumed identi
ally zero. The set of transitions 
an be parti-

tioned into a subset of exponential transitions (EXP) and a subset of generally

distributed transitions (GEN).

A regeneration time point in a time homogeneous sto
hasti
 pro
ess is the

epo
h of entran
e in a state in whi
h the Markov property holds (i.e. the future

evolution does not depend on the past history but only on the present state).

A sto
hasti
 pro
ess for whi
h a sequen
e of regeneration time points 
an be

identi�ed is 
alled a Markov Regenerative Pro
ess [8, 11℄.

De�nition 1. A

ording to the semanti
s in [1℄, a regeneration time point in

the marking pro
essM(x) is the epo
h of entran
e in a marking M

(n)

in whi
h

all the memory variables are equal to 0. A SPN whose marking pro
essM(x) is

a Markov Regenerative Pro
ess is 
alled a Markov Regenerative SPN (MRSPN).

The portion of the marking pro
ess 
on�ned between any two su

essive regener-

ation time points is 
alled the subordinated pro
ess [16℄. The sub
lassMRSPN

�

,

de�ned in [8℄, is obtained by restri
ting De�nition 1 a

ording to the following

spe
i�
ations: i) in ea
h marking, at most a single GEN transition is enabled

being all the other transitions EXP; ii) the memory poli
y asso
iated to ev-

ery GEN transition is of enabling memory type. As a 
onsequen
e of the above

spe
i�
ations all the subordinated pro
esses are CTMC's. In order to remove the



above restri
tions, to some extent, the notion of a
tive and dominant transition

is introdu
ed [6℄.

De�nition 2. A transition is a
tive when its memory variable is greater than

zero; the a
tivity 
y
le of a transition is the period of time in whi
h the transition

is a
tive. A transition is dominant with respe
t to a subordinated pro
ess if its

a
tivity 
y
le determines the two su

essive regeneration time points in whi
h

the subordinated pro
ess is 
on�ned.

It has been shown in [6℄, that a solvable 
lass of MRSPN 
orresponds to models

in whi
h the a
tivity 
y
les of the GEN transitions do not overlap, and the

subordinated pro
esses are semi-Markovian.

De�nition 3. An AgeMRSPN is a MRSPN in whi
h:

i The set T is partitioned into EXP and GEN transitions;

ii To any GEN transition t

g

a generally distributed random variable 


g

, with

Cumulative Distribution Fun
tion G

g

(y), and a memory variable a

g

with

age memory poli
y is asso
iated.

iii The regeneration intervals between any two su

essive regeneration time

points are dominated by a single age memory GEN transition and the sub-

ordinated pro
esses are semi-Markov.

A single realization of the marking pro
ess M(x) 
an be represented by the

following timed exe
ution sequen
e:

T

E

= f (�

�

0

;M

(0)

) ; (�

�

1

;M

(1)

) ; : : : ; (�

�

i

;M

(i)

) ; : : :g (1)

where �

�

i

represents a regeneration time point and M

(i)

the entered marking. By

De�nition 1, �

�

i

is su
h that at the entran
e in M

(i)

all the memory variables are

zero. The su

essive regeneration time point �

�

i+1

is derived from �

�

i

as follows:

1. If no GEN transition is enabled in marking M

(i)

, �

�

i+1

is the �rst time after

�

�

i

that a state 
hange o

urs.

2. If an age memory GEN transition t

g

starts its a
tivity 
y
le in markingM

(i)

and the subordinated pro
ess is dominated by t

g

, �

�

i+1

is the �ring time of

t

g

.

In the 
ase 1) above, the subordinated pro
ess between two 
onse
utive regener-

ation time points is a single step CTMC sin
e only EXP transitions are enabled

and any �ring provides the next regeneration point.

In the 
ase 2) above, during [�

�

i

; �

�

i+1

), the PN 
an evolve in the subset of

R(M

0

) rea
hable from M

(i)

, during the a
tivity 
y
le of the dominant GEN

transition t

g

and the subordinated pro
ess inside this interval is semi-Markov.

De�nition 3 has two major impli
ations. Sin
e the subordinated pro
ess is

semi-Markov, multiple general transitions 
an be simultaneously enabled inside

the �ring pro
ess of t

g

, provided that their a
tivity 
y
les do not overlap [6℄.

The se
ond impli
ation is that, during the subordinated pro
ess, the dominant



age memory GEN transition needs not to be 
ontinuously enabled; in fa
t, the

asso
iated memory variable is not reset even if the transition is disabled before

�ring. In order to tra
k the enabling/disabling 
ondition of the dominant GEN

transition t

g

, we introdu
e a reward (indi
ator) variable whi
h is equal to 1

in those markings in whi
h t

g

is enabled and equal to 0 in those markings in

whi
h t

g

is not enabled. The binary reward variables are then grouped into a

reward ve
tor and the subordinated pro
esses are formulated in terms of semi-

Markov reward models [17, 3℄. The memory variable a

g


orresponding to the

dominant GEN transition is 
omputed as the a

umulated reward in the semi-

Markov reward subordinated pro
ess and the su

essive regeneration time point

(the �ring epo
h of t

g

) o

urs when the memory variable a

g

a

umulates a

time equal to the �ring time 


g

of the 
orresponding transition. Resorting to

the 
omputational properties of sto
hasti
 reward models [3℄, the 
df of the

su

essive regeneration time point is evaluated as the �rst time at whi
h the

fun
tional a

g

hits an absorbing barrier of height 


g

.

The �ring of the dominant GEN transition t

g

in the subordinated pro
ess

starting in the regeneration marking i, 
an only o

ur in a state k in whi
h the

reward variable is equal to one (t

g

is enabled). After the �ring of t

g

in state

k, the su

essor marking ` is determined by the bran
hing probability matrix

�

(g)

= [�

(g)

k`

℄ [7, 9℄, where:

�

(g)

k`

= Prf next marking is ` j 
urrent marking is k; t

g

�res g (2)

By virtue of the time homogeneity, and without loss of generality, any two su
-


essive regeneration time points 
an be supposed to be x = �

�

0

= 0 and x = �

�

1

.

Let us de�ne the following matrix valued fun
tions [8, 11℄:

V(x) = [V

ij

(x)℄ su
h that V

ij

(x) = PrfM(x) = j jM(�

�

0

) = ig

K(x) = [K

ij

(x)℄ " K

ij

(x) = PrfM

(1)

= j ; �

�

1

� xjM(�

�

0

) = ig

E(x) = [E

ij

(x)℄ " E

ij

(x) = PrfM(x) = j ; �

�

1

> xjM(�

�

0

) = ig

(3)

Matrix V(x) is the transition probability matrix and provides the probability

that the sto
hasti
 pro
ess M(x) is in marking j at time x given it was in i at

x = 0. The matrix K(x) is the global kernel of the MRGP and provides the 
df

of the event that the next regeneration marking is M

(1)

= j at time �

�

1

, given

marking i at �

�

0

= 0. Finally, the matrix E(x) is the lo
al kernel sin
e des
ribes

the behavior of the marking pro
ess M(x) inside two 
onse
utive regeneration

time points. The generi
 element E

ij

(x) provides the probability that the pro
ess

is in state j at x starting from i at �

�

0

= 0 before the next regeneration time

point. From the above de�nitions:

X

j

[K

ij

(x) + E

ij

(x)℄ = 1

As spe
i�ed by (3), for ea
h state M

(i)

= i, the entries of the i-th row of the

matri
es K(x) and E(x) depend only on the behavior of the subordinated pro-


ess starting from M

(i)

, given that M

(i)

is a regeneration state. If M

(i)


annot



be a regeneration state, the 
orresponding entries are irrelevant. The transient

behavior of the MRSPN 
an be evaluated by solving the following generalized

Markov renewal equation [11, 8℄:

V(x) = E(x) + K � V(x) (4)

where K � V(x) is a 
onvolution matrix, whose (i; j)-th entry is:

[K � V(x)℄

ij

=

X

k

Z

x

0

dK

ik

(y)V

kj

(x � y) (5)

By denoting the Lapla
e Stieltjes transform (LST) of a fun
tion F (x) by F

�

(s) =

R

1

0

e

�sx

dF (x), Equation (4) be
omes:

V

�

(s) = E

�

(s) + K

�

(s) V

�

(s) (6)

whose solution is:

V

�

(s) = [I � K

�

(s)℄

�1

E

�

(s) (7)

The steady state solution 
an be evaluated as lim

s!0

V

�

(s).

3 Transient analysis of the subordinated pro
ess

LetM

(i)

= i be a regeneration marking a

ording to De�nition 1. In the AgeMR-

SPN model, only two 
lasses of subordinated pro
esses 
an be en
ountered:

1. Single step CTMC.

2. Reward Semi-Markov Pro
ess.

3.1 Subordinated single step CTMC

In the regeneration marking i only EXP transitions are enabled. The next regen-

eration time point is the epo
h of jump into any one of the immediately rea
hable

states. The subordinated pro
ess starting from state i is a CTMC with a sin-

gle transient state (state i with initial probability equal to 1) and a number of

absorbing states equal to the number of immediately rea
hable states.

Let T

(i)

e

be the set of EXP transitions enabled in the regeneration marking

i, �

e

the transition rate of transition t

e

2 T

(i)

e

, and �

i

=

P

t

e

2T

(i)

e

�

e

. The entry

K

ij

(x) provides the probability of rea
hing the su

essive regeneration state j

before time x. The entry E

ij

(x) gives the probability of being in state j at time

x starting from i, before the next regeneration time point. Sin
e, in this 
ase,

any �ring provides a new regeneration time point, the only nonzero entry of the

i-th row of matrix E(x) 
orresponds to j = i. In the LST domain, the following

expressions hold:

K

�

ij

(s) =

�

e

�

i

+ s

�

(e)

ij

E

�

ij

(s) = Æ

ij

s

�

i

+ s

(8)

where Æ

ij

is the Krone
ker delta.



3.2 Subordinated Reward Semi-Markov Pro
ess

At x = �

�

0

= 0 the dominant age memory GEN transition t

g

starts its �ring

pro
ess in the regeneration state i (a

g

= 0). The su

essive regeneration time

point �

�

1

is the epo
h of �ring of t

g

and this event o

urs as the a

umulated

reward (memory variable) a

g

rea
hes the value 


g

for the �rst time.

Let 
(i) be the subset of R(M

0

) grouping the states of the subordinated

pro
ess (i.e. the states rea
hable from i before �ring t

g

). For notational 
onve-

nien
e we do not renumber the states in 
(i) so that all the subsequent matrix

fun
tions have the dimensions (N � N ) (
ardinality of R(M

0

)), but with the

signi�
ant entries lo
ated in position (k; `) only, with k; ` 2 
(i).

Let Z

(i)

(x) (x � 0) be the semi-Markov pro
ess de�ned over 
(i) and r

(i)

the 
orresponding binary reward ve
tor. With this notation, r

(i)

k

= 1 (0) means

that t

g

is enabled (not enabled) in state k, and the memory variable a

g

in
reases

at a rate r

(i)

k

when Z

(i)

(x) = k. The subordinated pro
ess 
oin
ides with Z

(i)

(x)

when the initial state is state i with probability 1 (PrfZ

(i)

(0) = ig = 1).

Let Q

(i)

(x) = [Q

(i)

k`

(x)℄ be the kernel of the semi-Markov pro
ess Z

(i)

(x).

The initial probability ve
tor is Q

(i)

0

= [0; 0; : : : ; 1

i

; : : : ; 0℄ (a ve
tor with all

the entries equal to 0 but entry i equal to 1). We denote by H the time duration

until the �rst embedded time point in the semi-Markov pro
ess starting from

state k at time 0 ( Z

(i)

(0) = k ). The generi
 element (for k; ` 2 
(i))

Q

(i)

k`

(x) = Pr

n

H � x; Z

(i)

(H

+

) = ` jZ

(i)

(0) = k

o

is the distribution of H supposed that a transition from state k to state ` took

pla
e at the embedded time point. If diagonal elements in Q

(i)

(x) are nonzero

the next embedded time point 
an be determined by a transition from state k

to state k. The distribution of H is:

Q

(i)

k

(x) =

X

`2
(i)

Q

(i)

k`

(x) (k = 1; :::; n)

and, �nally, the probability of jumping from state k to ` at time H = x is:

dQ

(i)

k`

(x)

dQ

(i)

k

(x)

= Pr

n

Z

(i)

(x

+

) = ` jH = x; Z

(i)

(0) = k

o

Let us �x the value of the random �ring time 


g

= y and let us introdu
e two

matrix fun
tions: F

(i)

(x; y) and P

(i)

(x; y) so de�ned:

F

(i)

k`

(x; y) = PrfZ

(i)

(�

��

1

) = ` ; �

�

1

� x jZ

(i)

(0) = k ; 


g

= yg

(9)

P

(i)

k`

(x; y) = PrfZ

(i)

(x) = ` ; �

�

1

> x jZ

(i)

(0) = k ; 


g

= yg



{ P

(i)

k`

(x; y) is the probability of being in state ` at time x before absorption at

the barrier y, starting in state k at x = 0, and being 


g

equal to a 
onstant

value y.

{ F

(i)

k`

(x; y) is the probability that t

g

�res from state ` (hitting the absorbing

barrier y in `) before x, starting in state k at x = 0, and being 


g

equal to

a 
onstant value y.

{ �

(g)

is the bran
hing probability matrix and represents the su

essor mark-

ing ` that is rea
hed by �ring t

g

in state k (the �ring of t

g


an only o

ur in

a state k in whi
h r

(i)

k

= 1).

From (9), it follows:

X

`

[F

(i)

k`

(x; y) + P

(i)

k`

(x; y) ℄ = 1

Due to the parti
ular stru
ture of the initial probability ve
tor Q

(i)

0

, the entries

of the i-th row of the matri
es K(x) and E(x) are related to F

(i)

(x; y) and

P

(i)

(x; y) by the following expressions:

K

ij

(x) =

Z

1

y=0

X

k

F

(i)

ik

(x; y)�

(g)

kj

dG

g

(y)

(10)

E

ij

(x) =

Z

1

y=0

P

(i)

ij

(x; y) dG

g

(y)

Evaluation of F

(i)

k`

(x; y) and P

(i)

k`

(x; y) 
an be inferred from [15, 4℄. We in
lude

the derivation for 
ompleteness. In order to avoid unne
essarily 
umbersome

notation in the following expressions, we negle
t the expli
it dependen
e on the

parti
ular subordinated pro
ess by eliminating the supers
ript. It is however

ta
itly intended, that all the quantities r, Q(x), F(x; y), P(x; y), � and 
 refer

to the spe
i�
 pro
ess subordinated to state i.

Derivation of F(x; y) Conditioning on H = h , let us de�ne:

F

k`

(x; y jH = h) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Æ

k`

U

�

x �

y

r

k

�

if : h r

k

� y

X

u2


dQ

ku

(h)

dQ

k

(h)

F

u`

(x� h; y � hr

k

) if : h r

k

< y

(11)

where U(x) is the unit step fun
tion. In (11), two mutually ex
lusive events are

identi�ed. If r

k

6= 0 and h r

k

� y, a sojourn time equal to y is a

umulated

before leaving state k, so that the �ring time (next regeneration time point) is

�

�

1

= y=r

k

. If h r

k

< y then a transition o

urs to state u with probability



dQ

ku

(h)=dQ

k

(h) and the residual servi
e (y � hr

k

) should be a

omplished

starting from state u at time (x � h). Taking the LST transform of (11) with

respe
t to x, we get:

F

�

k`

(s; y jH = h) =

8

>

>

>

>

<

>

>

>

>

:

Æ

k`

exp(�sy=r

k

) if : h r

k

� y

exp(�sh)

X

u2


dQ

ku

(h)

dQ

k

(h)

F

�

u`

(s; y � hr

k

) if : h r

k

< y

(12)

Un
onditioning with respe
t to h, (12) be
omes:

F

�

k`

(s; y) = Æ

k`

�

1 � Q

k

�

y

r

k

��

exp(�sy=r

k

) +

X

u2


Z

y

r

k

h=0

exp(�s h) F

�

u`

(s; y � hr

k

) dQ

ku

(h) (13)

Taking the Lapla
e transform (LT) with respe
t to y (denoting by w the trans-

form variable), and evaluating the integrals we obtain, for the double LST-LT

transform F

��

k`

(s; w), the following expression:

F

��

k`

(s; w) = Æ

k`

r

k

[1 � Q

�

k

(s + w r

k

) ℄

s + w r

k

+

X

u2


Q

�

ku

(s + w r

k

)F

��

u`

(s; w) (14)

Derivation of P(x; y) The derivation follows the same pattern as for the

fun
tion F(x; y). Conditioning on H = h , let us de�ne:

P

k`

(x; y jH = h) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

Æ

k`

�

U(x) � U

�

x �

y

r

k

��

if : h r

k

� y

Æ

k`

[U(x)� U(x� h)℄ +

X

u2


dQ

ku

(h)

dQ

k

(h)

P

u`

(x� h; y � hr

k

)

if : h r

k

< y

(15)

In (15), two mutually ex
lusive events are identi�ed. If r

k

6= 0 and y � h r

k

, then

the pro
ess spends all its time up to absorption in the initial state k. If h r

k

< y

then a transition o

urs to state u with probability dQ

ku

(h)=dQ

k

(h) and then

the pro
ess jumps to state ` in the remaining time (x � h) before 
ompleting

the residual work (y � hr

k

). Taking the LST transform of (15) with respe
t to



x, we get:

P

�

k`

(s; y jH = h) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

Æ

k`

[1 � exp(�sy=r

k

)℄

if : h r

k

� y

Æ

k`

�

1 � e

�sh

�

+ e

�sh

X

u2


dQ

ku

(h)

dQ

k

(h)

P

�

u`

(s; y � hr

k

)

if : h r

k

< y

(16)

Un
onditioning (16) with respe
t to h, taking the LT transform with respe
t

to y (denoting w the transform variable), and �nally evaluating the integrals

we obtain that the double LST-LT transform P

��

k`

(s; w) satis�es the following

equation:

P

��

k`

(s; w) = Æ

k`

s [1 � Q

�

k

(s + w r

k

) ℄

w(s + w r

k

)

+

X

u2


Q

�

ku

(s + w r

k

)P

��

u`

(s; w) (17)

EP distributed �ring time Let us de�ne an exponential polynomial (EP) dis-

tribution G

E

(y) as a distribution with rational Lapla
e transform whose density


an be expressed as:

g

E

(y) =

n

X

p=1

m�1

X

r=0




pr

y

r

e

��

p

y

(18)

where n is the number of distin
t eigenvalues (�

p

), m is the supremum of the

eigenvalue multipli
ities, and 


pr

is a 
onstant 
oeÆ
ient

1

. When the dominant

GEN transition is asso
iated with an EP random �ring time, an eÆ
ient 
om-

putational pro
edure 
an be envisaged for handling the Lapla
e inverse trans-

formation with respe
t to w and the integration with respe
t to G

E

(y).

Theorem 1. When the �ring time is an EP r.v. with density fun
tion g

E

(y)

(18), the entries of the kernel matri
es 
an be evaluated as follows:

E

�

ij

(s) =

n

X

p=1

m�1

X

r=0

(�1)

r




pr

d

r

P

��

ij

(s; w)

dw

r

�

�

�

�

�

w=�

p

(19)

K

�

ij

(s) =

n

X

p=1

m�1

X

r=0

(�1)

r




pr

d

r

P

k

F

��

ik

(s; w)�

(i)

kj

dw

r

�

�

�

�

�

w=�

p

(20)

where the derivative of order r = 0 simply means the substitution of the value

w = �

p

in the r.h.s.

1

The de�nition of EP r.v. given here requires the Lapla
e transform to be rational

and is more restri
tive than the de�nition of expolynomial distributions proposed in

[9℄ in 
onne
tion with MRSPN.



Proof. When 


g

is an EP r.v. Equation (10) be
omes:

E

�

ij

(s) =

Z

1

y=0

P

�

ij

(s; y) dG

E

(y) =

Z

1

y=0

g

E

(y)P

�

ij

(s; y) dy =

n

X

p=1

m�1

X

r=0




pr

Z

1

y=0

y

r

e

��

p

y

P

�

ij

(s; y) dy =

n

X

p=1

m�1

X

r=0

(�1)

r




pr

Z

1

y=0

d

r

d�

r

p

e

��

p

y

P

�

ij

(s; y) dy =

n

X

p=1

m�1

X

r=0

(�1)

r




pr

d

r

d�

r

p

Z

1

y=0

e

��

p

y

P

�

ij

(s; y) dy =

n

X

p=1

m�1

X

r=0

(�1)

r




pr

d

r

P

(i)��

ij

(s; �

p

)

d�

r

p

(21)

from whi
h the �rst part of the theorem (equation 19) follows. The proof for

K

�

ij

(s) follows the same pattern.

This approa
h is very e�e
tive, when the multipli
ity of the eigenvalues is equal

to 1, sin
e the inverse Lapla
e transformation and integration in (21) redu
es to

a simple substitution; otherwise the symboli
 derivation is required. A wellknown

and 
onvenient sub
lass of EP distributions is the 
lass of PH distributions aris-

ing from the time to absorption of CTMC's with at least one absorbing state.

When all the GEN �ring times are PH random variables and the subordinated

pro
esses are CTMC's, the transient state probabilities 
an be alternatively eval-

uated by expanding the state spa
e R(M

0

) taking into a

ount all the possible

stage 
ombinations of ea
h PH transition. A 
ompletely automated tool that

implements the state spa
e expansion te
hnique is in [12℄.

3.3 Derivation of V(x)

The evaluation of the entries of the state transition probability matrix V(x)

requires the following steps to be performed:

{ Derivation of the double Lapla
e transform matrix fun
tions F

��

k`

(s; w) and

P

��

k`

(s; w), a

ording to Equations (14) and (17), respe
tively.

{ Evaluation of the LST transforms F

�

k`

(s; y) and P

�

k`

(s; y) by symboli
 inverse

Lapla
e transformation with respe
t to the �ring time variable w.

{ Evaluation of the LST transforms K

�

(s) and E

�

(s) by un
onditioning the

results of the previous step with respe
t to the distribution of the �ring time

G

g

(y) (Equation 10).

{ Symboli
 matrix inversion and matrix multipli
ation by using a standard

pa
kage (e.g. MATHEMATICA) in order to obtain V

�

(s) (Equation 7).



{ Time domain solution obtained by a numeri
al inversion of the entries of

V

�

(s), resorting to the Jagerman's method [14℄ (for the sake of uniformity,

this step has been implemented in MATHEMATICA language).

When G

g

(y) is an EP, Theorem 1 
an be applied instead of steps 2 and 3. In

the parti
ular 
ase in whi
h the subordinated pro
ess Z(t) is a CTMC, all the

sojourn time distributions be
ome exponential and Equations (14) and (17) 
an

be simpli�ed a

ordingly [6℄. Due to the required symboli
 and numeri
al steps,

the pro
edure outlined in the previous points is e�e
tive only for small values of

the 
ardinality of the rea
hability set.

4 M/G/1/2/2 with Preemptive Resume Servi
e

The M/D/1/2/2 queueing system has been 
onsidered as a ben
hmark example

in the re
ent literature on non-Markovian SPN. The example has been intro-

du
ed in [2℄, where the steady state solution was derived. The transient analysis

for the same system was 
arried on in [7℄ and the model was extended by al-

lowing GEN servi
e times in [8℄. The e�e
t of di�erent preemption poli
ies has

been studied in [5℄ and the analysis of the M/D/1/2/2 queueing system with

prs servi
e poli
y is in [6℄. In the following, we apply the pro
edure developed in

the previous Se
tion to the 
ase of prs servi
e poli
y and generally distributed

servi
e time.

4.1 Model assumptions

Figure 1a shows a PN des
ribing the M/G/1/2/2 system in whi
h any new

job preempts the job under servi
e. We assume that the servi
e poli
y is of

prs type: a preempted job is resumed as soon as the server be
omes idle, but

the prior work is not lost and the residual servi
e time needs to be 
ompleted.

Pla
e p

1


ontains the 
ustomers thinking, while pla
e p

2


ontains the number

of submitted jobs (in
luding the one under servi
e). Starting from the initial

marking s

1

= (2 0 0 1) (Figure 1b), t

1

is the only enabled transition. Firing of t

1

represents the submission of the �rst job and leads to state s

2

= (1 1 1 0). In s

2

transitions t

2

and t

3

are 
ompeting. t

2

represents the servi
e of the submitted

job and its �ring returns the system to the initial state s

1

. t

3

represents the

submission of the se
ond job and its �ring disables t

2

by removing one token

from p

3

(the �rst job be
omes dormant). In s

3

= (0 2 0 1) one job is under

servi
e and one job is dormant, and the only enabled a
tivity is the servi
e of

the a
tive job. Firing of t

4

leads the system again in s

2

, where the dormant job

is re
overed. Assuming the thinking time of both 
ustomers to be EXP with

parameter �, t

1

is asso
iated an exponential �ring rate equal to (2�) and t

3

a

�ring rate equal to �. Transitions t

2

and t

4

are assigned a GEN servi
e time with

distribution G

g

(x) and an age memory poli
y.

Ea
h time t

2

is disabled without �ring (t

3

�res before t

2

) the memory variable

a

2

is not reset. Hen
e, as the se
ond job 
ompletes (t

4

�res), the system returns



��

��

��

��

��

��

��

��

r

r r

�

�

��

A

A

AU

�

�

��

A

A

AU

A

A

AU

�

�

��

A

A

AU

�

�

��

A

A

AU

�

�

��

66

- �

??

��

��

��

��

��

��

?

6

?

6

s

1

s

2

s

3

t

1

t

2

t

4

t

3

t

1

t

3

t

2

t

4

2001

1110

0201

a) b)

p

1

p

3

p

2

p

4

Figure 1 - Preemptive M/G/1/2/2 queue with identi
al 
ustomers

in s

2

remembering the value of a

2

, so that the time to 
omplete the interrupted

job 
an be evaluated as the residual servi
e time given a

2

. a

2


ounts the total

time during whi
h t

2

is enabled before �ring, and is equal to the 
umulative

sojourn time in s

2

. The assignment of the age memory poli
y to t

2

realizes a prs

servi
e me
hanism.

The regeneration time points in the marking pro
essM(x) 
orrespond to the

epo
hs of entran
e in markings in whi
h the memory variables asso
iated to all

the transitions are equal to zero. By inspe
ting Figure 1b), the regeneration time

points result to be the epo
hs of entran
e in s

1

and of entran
e in s

2

from s

1

. s

3


an never be a regeneration marking, sin
e the memory variable a

2

is not reset

at the entran
e in s

3

: the pro
ess 
an sojourn in s

3

only between two su

essive

regeneration points (Figure 2).

The pro
ess subordinated to state s

1

is a single step CTMC (being EXP the

only enabled transition t

1

) and in
ludes the only immediately rea
hable state

s

2

. The pro
ess subordinated to state s

2

is dominated by the GEN age memory

transition t

2

and in
ludes the states s

3

and s

2

rea
hable from s

2

before �ring of

t

2

. Sin
e s

2

is the only state in whi
h t

2

is enabled, the 
orresponding reward rate

ve
tor is r

(2)

= [0 1 0℄. Finally, the only relevant nonzero entry of the bran
hing

probability matrix is �

(2)

21

= 1, sin
e �ring of t

2


an only o

ur from state s

2

leading to state s

1

.

A possible realization of the marking pro
ess subordinated to state s

2

is

shown in Figure 2: the subordinated pro
ess is semi-Markov sin
e t

4

is GEN.

The memory variable a

2

grows whenever the pro
ess sojourns in state s

2

, and

the �ring of t

2

is determined by the �rst passage time of a

2

a
ross the absorbing

barrier of height 


2

.
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Figure 2 - A possible realization of the pro
ess subordinated to state s

2

4.2 Numeri
al Results

The 
losed form LST expressions of K(x) and E(x) for the prs M/G/1/2/2

queuing systems are derived in detail, 
onsidering two spe
i�
 
lasses of GEN

�ring times (namely: the uniform and the EP). Let us build up the K

�

(s) and

E

�

(s) matri
es row by row by 
onsidering separately all the states that 
an be

regeneration states and 
an originate a subordinated pro
ess. Sin
e s

3


an never

be a regeneration state the third row of the above matri
es is irrelevant.

1) - The starting regeneration state is s

1

- No GEN transition is enabled in s

1

and the next regeneration state 
an only be state s

2

. Applying (8) we obtain:

K

�

11

(s) = 0 K

�

12

(s) =

2�

s + 2�

K

�

13

(s) = 0

and

E

�

11

(s) =

s

s + 2�

E

�

12

(s) = 0 E

�

13

(s) = 0

(22)

2) - The starting regeneration state is s

2

- Transition t

2

is the dominant transition

and the next regeneration time point is the epo
h of �ring of t

2

. t

2

is an age

memory GEN transition with Cdf G

g

(y), hen
e, the 
onditions of Se
tion 3.2.

are met. The subordinated pro
ess (Figure 2) 
omprises states s

2

and s

3

and is

a semi-Markov pro
ess whose kernel is:

Q

�

(s) =

�

�

�

�

�

�

�

�

0 0 0

0 0

�

s + �

0 G

�

g

(s) 0

�

�

�

�

�

�

�

�



whereG

�

g

(s) is the LST transform of the distribution fun
tion G

g

(y). The reward

ve
tor is r

(2)

= [0; 1; 0℄, and the only nonzero entry of the bran
hing probability

matrix is �

(2)

21

= 1. Let us introdu
e the following notation:

H

g

(s) = s+ �� �G

�

g

(s) (23)

The non-zero entries of the 2nd row of F

��

(s; w) and P

��

(s; w) matri
es are

obtained by applying Equations (14) and (17):

F

��

22

(s; w) =

1

s+ w + �� �G

�

g

(s)

=

1

w +H

g

(s)

P

��

22

(s; w) =

s=w

s+ w + �� �G

�

g

(s)

=

s=w

w +H

g

(s)

(24)

P

��

23

(s; w) =

�(1�G

�

g

(s))=w

s+ w + �� �G

�

g

(s)

=

�(1�G

�

g

(s))=w

w +H

g

(s)

Uniformly distributed servi
e time Let G

U

(y) indi
ate a uniform distri-

bution de�ned between �(� 0) and �(> �). The non preemptive M/G/1/2/2

queue with uniformly distributed servi
e time has been studied by Choi at al.

in [8℄. The extension to the prs servi
e poli
y is developed in the following.

The LST transform of G

U

(y) is given by:

G

�

U

(s) =

1

s

1

� � �

(e

��s

� e

��s

)

and substituting the a
tual value of G

�

U

(s) = G

�

g

(s) in (23), we get:

H

U

(s) = s+ �� �G

�

U

(s) = s+ ��

�

s

1

� � �

(e

��s

� e

��s

)

A

ording to the steps mentioned in Se
tion 3.3, the symboli
 inversion of Equa-

tions (24) is performed with respe
t to the transform variable w, followed by an

integration with respe
t to the distribution of the servi
e time G

U

(y). The in-

verse transformation with respe
t to w provides:

F

�

22

(s; y) = e

�yH

U

(s)

P

�

22

(s; y) =

s

H

U

(s)

(1� e

�yH

U

(s)

)

P

�

23

(s; y) =

�(1�G

�

U

(s))

H

U

(s)

(1� e

�yH

U

(s)

)

Applying the integration step expressed by (10), the LSTmatrix fun
tionsK

�

(s)

and E

�

(s) be
ome:
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Figure 3 - Transient behavior of the state probabilities with uniformly distributed

servi
e time.

K

�

(s) =

�

�

�

�

�

�

�

�

�

�

0

2�

s + 2�

0

1

H

U

(s)

1

� � �

(e

��H

U

(s)

� e

��H

U

(s)

) 0 0

0 0 0

�

�

�

�

�

�

�

�

�

�

(25)

and

E

�

(s) =

�

�

�

�

�

�

�

�

�

�

�

s

s + 2�

0 0

0

s

H

U

(s)

(1�K

�

21

(s))

�(1�G

�

U

(s))

H

U

(s)

(1�K

�

21

(s))

0 0 0

�

�

�

�

�

�

�

�

�

�

�

(26)

The LST of the transition probability matrix V

�

(s) is obtained by solving (7).

Finally, the time domain probabilities are 
al
ulated by numeri
ally inverting

(7) by resorting to the Jagerman method [14℄. The plot of the state probabilities

versus time for states s

1

and s

3

is depi
ted in Figure 3, for a submitting rate

� = 2, and for two di�erent set of values (� = 0, � = 1) and (� = 0:5, � = 1).

Figure 3 emphasizes the e�e
t of the 
oeÆ
ient of variation of the servi
e time

on the state probabilities; a redu
ed 
oeÆ
ient of variation results in a more

pronoun
ed alternating behavior of the state probabilities.
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Figure 4 - Transient behavior of the state probabilities with Erl 2 distributed ser-

vi
e time.

EP distributed servi
e time Let us 
onsider the same preemptive M/G/1/2/2

in whi
h the servi
e time has an Erlang distribution of order 2 (Erl 2). The LST

G

�

E

(s) of the Erl 2 with parameter � is:

G

�

E

(s) =

�

�

s+ �

�

2

(27)

By substituting (27) into (23), we get:

H

E

(s) = s+ �� �G

�

E

(s) = s+ �� �

�

�

s+ �

�

2

The 1st and the 3rd row of the K

�

(s) and E

�

(s) matri
es do not depend on the

parti
ular GEN distribution and remain un
hanged. The nonzero entries of the

se
ond row 
an be obtained, as before, by a symboli
 inverse transformation with

respe
t to w followed by an the integration with respe
t to G

g

(y). Alternatively,

sin
e G

g

(y) = G

E

(y) is EP, we 
an apply Theorem 1 to Equations (24).

K

�

21

(s) = (�1)�

2

dF

��

22

(s; w)

dw

�

�

�

�

w=�

=

�

2

(� +H

E

(s))

2

(28)

E

�

22

(s) = (�1)�

2

dP

��

22

(s; w)

dw

�

�

�

�

w=�

=

s(2� +H

E

(s))

(� +H

E

(s))

2

(29)

E

�

23

(s) = (�1)�

2

dP

��

23

(s; w)

dw

�

�

�

�

w=�

=

�(1�G

�

E

(s))(2� +H

E

(s))

(� +H

E

(s))

2

(30)



In this example, only EXP and PH �ring times are 
onsidered. Hen
e, the tran-

sient probabilities 
an also be obtained by the well known method of the state

spa
e expansion [12℄. However, if t

2

has a PH �ring time but t

4

is non-PH, then

only the above equations 
an be applied.

Similarly to the former 
ase, the LST of the state probabilities are obtained

by solving (7). The time domain probabilities are 
al
ulated by numeri
ally

inverting (7) by resorting to the Jagerman method [14℄. The plot of the state

probabilities versus time for states s

1

and s

3

(with � = 2, 
orresponding to a

mean servi
e time 2=� = 1, and � = 0:5.) are depi
ted in Figure 4 (dotted line).

For the sake of 
omparison the results obtained by applying the method of the

expanded CTMC [12℄ are reported in dashed line.

5 Con
lusion

We have de�ned a new 
lass of MRSPN 
alled AgeMRSPN, whi
h allow the

in
lusion of GEN transitions with asso
iated age memory poli
y. This extension

was motivated by the need of modeling systems in whi
h the exe
ution of tasks

may follow a preemptive resume poli
y.

We have shown that the marking pro
ess subordinated to two 
onse
utive

regeneration time points 
an be, in general, a reward semi-Markov pro
ess. A

binary reward variable is introdu
ed to distinguish the states in whi
h the ex-

e
ution of the servi
e is interrupted and the states in whi
h the exe
ution is

resumed with no loss of prior work. The transient analysis of a reward semi-

Markov pro
ess has been derived in detail, in order to show how to obtain a

double LT-LST 
losed form expression for the transient state probabilities of

the general pro
ess.

An M/G/1/2/2 queuing system, 
onsidered as a 
ase study example in pre-

vious literature [2, 7, 8, 5, 6℄, has been examined for the �rst time by introdu
ing

servi
e poli
ies of prs type and GEN �ring distributions.
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