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Abstract. Markov Regenerative Stochastic Petri Nets (MRSPN) have
been recently introduced in the literature with the aim of combining
exponential and non-exponential firing times into a single model. How-
ever, the realizations of the general MRSPN model, so far discussed,
require that at most a single non-exponential transition is enabled in
each marking and that its associated memory policy is of enabling type.
The present paper extends the previous models by allowing the memory
policy to be of age type and by allowing multiple general transitions to
be simultaneously enabled, provided that their enabling intervals do not
overlap. A final completely developed example, that couldn’t have been
considered in previous formulations, derives the closed form expressions
for the transient state probabilities for a queueing system with preemp-
tive resume (prs) service policy.
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1 Introduction

Markov Regenerative Stochastic Petri Nets are defined as the class of Stochastic
Petri Nets (SPN) whose marking process is mapped into a Markov Regenerative
Process (MRGP) [11,8]. The concept of MRSPN was first proposed by Choi
et al. in [7], when they recognized that the Deterministic and Stochastic PN
(DSPN) model, defined by Ajmone and Chiola in [2], could be considered as a
member of this class.

In the DSPN [2], at most one deterministic transition is enabled in each mark-
ing, and the deterministic transitions are assigned an enabling memory policy
(after the taxonomy in [1]). The steady state solution algorithm, provided in [2],
was then revisited in [16] and some structural extensions were proposed in [10].
Choi et al. [7] developed the transient analysis of the same DSPN model, based
on the transient equations of the underlying Markov regenerative process. In [8,
13], deterministic transitions were replaced by generally distributed transitions,
while in [9], the case of multiple deterministic transitions of enabling memory
type activated in the same marking was considered.



The analysis technique developed for this class of models, consists in iden-
tifying a sequence of regeneration points and by analysing the behavior of the
marking process between any two successive regeneration points. The restriction
of the marking process between two successive regeneration points is called the
subordinated process [16]. All the models discussed in the mentioned references
require that the generally distributed (or deterministic) transitions are assigned
a firing policy of enabling memory type [1]. The enabling memory policy means
that each time the transition becomes enabled its firing time is resampled from
the original distribution and the time spent without firing in prior enabling
periods is lost. In [2,16,7,8], the subordinated processes are restricted to be
Continuous Time Markov Chains (CTMC), while the steady state analysis of
semi-Markov subordinated processes has been investigated in [9].

The aim of this paper is to introduce a new class of models, called AgeMR-
SPN, characterized by the fact that generally distributed transitions have an age
memory policy, and multiple general transitions can be simultaneously enabled
provided that a dominant transition exists whose enabling period determines the
occurrence of two successive regeneration time points. It will be shown that the
above assumptions entail that the subordinated processes can be reward semi-
Markov processes. The age memory policy means that each time the transition
becomes enabled its firing time is resumed from the previously attained value,
so that the time possibly spent without firing in prior enabling periods is not
lost. The age memory policy needs to be invoked to model preemptive resume
(prs) service strategies, where the server is able to recover the execution of an
interrupted job by keeping memory of the work already performed so that, upon
restart, only the residual service needs to be completed.

A general closed form analytical solution for the transient state probabili-
ties is derived in the Laplace transform domain. For the special case, in which
the generally distributed transitions have an exponential polynomial (EP) firing
time, an effective algorithm is developed. The numerical computation requires
a combination of symbolic and numerical steps and is, in the present state of
developement, restricted to small case examples.

After introducing the notation and the definition of an AgeMRSPN in Section
2, an analytical procedure for deriving the closed form transient equation for the
transition probability matrix is presented in Section 3. Section 4 is devoted to
illustrate a detailed derivation of the transient probabilities in a M/G/1/2/2
queuing system with prs service. This example revisits the case already studied
in [2,7,8], but introduces modeling features that couldn’t have been considered
in the framework of the previous methodologies.

2 Markov Regenerative Stochastic Petri Nets

The untimed model is a marked Petri Net (PN) represented by a tuple PN =
(P, T,1I,0,H, M), where P is the set of places, T' the set of transitions, I, O and
H the input, output and inhibitor functions respectively, and M is the marking.
The reachability set R(My) is the set of all the markings that can be generated



from an initial marking My. The marking process M(x) denotes the marking
occupied by the PN at time z.

It is shown in [1] that, when a transition is assigned a non-exponential firing
time, the nature of the marking process M (z) is univocally identified if a memory
policy is attached to each transition. The memory policy specifies how the process
is conditioned upon the past. Following [1], the memory policy is realized through
a memory variable ay, associated to each transition ¢;. The memory variable is a
functional that depends on the time during which ¢ has been enabled according
to the following three alternatives [1]:

— Resampling policy - The memory variable a;, is reset to zero at any change
of marking.

— Enabling memory policy - The memory variable a; accounts for the work
performed by the activity corresponding to #; from the last epoch in which
tr has been enabled. When transition ¢y, is disabled (even without firing) ay,
is reset,.

— Age memory policy - The memory variable a; accounts for the work per-
formed by the activity corresponding to t; from its last firing up to the
current epoch and is reset only when ¢ fires.

At the entrance in a new marking, the residual firing time is computed for each
enabled timed transition given its memory variable, so that the next marking is
determined by the minimal residual firing time among the enabled transitions
(race policy [1]). Since the three mentioned policies are equivalent for an expo-
nential distribution, due to the memoryless property, the corresponding memory
variable can be assumed identically zero. The set of transitions can be parti-
tioned into a subset of exponential transitions (EXP) and a subset of generally
distributed transitions (GEN).

A regeneration time point in a time homogeneous stochastic process is the
epoch of entrance in a state in which the Markov property holds (i.e. the future
evolution does not depend on the past history but only on the present state).
A stochastic process for which a sequence of regeneration time points can be
identified is called a Markov Regenerative Process [8, 11].

Definition 1. According to the semantics in [1], a regeneration time point in
the marking process M(z) is the epoch of entrance in a marking M, in which
all the memory variables are equal to 0. A SPN whose marking process M(x) is
a Markov Regenerative Process is called a Markov Regenerative SPN (MRSPN).

The portion of the marking process confined between any two successive regener-
ation time points is called the subordinated process [16]. The subclass MRSPN*,
defined in [8], is obtained by restricting Definition 1 according to the following
specifications: i) in each marking, at most a single GEN transition is enabled
being all the other transitions EXP; ii) the memory policy associated to ev-
ery GEN transition is of enabling memory type. As a consequence of the above
specifications all the subordinated processes are CTM(C’s. In order to remove the



above restrictions, to some extent, the notion of active and dominant transition
is introduced [6].

Definition 2. A transition is active when its memory variable is greater than
zero; the activity cycle of a transition is the period of time in which the transition
is active. A transition is dominant with respect to a subordinated process if its
activity cycle determines the two successive regeneration time points in which
the subordinated process is confined.

It has been shown in [6], that a solvable class of MRSPN corresponds to models
in which the activity cycles of the GEN transitions do not overlap, and the
subordinated processes are semi-Markovian.

Definition 3. An AgeMRSPN is a MRSPN in which:

i The set T is partitioned into EXP and GEN transitions;

ii To any GEN transition ¢, a generally distributed random variable v,, with
Cumulative Distribution Function G,(y), and a memory variable a, with
age memory policy is associated.

iii The regeneration intervals between any two successive regeneration time
points are dominated by a single age memory GEN transition and the sub-
ordinated processes are semi-Markov.

A single realization of the marking process M(z) can be represented by the
following timed execution sequence:

Te = { (15, My); (71, M@)); ... 5 (77, M) ; ...} (1)

where 7/ represents a regeneration time point and M;) the entered marking. By
Definition 1, 7" is such that at the entrance in M;) all the memory variables are
zero. The successive regeneration time point 77, is derived from 7 as follows:

1. If no GEN transition is enabled in marking M;), 77, is the first time after
T that a state change occurs.

2. If an age memory GEN transition ¢, starts its activity cycle in marking M
and the subordinated process is dominated by t,, 777, is the firing time of
ty.

In the case 1) above, the subordinated process between two consecutive regener-
ation time points is a single step CTMC since only EXP transitions are enabled
and any firing provides the next regeneration point.

In the case 2) above, during [}, 7/, ), the PN can evolve in the subset of
R(My) reachable from M;;), during the activity cycle of the dominant GEN
transition ¢, and the subordinated process inside this interval is semi-Markov.

Definition 3 has two major implications. Since the subordinated process is
semi-Markov, multiple general transitions can be simultaneously enabled inside
the firing process of t,, provided that their activity cycles do not overlap [6].
The second implication is that, during the subordinated process, the dominant



age memory GEN transition needs not to be continuously enabled; in fact, the
associated memory variable is not reset even if the transition is disabled before
firing. In order to track the enabling/disabling condition of the dominant GEN
transition t,, we introduce a reward (indicator) variable which is equal to 1
in those markings in which ¢, is enabled and equal to 0 in those markings in
which ¢, is not enabled. The binary reward variables are then grouped into a
reward vector and the subordinated processes are formulated in terms of semi-
Markov reward models [17,3]. The memory variable a, corresponding to the
dominant GEN transition is computed as the accumulated reward in the semi-
Markov reward subordinated process and the successive regeneration time point
(the firing epoch of ¢;) occurs when the memory variable a, accumulates a
time equal to the firing time v, of the corresponding transition. Resorting to
the computational properties of stochastic reward models [3], the cdf of the
successive regeneration time point is evaluated as the first time at which the
functional a, hits an absorbing barrier of height ~,.

The firing of the dominant GEN transition ¢, in the subordinated process
starting in the regeneration marking ¢, can only occur in a state k in which the
reward variable is equal to one (t, is enabled). After the firing of ¢, in state
k, the successor marking ¢ is determined by the branching probability matrix
A = [A9)][7,9], where:

A;ﬁz) = Pr{next marking is £| current markingis k, ¢, fires } (2)

By virtue of the time homogeneity, and without loss of generality, any two suc-
cessive regeneration time points can be supposed to be x = 77 =0 and z = 77.
Let us define the following matrix valued functions [8, 11]:

V(z) = [Vij(2)] such that V;;(z) = Pr{M(z) =j|M(15) =i}
K(z) = [Kij(z)] 7 Kij(z) = Pr{Mu) =j, 77 <z|M(r5) =i} (3)

E(z) = [E;j(z)] 7 Eij(z) = PriM(z) = j, 17 > z| M(75) = i}

Matrix V(z) is the transition probability matrix and provides the probability
that the stochastic process M(x) is in marking j at time = given it was in i at
z = 0. The matrix K(z) is the global kernel of the MRGP and provides the cdf
of the event that the next regeneration marking is M(;) = j at time 7", given
marking i at 7§ = 0. Finally, the matrix E(z) is the local kernel since describes
the behavior of the marking process M(z) inside two consecutive regeneration
time points. The generic element E;;(z) provides the probability that the process
is in state j at x starting from i at 7; = O before the next regeneration time
point. From the above definitions:

> [Kij(x) + Eij(z)] = 1

J
As specified by (3), for each state M(;, = i, the entries of the i-th row of the
matrices K(z) and E(z) depend only on the behavior of the subordinated pro-
cess starting from M;), given that M(; is a regeneration state. If M; cannot



be a regeneration state, the corresponding entries are irrelevant. The transient
behavior of the MRSPN can be evaluated by solving the following generalized
Markov renewal equation [11, 8]:

V(z) = E(z) + K % V(z) (4)

where K * V(z) is a convolution matrix, whose (4, 7)-th entry is:
€T
K+ V@ly = Y [ dKa) Vi@ -v) 5)
— Jo

By denoting the Laplace Stieltjes transform (LST) of a function F(z) by F~(s) =

Jo° e " dF (z), Equation (4) becomes:

V~(s) = E¥(s) + K~(s) V~(s) (6)

whose solution is:
V¥(s) =[I — K”(s)] " E™(s) (7)

The steady state solution can be evaluated as limg_,o V™~(s).

3 Transient analysis of the subordinated process

Let M(;) =i be a regeneration marking according to Definition 1. In the Age MR-
SPN model, only two classes of subordinated processes can be encountered:

1. Single step CTMC.
2. Reward Semi-Markov Process.

3.1 Subordinated single step CTMC

In the regeneration marking i only EXP transitions are enabled. The next regen-
eration time point is the epoch of jump into any one of the immediately reachable
states. The subordinated process starting from state i is a CTMC with a sin-
gle transient state (state ¢ with initial probability equal to 1) and a number of
absorbing states equal to the number of immediately reachable states.

Let Te(i) be the set of EXP transitions enabled in the regeneration marking
i, A\e the transition rate of transition ¢, € Te(i), and A\t = zteeT(i) Ae. The entry
K;;(z) provides the probability of reaching the successive fegéneration state j
before time 2. The entry E;;(z) gives the probability of being in state j at time
z starting from ¢, before the next regeneration time point. Since, in this case,
any firing provides a new regeneration time point, the only nonzero entry of the
i-th row of matrix E(z) corresponds to j = 4. In the LST domain, the following
expressions hold:

Ae (e) - S
Ait+s Y ”(8) TN+ s

K33(s) (8)

where §;; is the Kronecker delta.



3.2 Subordinated Reward Semi-Markov Process

At z = 7§ = 0 the dominant age memory GEN transition ¢, starts its firing
process in the regeneration state i (a; = 0). The successive regeneration time
point 7{ is the epoch of firing of ¢, and this event occurs as the accumulated
reward (memory variable) a, reaches the value -y, for the first time.

Let 2(i) be the subset of R(Mj) grouping the states of the subordinated
process (i.e. the states reachable from i before firing ¢,). For notational conve-
nience we do not renumber the states in £2(i) so that all the subsequent matrix
functions have the dimensions (N x N) (cardinality of R(Mpy)), but with the
significant entries located in position (k, £) only, with k, £ € (7).

Let Z()(z) (x > 0) be the semi-Markov process defined over (i) and r(?
the corresponding binary reward vector. With this notation, r,(;) =1 (0) means
that t, is enabled (not enabled) in state k, and the memory variable a, increases
at a rate r,(cl) when Z()(z) = k. The subordinated process coincides with Z(? (z)
when the initial state is state i with probability 1 (Pr{Z®(0) =i} = 1).

Let Q¥ (z) = [QEJZ) (z)] be the kernel of the semi-Markov process Z(%)(z).
The initial probability vector is @) = [0,0,..., 1; ..., 0] (a vector with all
the entries equal to 0 but entry i equal to 1). We denote by H the time duration
until the first embedded time point in the semi-Markov process starting from
state k at time 0 ( Z(Y(0) = k ). The generic element (for k, £ € 2(i))

Qi) (z) = Pr {H <z, Z0H*Y) =020 (0) = k}

is the distribution of H supposed that a transition from state k to state ¢ took
place at the embedded time point. If diagonal elements in QW (z) are nonzero
the next embedded time point can be determined by a transition from state k
to state k. The distribution of H is:

Q@) = Y QY (k=1,..,n)

£e92(i)

and, finally, the probability of jumping from state k to £ at time H = =z is:

(i
9Qu@ _ p, {Z(i)(a:+) —(|H =2z, Z20(0) = k}

dQy) (x)

Let us fix the value of the random firing time v, = y and let us introduce two
matrix functions: F()(z,y) and P (z,y) so defined:

F(w,y) = Pr{ZO (et ™) = £, 77 <2 Z90(0) = k, v, = y}
(9)
PO (z,y) = Pr{ZO@) =0, 77 > 2| Z200) =k, 7, =y}



- P,gz) (z,y) is the probability of being in state £ at time z before absorption at
the barrier y, starting in state k at = 0, and being v, equal to a constant
value y.

- ,52) (z,y) is the probability that t, fires from state ¢ (hitting the absorbing
barrier y in £) before z, starting in state k at « = 0, and being v, equal to
a constant value y.

— AW) is the branching probability matrix and represents the successor mark-
ing ¢ that is reached by firing t, in state k (the firing of ¢, can only occur in

a state k in which r,(:) =1).
From (9), it follows:

SR (@) + PP @y)] =1
¥4

Due to the particular structure of the initial probability vector Q(()i), the entries

of the i-th row of the matrices K(z) and E(z) are related to F(*)(z,y) and
P (z,y) by the following expressions:

z) = /000 Z Fi(,:) (z,y) A,(egj) dGg4(y)
y=0 %
(10)

Ey(e) = / _ P ) dGy ()

Evaluation of F,g? (x,y) and P,gz) (x,y) can be inferred from [15,4]. We include
the derivation for completeness. In order to avoid unnecessarily cumbersome
notation in the following expressions, we neglect the explicit dependence on the
particular subordinated process by eliminating the superscript. It is however
tacitly intended, that all the quantities r, Q(z), F(z,y), P(z,y), A and (2 refer
to the specific process subordinated to state i.

Derivation of F(x,y) Conditioning on H = h, let us define:

(5ng<$—£> if: hry >y

Tk

Fiy(z,y|H=h) = (11)
Z ko" Fu(x —h,y—hry) if:hrp, <y
ues? ko

where U(z) is the unit step function. In (11), two mutually exclusive events are
identified. If r; # 0 and hr, > y, a sojourn time equal to y is accumulated
before leaving state k, so that the firing time (next regeneration time point) is
= y/rr . If hr,, < y then a transition occurs to state u with probability



dQrw(h)/dQk(h) and the residual service (y — hry) should be accomplished
starting from state u at time (xz — h). Taking the LST transform of (11) with
respect to r, we get:

Ore exp(—sy/rk) if:hrp >y

Fei(s,y| H=h) = dQ
exp(—sh) Z ku w(s,y—hry) if:hrg <y

ues?
(12)
Unconditioning with respect to h, (12) becomes:
Fei(s,y) = Ore {1 - Qr (%)} exp(—sy/re) +
Z / exp(—sh) F(s,y — hry) dQru(h) (13)

u€e R

Taking the Laplace transform (LT) with respect to y (denoting by w the trans-
form variable), and evaluating the integrals we obtain, for the double LST-LT
transform Fj;*(s,w), the following expression:

i [1 — QF (s + wry)
S + wrg

EFr (s,w) = g Z Qrn(s +wry) Frp*(s,w) (14)

ue R

Derivation of P(x,y) The derivation follows the same pattern as for the
function F(z,y). Conditioning on H = h , let us define:

'5“ |:U(£L”)—U<:E—T£>:|
k
if:hry >y
Pre(z,y|H =h) = dQ
ot [U(2) = Ul =W+ ’““ Pug(x — h,y — hry)
ues?
L if:hry <y

(15)
In (15), two mutually exclusive events are identified. If r, # 0 and y < hrg, then
the process spends all its time up to absorption in the initial state k. If hr, < y
then a transition occurs to state u with probability dQg,(h)/dQr(h) and then
the process jumps to state ¢ in the remaining time (z — h) before completing
the residual work (y — hry). Taking the LST transform of (15) with respect to



z, we get:

(ke [1 — exp(—sy/ri)]

if:hrp, >y
P(s,y|H="h) = dQru(h)
Sre [1 — e 5h] 4 e—sh okl (8, y — hr)
[ ] UGZQ dQi(h) ™
\ if:hr, <y

(16)
Unconditioning (16) with respect to h, taking the LT transform with respect
to y (denoting w the transform variable), and finally evaluating the integrals
we obtain that the double LST-LT transform Pp,*(s,w) satisfies the following
equation:

1 - Qy(s+wry
w(s + wry)

)y > Qru(s + wry) Py (s,w) (17)

u€e R

~ % S
Py (s,w) = Ope

EP distributed firing time Let us define an exponential polynomial (EP) dis-
tribution Gg(y) as a distribution with rational Laplace transform whose density

can be expressed as:
n m-—1

geW) =D cpy e (18)

p=1 r=0

where n is the number of distinct eigenvalues (A,), m is the supremum of the
eigenvalue multiplicities, and c,, is a constant coefficient!. When the dominant
GEN transition is associated with an FP random firing time, an efficient com-
putational procedure can be envisaged for handling the Laplace inverse trans-
formation with respect to w and the integration with respect to Gg(y).

Theorem 1. When the firing time is an EP r.v. with density function gg(y)
(18), the entries of the kernel matrices can be evaluated as follows:

n m—1 ~
N . d"P5*(s,w)
Eie) = Y0 Y0 (1), (19)
p=1 r=0 w=\,p
n m—1 drz FiZ*(S,w) A(i.)
K6 = 30 3 (1) —=A = 0)
p=1 r=0

w=Ap

where the derivative of order r = 0 simply means the substitution of the value
w = Ay, in the r.h.s.

! The definition of EP r.v. given here requires the Laplace transform to be rational
and is more restrictive than the definition of expolynomial distributions proposed in
[9] in connection with MRSPN.



Proof. When +, is an EP r.v. Equation (10) becomes:

=0

Ej(s) = /°° Pj(s,y)dGr(y) = /°° 9r(y) Pij (s,y) dy =

p=1 r=0 p Jy=0

n m—1 r (i) ~x*
d" P (s, Ap)

(=D)"cpy J -

p=1 r=0 d/\p

from which the first part of the theorem (equation 19) follows. The proof for
K (s) follows the same pattern.

This approach is very effective, when the multiplicity of the eigenvalues is equal
to 1, since the inverse Laplace transformation and integration in (21) reduces to
a simple substitution; otherwise the symbolic derivation is required. A wellknown
and convenient subclass of EP distributions is the class of PH distributions aris-
ing from the time to absorption of CTM(’s with at least one absorbing state.
When all the GEN firing times are PH random variables and the subordinated
processes are CTM(C’s, the transient state probabilities can be alternatively eval-
uated by expanding the state space R(Mj) taking into account all the possible
stage combinations of each PH transition. A completely automated tool that
implements the state space expansion technique is in [12].

3.3 Derivation of V(x)

The evaluation of the entries of the state transition probability matrix V(z)
requires the following steps to be performed:

— Derivation of the double Laplace transform matrix functions F;7”(s,w) and
P (s,w), according to Equations (14) and (17), respectively.

— Evaluation of the LST transforms Fy;(s,y) and Pg;(s,y) by symbolic inverse
Laplace transformation with respect to the firing time variable w.

— Evaluation of the LST transforms K™~ (s) and E~(s) by unconditioning the
results of the previous step with respect to the distribution of the firing time
G, (y) (Equation 10).

— Symbolic matrix inversion and matrix multiplication by using a standard
package (e.g. MATHEMATICA) in order to obtain V™~ (s) (Equation 7).



— Time domain solution obtained by a numerical inversion of the entries of
V™~ (s), resorting to the Jagerman’s method [14] (for the sake of uniformity,
this step has been implemented in MATHEMATICA language).

When G, (y) is an EP, Theorem 1 can be applied instead of steps 2 and 3. In
the particular case in which the subordinated process Z(t) is a CTMC, all the
sojourn time distributions become exponential and Equations (14) and (17) can
be simplified accordingly [6]. Due to the required symbolic and numerical steps,
the procedure outlined in the previous points is effective only for small values of
the cardinality of the reachability set.

4 M/G/1/2/2 with Preemptive Resume Service

The M/D/1/2/2 queueing system has been considered as a benchmark example
in the recent literature on non-Markovian SPN. The example has been intro-
duced in [2], where the steady state solution was derived. The transient analysis
for the same system was carried on in [7] and the model was extended by al-
lowing GEN service times in [8]. The effect of different preemption policies has
been studied in [5] and the analysis of the M/D/1/2/2 queueing system with
prs service policy is in [6]. In the following, we apply the procedure developed in
the previous Section to the case of prs service policy and generally distributed
service time.

4.1 Model assumptions

Figure la shows a PN describing the M/G/1/2/2 system in which any new
job preempts the job under service. We assume that the service policy is of
prs type: a preempted job is resumed as soon as the server becomes idle, but
the prior work is not lost and the residual service time needs to be completed.
Place p; contains the customers thinking, while place ps contains the number
of submitted jobs (including the one under service). Starting from the initial
marking s; = (200 1) (Figure 1b), #; is the only enabled transition. Firing of #;
represents the submission of the first job and leads to state s = (1 110). In s
transitions t» and t3 are competing. ¢t represents the service of the submitted
job and its firing returns the system to the initial state s;. t3 represents the
submission of the second job and its firing disables t2 by removing one token
from p3 (the first job becomes dormant). In s3 = (0 2 0 1) one job is under
service and one job is dormant, and the only enabled activity is the service of
the active job. Firing of ¢4 leads the system again in so, where the dormant job
is recovered. Assuming the thinking time of both customers to be EXP with
parameter A, ¢; is associated an exponential firing rate equal to (2 A) and ¢35 a
firing rate equal to A. Transitions ¢, and ¢4 are assigned a GEN service time with
distribution G4(x) and an age memory policy.

Each time #, is disabled without firing (¢3 fires before ¢2) the memory variable
as is not reset. Hence, as the second job completes (¢4 fires), the system returns
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Figure 1 - Preemptive M/G/1/2/2 queue with identical customers

in s remembering the value of as, so that the time to complete the interrupted
job can be evaluated as the residual service time given as. a2 counts the total
time during which 5 is enabled before firing, and is equal to the cumulative
sojourn time in so. The assignment of the age memory policy to - realizes a prs
service mechanism.

The regeneration time points in the marking process M (x) correspond to the
epochs of entrance in markings in which the memory variables associated to all
the transitions are equal to zero. By inspecting Figure 1b), the regeneration time
points result to be the epochs of entrance in s; and of entrance in ss from s;. s3
can never be a regeneration marking, since the memory variable as is not reset
at the entrance in s3: the process can sojourn in s3 only between two successive
regeneration points (Figure 2).

The process subordinated to state s; is a single step CTMC (being EXP the
only enabled transition ¢1) and includes the only immediately reachable state
s2. The process subordinated to state s2 is dominated by the GEN age memory
transition ¢» and includes the states s3 and s» reachable from sy before firing of
t2. Since s5 is the only state in which ¢, is enabled, the corresponding reward rate
vector is r(?) = [0 1 0]. Finally, the only relevant nonzero entry of the branching
probability matrix is Ag)
leading to state s;.

= 1, since firing of t5 can only occur from state s,

A possible realization of the marking process subordinated to state sp is
shown in Figure 2: the subordinated process is semi-Markov since t4 is GEN.
The memory variable ay grows whenever the process sojourns in state s», and
the firing of t5 is determined by the first passage time of as across the absorbing
barrier of height ~a.
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Figure 2 - A possible realization of the process subordinated to state s2

4.2 Numerical Results

The closed form LST expressions of K(z) and E(z) for the prs M/G/1/2/2
queuing systems are derived in detail, considering two specific classes of GEN
firing times (namely: the uniform and the EP). Let us build up the K™~ (s) and
E~(s) matrices row by row by considering separately all the states that can be
regeneration states and can originate a subordinated process. Since s3 can never
be a regeneration state the third row of the above matrices is irrelevant.

1) - The starting regeneration state is s; - No GEN transition is enabled in s;
and the next regeneration state can only be state s2. Applying (8) we obtain:

2\

Kii(s) = 0 Kis) = —5r  Kils) =0

and (22)
s

Ei(s) = —55  Enls) =0 Efi(s) = 0

2) - The starting regeneration state is s2 - Transition ¢» is the dominant transition
and the next regeneration time point is the epoch of firing of 5. t5 is an age
memory GEN transition with Cdf G,(y), hence, the conditions of Section 3.2.
are met. The subordinated process (Figure 2) comprises states s and s3 and is
a semi-Markov process whose kernel is:

0 0 0
o A
Q~(s) =
(s)=10 o Y
0Gy(s) O



where G (s) is the LST transform of the distribution function G4 (y). The reward
vectoris r? = [0, 1, 0], and the only nonzero entry of the branching probability
matrix is Agi) = 1. Let us introduce the following notation:

Hy(s) = s+ X —AGY (s) (23)

The non-zero entries of the 2nd row of F~*(s,w) and P~*(s,w) matrices are
obtained by applying Equations (14) and (17):

~ _ 1 _ 1
Foy'(s,w) = s+w+A—AGy(s)  w+ Hy(s)

s _ s/w _ s/w
Pz’ (s,w) = s+w+A—AGy(s)  w+ Hy(s) (24)
Poe(s,0) = AM1-G7(s))/w  AN1-GJ(s)/w

s+w+)\—)\GgN(s)_ w+ Hy(s)

Uniformly distributed service time Let Gy (y) indicate a uniform distri-

bution defined between «(> 0) and B(> a). The non preemptive M/G/1/2/2

queue with uniformly distributed service time has been studied by Choi at al.

in [8]. The extension to the prs service policy is developed in the following.
The LST transform of Gy (y) is given by:

~ 1 1 —as —Bs
Gy (s) = (€7 —e™7)

_Eﬁ—a

and substituting the actual value of Gg;(s) = G (s) in (23), we get:

Al

Hy(s)=s+A—AG(s) =s+ A ——

u(s) () e

According to the steps mentioned in Section 3.3, the symbolic inversion of Equa-

tions (24) is performed with respect to the transform variable w, followed by an

integration with respect to the distribution of the service time Gy (y). The in-
verse transformation with respect to w provides:

(e—as _ e—Bs)

F5y(s,y) = e v

P3(s,y) = H(j(s) (1- e—yHU(S))
Pyi(s,y) = )‘(I;Uicg)(s))u _ e vHU ()

Applying the integration step expressed by (10), the LS T matrix functions K~ (s)
and E™~(s) become:
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Figure 3 - Transient behavior of the state probabilities with uniformly distributed
service time.

2\

0 s+ 2 0
K¥(s)=| 1 1 aHu(s) _ BHU(s) (25)
Hy(s) B — a( ) 00
0 0 0
and
s+ 2\ 0 0
E¥(s)=] o0 H;(s) (1 —K5(s)) A(II;UC?;J)(S)) (1—K5:(s)) (26)
0 0 0

The LST of the transition probability matrix V™ (s) is obtained by solving (7).
Finally, the time domain probabilities are calculated by numerically inverting
(7) by resorting to the Jagerman method [14]. The plot of the state probabilities
versus time for states s; and ss is depicted in Figure 3, for a submitting rate
A = 2, and for two different set of values (¢ =0, 8 = 1) and (e« = 0.5, 8 = 1).
Figure 3 emphasizes the effect of the coefficient of variation of the service time
on the state probabilities; a reduced coefficient of variation results in a more
pronounced alternating behavior of the state probabilities.
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Figure 4 - Transient behavior of the state probabilities with Erl_2 distributed ser-
vice time.

EP distributed service time Let us consider the same preemptive M/G/1/2/2
in which the service time has an Erlang distribution of order 2 (Eri_2). The LST
G%(s) of the Frl_2 with parameter 7 is:

Gl = (- ) (27)

S+ T

By substituting (27) into (23), we get:

2
Hg(s) =s+ A= AGx(s) :8+/\_/\<5J7;7->
The 1st and the 3rd row of the K~(s) and E~(s) matrices do not depend on the
particular GEN distribution and remain unchanged. The nonzero entries of the
second row can be obtained, as before, by a symbolic inverse transformation with
respect to w followed by an the integration with respect to G4 (y). Alternatively,
since G,4(y) = G (y) is EP, we can apply Theorem 1 to Equations (24).

Kii() = (e tE (28)
Egz(s)=(—1)72%f,w ) :% )
Bg(s) = (- B 0] :Ml—(gff);[(j&;fﬂs» (30)



In this example, only EXP and PH firing times are considered. Hence, the tran-
sient probabilities can also be obtained by the well known method of the state
space expansion [12]. However, if ¢, has a PH firing time but ¢4 is non- PH, then
only the above equations can be applied.

Similarly to the former case, the LST of the state probabilities are obtained
by solving (7). The time domain probabilities are calculated by numerically
inverting (7) by resorting to the Jagerman method [14]. The plot of the state
probabilities versus time for states s; and s3 (with 7 = 2, corresponding to a
mean service time 2/7 = 1, and A = 0.5.) are depicted in Figure 4 (dotted line).
For the sake of comparison the results obtained by applying the method of the
expanded CTMC [12] are reported in dashed line.

5 Conclusion

We have defined a new class of MRSPN called AgeMRSPN, which allow the
inclusion of GEN transitions with associated age memory policy. This extension
was motivated by the need of modeling systems in which the execution of tasks
may follow a preemptive resume policy.

We have shown that the marking process subordinated to two consecutive
regeneration time points can be, in general, a reward semi-Markov process. A
binary reward variable is introduced to distinguish the states in which the ex-
ecution of the service is interrupted and the states in which the execution is
resumed with no loss of prior work. The transient analysis of a reward semi-
Markov process has been derived in detail, in order to show how to obtain a
double LT-LST closed form expression for the transient state probabilities of
the general process.

An M/G/1/2/2 queuing system, considered as a case study example in pre-
vious literature [2,7, 8,5, 6], has been examined for the first time by introducing
service policies of prs type and GEN firing distributions.
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