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Abstract 
 

The representation of general distributions or 
measured data by phase-type distributions is an 
important and non-trivial task in analytical modeling. 
Although a large number of different methods for 
fitting parameters of phase-type distributions to data 
traces exist, many approaches lack efficiency and 
numerical stability. In this paper, a novel approach is 
presented that fits a restricted class of phase-type 
distributions, namely mixtures of Erlang distributions, 
to trace data. For the parameter fitting an algorithm of 
the expectation maximization type is developed. The 
paper shows that these choices result in a very efficient 
and numerically stable approach which yields phase-
type approximations for a wide range of data traces 
that are as good or better than approximations 
computed with other less efficient and less stable 
fitting methods. To illustrate the effectiveness of the 
proposed fitting algorithm, we present comparative 
results for our approach and two other methods using 
six benchmark traces and two real traffic traces. 
 
1. Introduction 
 

The central idea of traffic modeling lies in 
constructing analytically tractable models that capture 
the most important statistical properties of an 
underlying measured data trace. For analytical 
performance and reliability modeling measured data 
has to be represented or approximated by phase-type 
(PH) distributions in several cases. The procedure of 
computing or estimating the parameters of a phase-
type distribution according to some sample data or 
with respect to some other known distribution is 
commonly denoted as phase-type fitting. 

Among the large number of available fitting 
methods, expectation-maximization (EM) algorithms 
[15] are general methods of finding the maximum-
likelihood estimate of the parameters of an underlying 
distribution from a given data trace when the data is 
incomplete or has missing values. EM algorithms for 
phase-type fitting are available for some time [1], [4] 
but the application of the basic approach to general PH 
distributions turns out to be extremely costly and the 
fitted distribution depends heavily on the initial values 
[16]. Thus, it seems that fitting general PH 
distributions is not appropriate if the number of phases 
increases above 4, which is often the case for small 
coefficients of variation or traces that cannot be 
adequately represented by a PH distribution of low 
order. To overcome these problems the class of PH 
distributions used for fitting has to be restricted which 
is in principle possible in the basic EM algorithm by 
initializing only some elements in the matrix with non-
zero values, but it seems to be more appropriate to 
develop an EM algorithm tailored to specific types of 
PH distributions. Based on earlier work from [9], El 
Abdouni Khayari et. al. developed an EM algorithm in 
[7] to fit the parameters of an hyperexponential 
distribution to values of a data trace. The resulting 
approach is extremely efficient and yields good fitting 
results for heavy tailed distributions with 
monotonically decreasing density functions. However, 
the use of hyperexponential distributions restricts the 
class of distributions, which can be represented. In 
fact, hyperexponential distributions cannot adequately 
capture general distributions with increasing and 
decreasing densities or with a coefficient of variation 
less than one. 

Since the fitting of parameters of a PH distribution 
is in general a non-linear optimization problem, apart 
from the EM algorithm also other optimization 



algorithms can be applied. However, the optimization 
problem for general PH distributions is too complex to 
yield satisfactory results, if the number of phases is 
larger than two or three. As shown in several papers 
[2], [3], [11], [12], the fitting problem becomes much 
easier if acyclic instead of general phase-type 
distributions are used, because for this type of 
distributions a canonical representation exists which 
reduces the number of free parameters to 2N compared 
to 2N2 for the general case, where N is then number of 
phases [5]. On the other hand, the restriction to acyclic 
PH distributions seems not to limit the flexibility of the 
approach. However, even in the acyclic case, the 
resulting optimization is still complex and contains 
local optima and saddle points. To overcome the 
problem of convergence to a local optimum, the fitting 
algorithm is usually started with several initial settings 
and the best fitting is chosen. 

Apart from acyclic phase-type distributions several 
other restricted classes have been used. For our 
approach the work of Johnson [14] and Schmickler 
[19] are most important, since both use mixtures of 
Erlang distributions, which are also used in our work 
and will be denoted as hyper-Erlang distributions 
(HErD) according to [8]. However, in contrast to our 
approach, the mentioned techniques fit some moments 
and specific properties of the distribution or density 
function using nonlinear optimization. 

In this paper, an EM algorithm for the fitting of 
hyper-Erlang distributions is presented. The approach, 
which will be denoted as G-FIT, extends the fitting 
procedure of [7] from hyperexponential to hyper-
Erlang distributions, which extend the class of 
representable distributions significantly since mixtures 
of Erlang distributions of unlimited order are 
theoretically as powerful as acyclic or general PH 
distributions (see Theorem 1). However, the class of 
distributions still allows the realization of a very 
efficient fitting algorithm. In particular the fitting time 
is independent of the number of states, it depends only 
on the number of Erlang branches, which might be 
significantly lower than the number of states. In fact, 
for M Erlang branches and a trace with K samples the 
time complexity of our algorithm is in O(M·K). Thus, 
distributions with a large number of states can be fitted 
efficiently. Furthermore, the fitting algorithm is rather 
stable due to the specific structure of the density 
function, which yields a fast and reliable convergence 
of the EM method. 

Apart from the efficiency of the approach, the 
quality of the approximation for a given number of 
phases is important. We tested the approach on a set of 
benchmark traces [3] and compared it with general 
PH-fitting [1] and fitting of acyclic PH distributions 

[12]. As expected G-FIT is significantly faster than the 
other two approaches. Additionally, we were able to 
reach with an identical number of states a similar or 
better fitting quality than with the other two 
approaches on almost all examples. This result was not 
expected, because hyper-Erlang distributions of a 
given order are in general less flexible than acyclic or 
general PH distributions of the same order. The 
practical applicability of G-FIT is demonstrated by 
fitting a call center trace [17] and a large TCP traffic 
trace [13] with more than 106 samples. The presented 
EM algorithm is implemented in the software package 
G-FIT, which is available for download on the Web 
[10]. 

The paper is organized as follows. Section 2 
introduces the class of hyper-Erlang distributions. 
Section 3 develops a specialized EM algorithm for 
fitting the continuous parameters of a hyper-Erlang 
distribution and Section 4 presents an approach for 
finding optimal settings of the discrete parameters of 
the distribution. Experimental results obtained from 
fitting six synthetically generated benchmark traces 
and real traffic traces are presented in Section 5. 
Finally, concluding remarks are given. 
 
2. Hyper-Erlang Distributions 
 

We consider a mixture of M mutually independent 
Erlang distributions weighted with the (initial) 
probabilities α1, …, αM with 0 < αm ≤ 1 and 
α1+α2+…+αM=1. The number of phases of the m-th 
Erlang distribution is denoted with rm. We assume 
r1 ≤ … ≤ rM without loss of generality. Furthermore, let 
λm be the scale parameter of the m-th Erlang 
distribution. Note, that the individual Erlang 
distributions need not have the same mean. According 
to [8], we call this mixture of Erlang distributions a 
hyper-Erlang distribution (HErD). The HErD belongs 
to the class of acyclic phase-type distributions [2]. 
Besides the Erlang distribution, for M = 1, the 
hyperexponential distribution is a special case of a 
HErD with rm = 1 for all m=1,…,M. 

Let X be a hyper-Erlang random variable. The 
probability density function (pdf) for X is given by 

m
m

r 1M
xm

X m m
m 1 m

( x)
f (x) e

(r 1)!

−
−λ

=

λ
= α λ

−∑ , (1) 

and the i-th moment E[Xi] is given by 
M

i m
m i

m 1 m m

(r i 1)! 1E[X ]
(r 1)!=

+ −
= α

− λ∑ . (2) 

A common measure to characterize the flexibility in 
approximating a given general distribution function is 



the range of variability of the squared coefficient of 
variation, which is defined by 2 2 2

Xc E[X ] E[X] 1= − . 
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Fig. 1. State transition graph of a HErD 

Fig. 1 shows the state transition graph of a HErD, 
which corresponds to an absorbing continuous-time 
Markov chain where a state change occurs after an 
exponentially distributed delay with mean 1/λm, 
m=1,…,M, and the time until absorption has a HErD. 
The absorbing state is shown as a dashed circle in Fig. 
1. The number of states of a HErD is the overall 
number of exponential distributions involved in its 
construction, which is given by M

mm 1N r
=

=∑ . 

Let f(x; M, r, α, λ) denote the density function of 
the HErD with M Erlang branches, where 
r = (r1, r2, …,rM) ∈ NM is a vector containing the 
number of phases of each Erlang branch, 
α = (α1, α2, …,αM) ∈ RM is a vector with the initial 
probabilities for each Erlang branch and 
λ = (λ1, λ2, …,λM) ∈ RM is a vector with the scaling 
parameters respectively. Furthermore, let HN be a set 
of all HErD having N states, i.e., 

( ){ N mf x;M, , , 1 M N,  0,= ≤ ≤ λ >r α λH  

}M M
m m m mm 1 m 1

0,  r 1,  1,  r N
= =

α ≥ ≥ α = =∑ ∑ . (3) 

In fact, the set HN contains all HErD distributions 
having at most N states, since HErD with less than N 
states are obtained by simply setting some αm values to 
zero. The versatility of the HErD in approximating 
general distributions is shown by the following 
theorem. 
Theorem 1: 
(i) Let F denote the set of all probability density 

functions of nonnegative random variables, then 
H∞ is a dense set in F, i.e., for every density 
function f ∈ F it is possible to choose a sequence 
of density functions fn(x) ∈ Hn, such that limn→∞ 
fn(x) = f(x) for all x at which f(x) is continuous. 

(ii) Let f be a hyper-Erlang distribution out of the set 
HN, with N ≥ 2. The parameters of f can be tuned 
such that the squared coefficient of variation of f 
equals 1/N or takes on an arbitrary value greater or 
equal to 1/(N-1) with f still being an element of 
HN. 

Proof: The proof of (i) can be found in [8]. In 
particular, the construction of a general probability 
density function from an infinite mixture of Erlang 
densities is based on appropriately choosing the 
weights αm. For the proof of (ii) we refer the reader to 
the extended version of this paper, which is available 
for download on the Web [10]. ■ 

Note that Theorem 1 states that any probability 
density function of a nonnegative random variable can 
be approximated by a hyper-Erlang distribution. Next 
we intend to shed some light onto the relationship 
between sub-classes of PH distributions. Let A and B 
sets of specific PH distributions. We consider three 
types of relationships between sets A and B. 
(i) A < B means that all finite-state distributions of 

A can be represented by an appropriately selected 
finite-state distribution of B and B contains at 
least one distribution that cannot be represented 
by a distribution of A even with an infinite 
number of states. 

(ii) A ≤∞ B means that all finite-state distributions of 
A can be represented by an appropriately selected 
finite-state distribution of B and B contains at 
least one distribution that can only be represented 
by a distribution of A with an infinite number of 
states. 

(iii) A ≠ B means that none of the relationships (i) 
and (ii) hold. 

Note, that relationship (i) means that a distribution 
of B cannot be approximated arbitrarily close by a 
distribution of A, whereas in relationship (ii) this 
approximation is possible. According to this definition, 
we consider the relationship between some well-
known sub-classes of phase-type distributions and 
their versatility in representing general distributions. In 
particular we consider exponential distributions (ED), 
hyperexponential distributions (HED), Erlang 
distributions (ErD), hyper-Erlang distributions 
(HErD), hypoexponential distributions (HoED), 
acyclic phase-type distributions (APHD), and phase-
type distributions (PHD). A detailed definition of these 
distributions as well as the computation of their 
squared coefficient of variation can be found in 
standard textbooks (see e.g. [20]). 
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Fig. 2. Relationship of sub-classes of PH 



Fig. 2 shows the relationship between the 
distributions introduced above according to the 
relationships (i) – (iii). The classes of distributions that 
are dense in the set of general distributions, i.e., HErD, 
APHD, and PHD, are combined in the gray shaded 
area. The relationships can be explained by comparing 
the possible range of the squared coefficient of 
variation that a distribution can take on. We conclude 
from this comparison that HErD is the most versatile 
sub-class of APHD, since HErD also provides full 
flexibility but can be more efficiently tuned to match 
general distributions than APHD as shown in the next 
sections. 
 
3. Fitting Hyper-Erlang Distributions 
3.1 The EM Algorithm for Mixture-Densities 
 

The mixture-density parameter estimation problem 
is probably one of the most widely used applications of 
the EM algorithm [6]. In this case, we assume the 
following probabilistic model 

( ) ( )
M

m m m
m 1

p x p x
=

Θ = α θ∑ , (4) 

where the parameters are Θ = (α1,…,αM, θ1,…,θM) 
such that α1+α2+…+αM=1 and each pm is a density 
function parameterized by θm. In other words, we 
assume that M component densities are mixed together 
with M mixing coefficients αm. Note that in general θm 
can be a vector of parameters for each density function 
pm, but it is a single value in our HErD fitting method. 

Let T = {x1,…,xK} be a data set of measurements 
supposedly drawn from the distribution (4). That is, we 
assume that these data values are drawn from 
independent and identically distributed random 
variables with probability density function (4). The 
log-likelihood expression for this mixture density for 
the trace T is given by 

( ) ( )
K

k
k 1

log L log p x
=

Θ = Θ∏T  

( )( )K M
m m k mk 1 m 1log p x

= =
= α θ∑ ∑ , (5) 

which is difficult to optimize because it contains the 
logarithm of a sum. If we consider T as incomplete 
data and assume the existence of unobserved data 
items yk ∈ {1,…,M}, k=1,…,K, whose values inform 
us which component density “generates” each data 
item of T, the likelihood expression can be 
significantly simplified. That is, we assume yk = m if 
the k-th sample xk was generated by the m-th mixture 
component pm. If we know the values y = (y1,…,yK) 
the log-likelihood expression of Eq. (5) becomes 

( ) ( )( )k k k

K
y y k yk 1log L , log p x

=
Θ = α θ∑yT . (6) 

The problem in dealing with Eq. (6) is, that we do 
not know the values of yk. If we assume yk as random 
values drawn from a random variable Y, we can derive 
an expression for the probability mass function (pmf), 
denoted by q(y), of the unobserved data. First, we 
guess at parameters for the mixture density, i.e., we 
guess that 1 M 1 M

ˆ ˆˆ ˆ ˆ( , , , , , )Θ = α α θ θ… …  are the 

appropriate parameters. Given Θ̂ , we can easily 
compute the mixture components m k m

ˆp (x | )θ  for each 
k and m. Keeping in mind that αm is the probability of 
choosing the m-th mixture component we can compute 
the pmf of the unobserved data given the observed data 
T and the estimates Θ̂  using Bayes’s rule 

( ) ( ) ( ) ( )k k k k k k
ˆ ˆ ˆ ˆq y x , q y p x y , p xΘ = Θ ⋅ Θ Θ  

( ) ( )k k k

M
y y k y m m k mm 1

ˆ ˆˆ ˆp x p x== α ⋅ θ α ⋅ θ∑ , (7) 

and 

( ) ( )
K

k k
k 1

ˆ ˆq , q y x ,
=

Θ = Θ∏y T , (8) 

where y ∈ {1,…,M}K is an instance of the unobserved 
data independently drawn from Y. The expected value 
of the complete-data log-likelihood with respect to the 
unknown random variable Y given the observed data T 
and the current parameter estimates Θ̂ , is given by 

( ) ( )ˆ ˆQ , E log L , Y , Θ Θ = Θ Θ T T  

( ) ( )
K{1, ,M}

ˆlog L , q ,
∈

= Θ ⋅ Θ∑
y

y yT T
…

. (9) 

Inserting Eqs. (6) and (8) into Eq. (9) we get 

( ) ( )( )k k k
K

K

y y k y
k 1{1, ,M}

ˆQ , log p x
=∈

Θ Θ = α θ∑ ∑
y …

 

( )
K

k k
k 1

ˆq y x ,
=

⋅ Θ∏ , (10) 

and rearranging the sums and the product results in 

( ) ( ) ( )
M K

m k
m 1 k 1

ˆ ˆQ , log q m x ,
= =

Θ Θ = α ⋅ Θ∑∑  

( )( ) ( )
M K

m k m k
m 1 k 1

ˆlog p x q m x ,
= =

+ θ ⋅ Θ∑∑ . (11) 

Note that the computation of the expectation in Eq. 
(9) constitutes the E-step of the EM algorithm. In 
general, the main difficulty in computing this 
expectation is to obtain an expression for the marginal 
distribution of the unobserved data. However, for the 
mixture density problem discussed in this section the 
marginal distribution can be simply computed by Eqs. 
(7) and (8). The M-step of the EM algorithm is to 



maximize the expectation computed in the E-step with 
respect to Θ. To maximize Eq. (11), we can maximize 
the term containing αm (first sum in Eq. (11)) and the 
term containing θm (second sum in Eq. (11)) 
independently since they are not related. According to 
[15], a Lagrange multiplier can be applied to find the 
expression for αm, resulting in 

( )K1
m kK k 1

ˆq m x ,
=

α = Θ∑ . (12) 

The computation of θm depends on the form of the 
mixture density component pm and is addressed in the 
next section for a mixture of Erlang distributions. 
 
3.2 Application to Hyper-Erlang Distributions 
 

In this section we develop the formulas for 
application of the EM algorithm to the mixture density 
parameter estimation problem when a mixture 
component is an Erlang distribution, i.e., 

( )
m

m k

r 1
xm k

m k m m
m

( x )
p x e

(r 1)!

−
−λλ

λ = λ
−

, (13) 

and the mixture distribution is described by the 
parameter vector Θ = (α1,…,αM,λ1,…,λM). The 
parameters αm, m=1,…,M, that maximize Eq. (11) are 
determined according to Eq. (12). In order to 
determine the parameters λm, m=1,…,M, that 
maximize Eq. (11) we set the derivatives with respect 
to λm of Eq. (11) equal to zero 

( ) ( )( )
K

k m k m
k 1 m

ˆq m x , log p x 0
=

∂Θ λ =
∂λ∑ . (14) 

Putting Eq. (13) into Eq. (14) and applying logarithm-
rules we get 

( ) ( )
K K

m m k k k
k 1 k 1

ˆ ˆr q m x , q m x , x
= =

λ = ⋅ Θ Θ ⋅∑ ∑ . (15) 

Note that Eqs. (12) and (15) together with Eq. (7) 
are simple closed-form expressions for the parameters 
of a HErD according to a given number of Erlang 
branches M and a given number of phases rm per 
branch. 

A pseudo-code representation of the EM algorithm 
tailored to the parameter estimation of HErD is 
presented in Fig. 3. Note that each iteration (see steps 
(2) to (7) in Fig. 3) is guaranteed to increase the log-
likelihood value and the algorithm is guaranteed to 
converge to a local maximum of the likelihood 
function [15]. To check whether convergence is 
reached, we compute in each iteration either 

(i) the maximal difference of the values of the 
parameter vectors of successive iterations, 

(ii) the relative difference of the log-likelihood values 
of successive iterations, 

and stop the algorithm when the computed difference 
is below a predefined ε, e.g. ε = 10-6. The 
computational complexity of the E-step is O(M·K) 
when computing the nominator and denominator of the 
unobserved data pmf separately. The complexity of the 
M-step is also O(M·K). Thus, the overall 
computational complexity for one iteration of the EM 
algorithm is O(M·K). Note that the log-likelihood (see 
Eq. (5)) can be computed without additional effort 
during the E-step of the fitting algorithm. 

A straightforward computation of the Erlang 
densities (13) can exhibit numerical difficulties, since 
for a high number of Erlang phases (e.g. r > 50) large 
factorials and large power values must be computed. 
To avoid these difficulties, we suggest an evaluation of 
Eq. (13) in logarithmic form, i.e., 

( ) m m k m m k(r 1) ln( x ) ln(r 1)! x
m k m mp x e − λ − − −λλ = λ , (16) 

with pre-computed logarithms of the factorial values, 
r
i 1ln r! ln i
=

=∑ . (17) 
On a standard PC with 3 GHz Pentium CPU 

running the operating system Linux, the EM algorithm 
requires about 2.4 seconds for 100 iterations when 
fitting a HErD with M = 5 Erlang branches to a trace 
with K = 104 samples. The overall number of iterations 
required to achieve convergence depends on several 
factors, i.e., the initial setting of αm and λm, the number 
of Erlang branches M, and the trace data. However, for 
small values of M (i.e., M ≤ 10) the algorithm 
converges faster than for larger values of M, since 
fewer parameters have to be optimized. With M ≤ 10 
the number of iterations is almost always less then 100 
to reach convergence with ε = 10-6. 

(1) Choose initial estimates ˆ ˆˆ ˆ ˆ( , , , , , )1 M 1 MΘ = α α λ λ… …  
(2) REPEAT 
(3) Compute ˆp (x | )m k mλ  for m=1,…,M and k=1,…,K 

according to Eq. (13) 
(4) E-step:  Compute the pmf of the unobserved data for 

m=1,…,M and k=1,…,K 

 ( ) ( ) ( )Mˆ ˆˆ ˆ ˆq m x , p x p xk m m k m i i k ii 1
Θ = α ⋅ λ α ⋅ λ

=∑  

(5) M-step:  Compute αm and λm that maximize Eq. (11) for 
m=1,…,M 

 ( )K1 ˆq m x ,m kK k 1
α = Θ

=∑  and 

 ( ) ( )K Kˆ ˆr q m x , q m x , xm m k k kk 1 k 1
λ = ⋅ Θ Θ ⋅

= =∑ ∑
(6) set ˆ :Θ = Θ  
(7) UNTIL convergence reached according to criterion (i) or (ii) 
(8) RETURN optimal parameter vector Θ = (α1,…,αM,λ1,…,λM) 

Fig. 3. Pseudo-code of the EM algorithm 
tailored to hyper-Erlang distributions 



4. Finding an Optimal Setting of the 
Discrete Parameters of a HErD 
 

With the EM algorithm presented in Section 3.2 we 
can optimize the continuous parameter vectors α and λ 
of a HErD for a predefined setting of the number of 
Erlang branches M and number of phases of each 
Erlang branch rm, m=1,…,M. However, in order to find 
the “best” HErD with N states we have to consider all 
HErD out of the set HN as candidates. Due to the 
efficiency of the algorithm it is feasible to enumerate 
all possible settings of M and r1,…,rM and to fit for 
each such setting a HErD, if N is small (i.e, N ≤ 10) 
and K is not too large (i.e., K ≤ 106). Comparing the 
fitted HErD according to their log-likelihood values 
and choosing the one with the maximal log-likelihood 
value gives the best HErD in this case. Recall, that the 
log-likelihood values can be computed without 
additional computational effort according to Eq. (5). 

Formally, we denote the discrete parameter setting 
of a HErD f(x; M, r, α, λ) by the tuple (M, r). The 
following lemma provides a recursive formula to 
compute the overall number of settings of a HErD with 
N states, denoted by SN. 
Lemma 2: The overall number of different N-state 
settings, SN, is given by ϕN(N,0), where 

n m
m m 1i j(n, j) (n i, i)  

−=
ϕ = ϕ −∑  and 

1(n, j) 1ϕ = , for all n ≥ j (18) 
A proof of Lemma 2 is provided in [10]. In fact, for 

N = 5, 6, 7, 8, 9, 10 only SN = 7, 11, 15, 22, 30, 42 
settings exist. Unfortunately, for larger N the number 
of settings grows exponentially, e.g., for N = 20 we 
have 627 different settings. Thus, for large values of 
N, i.e., N > 10, it is not feasible to apply the EM 
algorithm for every possible setting. The same holds 
when fitting even one setting takes some time, which 
may be the case for very large traces (e.g. K > 107 
sample). In these cases we recommend using one of 
the following strategies: 
(i) Progressive pre-selection: In a first round 

enumerate all possible settings and apply the EM 
algorithm until convergence with ε = 10-3 is 
reached. This requires only a few iterations for 
each setting. Select the settings with the best log-
likelihood values and put them into a priority 
queue. We commonly consider at least 5 and at 
most 50 settings in this round. Then start a 
second round with continuing iteration of the 
selected HErD until convergence with ε = 10-4 is 
reached. Finally, start a third round with the 50% 
best of the priority queue until ε = 10-6. 

Experimental results when applying this strategy 
are presented in Section 5. 

(ii) Special structures: If the empirical distribution 
of the trace has a small squared coefficient of 
variation (i.e., c2 < 1) we recommend to fit the 
HErD only with one, two, or three Erlang 
branches, i.e., M = 1, M = 2, or M = 3. Note that 
the number of N-state settings with M ≤ Mmax 
Erlang branches is 

maxM (N,0)ϕ , e.g., for N = 50 

and Mmax = 2 only 26 settings must be fitted. For 
monotonically decreasing empirical distributions 
with large squared coefficient of variation (i.e., 
c2 > 1) we recommend to fit the HErD only with 
N, N-1, or N-2 Erlang branches. Note that M = N 
corresponds to a hyperexponential distribution, 
which was shown to fit heavy-tailed distributions 
with large squared coefficient of variation quite 
well in [9]. 

(iii) Body/tail fitting: Fit the body of a distribution 
with a (say) 10-state HErD with M = 1, 2, and 3 
Erlang branches, which requires only 1+5+8 = 14 
runs of the EM algorithm. Fit the tail of 
distribution with an (say) 8-state hyper-
exponential distribution, i.e., M = 8 and 
r1 = … = rM = 1. Apply this combined body/tail 
fitting on an 18-state HErD. Thus, an overall 
number of 14 settings must be evaluated. A good 
application example for this approach is the 
Pareto-II distribution discussed in Section 5. 

The first approach works automatically, but 
requires additional effort, which is not required if the 
other two variants are used. In practice especially 
variant (ii) works well, but requires some pre-analysis 
of the data and an experienced user to decide about a 
good range for the discrete parameters. The separate 
fitting of body and tail, as suggested in (iii), is often 
used for heavy tailed distributions (e.g., [18]), but 
requires an appropriate definition of body and tail, and 
the number of states used for their approximation. 
Additionally, the low complexity of the presented 
HErD fitting method allows us to optimize the body 
and the tail fitting parameters together, which is 
preformed separately in [12]. The results from [7] 
indicate that a common fitting algorithm might yield 
excellent results for fitting heavy tailed distributions. 
 
5. Experimental Results 
5.1 Synthetically Generated Traces 
 

In the experiments a hyper-Erlang distribution 
(HErD) and an acyclic phase-type distribution (APHD) 
are fitted for given traces with 104 samples drawn from 



known distributions. In particular we consider two 
Weibull distributions with scale parameter η = 1.0 and 
shape parameter β = 0.5 and β = 5.0, respectively, and 
a uniform distribution with left and right boundary 
equal to 0.5 and 1.5. In addition we consider a Pareto-
like distribution with heavy tail index α = 1.5 and 
b = 2.0. This distribution was previously used in [11] 
as an example of a heavy tailed distribution, which is 
not monotonically decreasing. According to [11] it is 
denoted a Pareto-II distribution. Furthermore, we 
consider the shifted exponential distribution as well as 
the matrix exponential distribution, which are part of a 
set of benchmark distributions for PH fitting 
algorithms defined in [3]. The non-standard density 
functions are summarized in Tab. 1. 

Tab. 1. Densities of considered distributions 

Pareto-II(α,b): 
b xb e 1f (x; , b) xparetoII ( )

α − −α−α =
Γ α

 

Shifted exp. (SE): 
x1 e ,0 x 12f (x)SE x (x 1)1 1e e , x 12 2

− ≤ <=  − − − + ≥


 

Matrix exp. (ME): ( )2
x1f (x) 1 1 cos(2 x) eME (2 )

  −= + ⋅ − π ⋅  π 
 

With respect to the set of distributions we compared 
the fitting quality of the HErD found by G-FIT with 
the quality of the APHD found by the tool PH-fit [12]. 
The PH-fit tool approximates the optimal parameter set 
of an APHD by minimizing a predefined distance 
measure with a non-linear optimization algorithm. This 
algorithm uses an iterative linearization method based 
on numerical computation of partial derivatives and the 
simplex method to determine the direction in which the 
distance measure decreases most. In the presented 
comparison the fitting parameters of the PH-fit tool 
were the following: only body fitting is applied (i.e., 
no separate tail fitting) and the distance of the original 
and the approximate distributions is calculated up to 
the largest sample value. Furthermore, we run PH-fit 
with 3 rounds (i.e., starting from 3 different initial 
guesses) and at most 200 modifications in each round. 

Fig. 4 shows the empirical density functions for the 
six traces as well as the density functions for the fitted 
HErD and APHD with N = 5 states and N = 10 states, 
respectively. For some of the distributions also results 
when fitting a HErD with 50 states are plotted. 
Densities of traces are approximated by histograms 
with intervals of width 0.05. The results for G-FIT are 
obtained by fitting a HErD with the algorithm of Fig. 3 
for all possible discrete parameter settings. Recall, that 
for N = 5 only 7 settings and for N = 10 only 42 
settings are considered. The EM algorithm stops when 

convergence is reached according to the log-likelihood 
criterion with ε = 10-6 (see criterion (ii) in Section 3.2). 
From the curves of Fig. 4 we conclude that the fitting 
quality of HErD is almost always as good as the 
quality for APHD. Moreover, in some cases the results 
for HErD are better than for APHD, e.g. when fitting 
the uniform distribution with 5 states. The reason why 
PH-fit did not find the best solution in these cases is 
that the optimization process got stuck in a local 
optimum. 

Tab. 2 presents several quality indices for the 
considered distributions. In particular, the first three 
moments and the squared coefficient of variation for 
each of the six traces as well as the fitted HErD and 
APHD are presented. Relative errors of the fitted 
distributions are presented in brackets behind the 
absolute values. Furthermore, Tab. 2 contains for each 
trace the log-likelihood value and the CPU time 
required by G-FIT and PH-FIT. In the last row of each 
distribution the optimal Erlang phase lengths rm found 
by G-FIT are shown. Recall, that for N = 5 and N = 10 
the G-FIT results are found from the best fit when 
fitting a HErD for all possible discrete parameter 
settings. Applying the progressive pre-selection (see 
strategy (i) in Section 4) yields almost always the same 
results but requires less CPU time (see numbers in 
brackets in the rows with CPU time in Tab. 2). In fact, 
only for the shifted exponential trace (log-likelihood 
–13280.73) the results are not as good as in the general 
case (indicated with an asterisk behind the brackets in 
Tab. 2). The reason for this is that with progressive 
pre-selection some settings may be canceled out of the 
priority queue in the first or second round which would 
get better when running the EM algorithm until 
convergence with ε = 10-6. 

Results presented in Tab. 2 when applying G-FIT 
with 20 states are computed with progressive pre-
selection. Note, that not all of the ϕ20(20,0) = 627 
settings are evaluated, but only a part of them which 
seems to be reasonable (see strategy (ii) in Section 4). 
In fact, for the Weibull(1.0,0.5) trace we considered all 
settings with M ≥ 12 Erlang branches (67 settings), for 
the Weibull(1.0,5.0) trace and the matrix exponential 
trace we considered all settings with M ≤ 5 Erlang 
branches (192 settings), and for the Pareto-II trace and 
the shifted exponential trace we fitted all settings with 
M ≤ 6 Erlang branches (282 settings). Comparing the 
fitted HErD and APHD, it can be observed that for all 
distributions the fitting quality of the 20-state HErD is 
much better than that of the 10-state APHD. Moreover, 
the fitting process for the 20-state HErD is less time 
consuming as for the 10-state APHD, although the 
number of states is doubled. 



Tab. 2. Quality indices of fitted HErD and APHD for synthetically generated traces 

1. Moment
2. Moment
3. Moment
Squared CoV
Log-likelihood
CPU time [sec]
Phase lengths
1. Moment
2. Moment
3. Moment
Squared CoV
Log-likelihood
CPU time [sec]
Phase lengths
1. Moment
2. Moment
3. Moment
Squared CoV
Log-likelihood
CPU time [sec]
Phase lengths

Quality       
indices

 

1.99 1.99 (0.0%) 1.98 (0.5%) 1.99 (0.0%) 1.91 (4.3%) 1.99 (0.0%) 1.99 (0.0%)
25.61 22.47 (12.3%) 20.98 (18.1%) 23.78 (7.1%) 17.77 (30.6%) 24.26 (5.3%) 25.76 (0.6%)
995.13 512.55 (48.5%) 422.44 (57.5%) 638.04 (35.9%) 300.78 (69.8%) 701.43 (29.5%) 1156.57 (16.2%)

5.45 4.66 (14.5%) 4.34 (20.5%) 4.99 (8.4%) 3.89 (28.6%) 5.11 (6.2%) 5.49 (0.7%)

1.00 1.00 (0.0%) 1.00 (0.1%) 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%)
1.08 1.19 (10.6%) 1.24 (15.1%) 1.09 (1.4%) 1.09 (1.4%) 1.08 (0.6%) 1.08 (0.7%)
1.24 1.66 (33.9%) 1.85 (49.2%) 1.30 (5.2%) 1.31 (5.3%) 1.27 (2.7%) 1.27 (2.2%)
0.08 0.20 (135.7%) 0.25 (194.6%) 0.10 (17.9%) 0.10 (18.3%) 0.09 (7.1%) 0.09 (8.6%)

1.51 1.51 (0.0%) 1.51 (0.1%) 1.51 (0.0%) 1.51 (0.0%) 1.51 (0.0%) 1.51 (0.0%)
3.58 3.61 (1.0%) 3.59 (0.3%) 3.61 (0.8%) 3.61 (1.0%) 3.59 (0.3%) 3.53 (1.5%)

11.55 11.96 (3.5%) 11.69 (1.2%) 11.79 (2.1%) 12.47 (7.9%) 11.59 (0.3%) 11.01 (4.7%)
0.56 0.58 (2.7%) 0.57 (1.1%) 0.58 (2.1%) 0.58 (2.7%) 0.57 (0.8%) 0.54 (4.0%)
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0.92 0.92 (0.0%) 0.92 (0.1%) 0.92 (0.0%) 0.92 (0.0%) 0.92 (0.0%) 0.92 (0.0%)
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0.90 1.31 (45.6%) 1.31 (45.3%) 1.03 (14.4%) 1.03 (14.4%) 0.93 (3.6%) 0.91 (0.4%)
0.05 0.20 (283.9%) 0.20 (284.1%) 0.10 (91.9%) 0.10 (92.3%) 0.06 (21.2%) 0.05 (2.1%)

4.34 4.34 (0.0%) 3.89 (10.3%) 4.34 (0.0%) 3.78 (12.9%) 4.34 (0.0%) 4.34 (0.0%)
1057.62 323.6 (69.4%) 117.6 (88.9%) 340.7 (67.8%) 105.9 (90.0%) 911.7 (13.8%) 978.0 (7.5%)
1768568 100147 (94.3%) 12348 (99.3%) 114715 (93.5%) 12579 (99.3%) 1389436 (21.4%) 1674493 (5.3%)

55.27 16.21 (70.7%) 6.78 (87.7%) 17.12 (69.0%) 6.42 (88.4%) 47.50 (14.1%) 51.03 (7.7%)

1.06 1.06 (0.0%) 1.06 (0.0%) 1.06 (0.0%) 1.06 (0.2%) 1.06 (0.0%) 1.06 (0.0%)
2.12 2.15 (1.7%) 2.10 (0.7%) 2.16 (1.9%) 2.10 (1.1%) 2.13 (0.4%) 2.13 (0.5%)
6.57 6.66 (1.2%) 6.20 (5.6%) 7.24 (10.2%) 6.11 (7.0%) 6.59 (0.2%) 6.53 (0.7%)
0.89 0.92 (3.7%) 0.88 (1.4%) 0.92 (4.1%) 0.86 (3.3%) 0.90 (0.9%) 0.90 (1.0%)

Trace
5 states 10 states

G-FIT PH-FIT G-FIT PH-FIT

391.10 1092.56 1402.30

20 states Special cases
G-FIT G-FIT

W
ei

bu
ll(

1.
0,

5.
0)

-1673.19 -1674.49 394.68
2 (1) 217 27 (14)

5 10

-20108.91 -19980.79 -20093.74

139 34
1,2,17 16,34

434

Pa
re

to
-I

I(
1.

5,
2.

0)

-20340.91 -20236.15 -20084.11
2 (2) 246 62 (23) 423
1,1,3 1,2,3,4

-8581.07

156 29
1,1,2,3,6,7 1,1,1,1,2,4

174
2,3 1,4,5 1,5,6,8 5,12,15,18

4 (2) 142 60 (17) 107285

M
at

ri
x 

E
xp

on
en

tia
l

-9278.27 -9230.53 -8895.56 -8778.50 -8748.19

 

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2

p
d
f

x

Weibull(1.0,0.5)

Empirical distribution of trace
G-fit with 5 states

PH-fit with 5 states
G-fit with 10 states

PH-fit with 10 states

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  0.5  1  1.5  2

p
d
f

x

Weibull(1.0,5.0)

Empirical distribution of trace
G-fit with 5 states

PH-fit with 5 states
G-fit with 10 states

PH-fit with 10 states
G-fit with 50 states

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.5  1  1.5  2

p
d
f

x

Uniform(0.5,1.5)

Empirical distribution of trace
G-fit with 5 states

PH-fit with 5 states
G-fit with 10 states

PH-fit with 10 states
G-fit with 50 states

 

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  1  2  3  4  5  6

p
d
f

x

Pareto-II(1.5,2.0)

Empirical distribution of trace
G-fit with 5 states

PH-fit with 5 states
G-fit with 10 states

PH-fit with 10 states

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.5  1  1.5  2  2.5  3

p
d
f

x

Shifted Exponential

Empirical distribution of trace
G-fit with 5 states

PH-fit with 5 states
G-fit with 10 states

PH-fit with 10 states
G-fit with 50 states

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2  2.5  3

p
d
f

x

Matrix Exponential

Empirical distribution of trace
G-fit with 5 states

PH-fit with 5 states
G-fit with 10 states

PH-fit with 10 states
G-fit with 50 states

 
Fig. 4. Densities of fitted HErD and APHD for synthetically generated traces 

 
The last column in Tab. 2 shows results for G-FIT 

for some special cases. In particular, for the 
Weibull(1.0,0.5) trace results for an 8-state 
hyperexponential distribution running the EM 
algorithm until convergence with ε = 10-8 are 
presented. It can be observed that due to the longer 
iteration time the moments are matched much better 
than in the case when stopping the iteration with 
ε = 10-6. For the Weibull(1.0,5.0) trace and the uniform 
trace we fitted all 50-state settings with at most two 
Erlang branches (26 settings) until convergence is 
reached with ε = 10-16. The time requirements for the 
fitting process are still very small as can be observed 
from Tab. 2. For the shifted exponential trace and the 
matrix exponential trace we applied progressive pre-
selection with 50 states and M ≤ 4 Erlang branches 
(1154 settings). Finally, for the Pareto-II trace we 
applied the body/tail fitting approach (see strategy (iii) 
in Section 4). We used 6 states for the body and 4 

states for the tail. For the body we fitted all settings 
with two Erlang branches (3 settings) until 
convergence with ε = 10-10. As expected, the first three 
moments are fitted very well with this approach and 
the tail-behavior of the distribution is captured much 
better, although the log-likelihood value is worse 
compared to the best 10-state HErD. 

Fig. 5 depicts the tail-behavior for the Pareto-II 
distribution when fitting a trace with K = 106 samples. 
Recall that CPU time requirements are linear in the 
size of the trace, i.e., for a trace with 106 samples the 
time requirements presented in Tab. 2 must be roughly 
multiplied by 100. Note that the quality of tail fitting in 
Fig. 5 is also a function of the number of used samples. 
The same HErD structures would result in a longer tail 
fit with more samples. 

In a final experiment, we compared the results 
obtained by G-FIT with results from the PH fitting tool 
EMpht [1]. Similar to G-FIT the tool EMpht applies 



the EM algorithm for distribution fitting, but with no 
specialization to a sub-class of PH distributions. 
Throughout all experiments G-FIT outperforms EMpht 
in terms of CPU time requirements. Furthermore, 
EMpht converges much slower to optimal parameter 
values than G-FIT. For example, for the 
Weibull(1.0,0.5) trace EMpht required for 1000 
iterations on a 5-state PH distribution 260 seconds 
CPU time and reached only a log-likelihood value of –
11481.29 which is worse than that for G-FIT and also 
PH-FIT (see Tab. 2). For the uniform trace EMpht 
required for 1000 iterations on a 10-state PH 
distribution 230 seconds CPU time and reached a 
log-likelihood value of –2034.95, which is also worse 
than that for G-FIT and PH-FIT. Fitting the Pareto-II 
trace with a 10-state distribution seems to be not 
practicable since already 100 iterations take more than 
270 seconds of CPU time with log-likelihood values 
still far away from the optimum. 
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Fig. 5. Complementary cdf for two different 
fitted HErD for the Pareto-II trace 

The results presented in this section underline the 
flexibility of the class of HErD for fitting general 
distributions as theoretically shown in Section 2. 
Furthermore, we conclude from the experiments that 
HErD can be fitted much more efficiently and in most 
cases more accurately than APHD with the proposed 
EM algorithm. We believe that this is essentially due 
to the more restricted structure of the HErD class 
which practically does not reduces its flexibility on 
fitting. We think that other fitting algorithms over the 
HErD class would result in similar fitting quality but 
are less efficient in terms of CPU time requirements. 
 
5.2 Real Traffic Traces 
 

To study an example with a real data traffic trace 
we used the call center data trace provided by Avishai 
Mandelbaum [17]. The data archives all calls handled 
by the call center of one of Israel’s banks over a period 
of 12 month from January 1999 till December 1999. 

For every month about 20,000 to 30,000 calls are 
recorded. For every call the traces contain several 
attributes, from which we used the service times as 
given in the traces for our study. Furthermore, service 
times are scaled to have mean 1.0. 
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Fig. 6. Densities for call center trace 

Fig. 6 shows the empirical density functions for the 
trace of January as well as the density functions for the 
fitted HErD with 5, 10, and 20 states, respectively. 
Service times exhibited a quick-hang phenomena [17], 
i.e., there is a high percentage of calls with very short 
service times. From Fig. 6 we conclude that the trace is 
fitted very well by a HErD with 10 or 20 states 
whereas 5 states seem to be not sufficient to adequately 
represent the traces. Furthermore, Fig. 6 shows that the 
quick-hang phenomena can also be represented by the 
HErD with 10 states or 20 states. The relative 
difference between the moments of the trace and the 
moments of the 20-state HErD is at most 1%, which 
underlines the high accuracy of the fitted distribution. 

Tab. 3. Quality indices for LBL-TCP-3 trace 
Trace

1. Moment 1.00 1.00 (0.0%) 1.00 (0.0%)
2. Moment 2.94 2.87 (2.3%) 2.92 (0.9%)
3. Moment 16.84 14.94 (11.3%) 15.99 (5.0%)
Squared CoV 1.94 1.87 (3.5%) 1.92 (1.3%)
Log-likelihood
CPU time [sec]
Phase lengths

5 states 10 states

1,2,2
1670

2,2,2,2,2

-1665271.83-1672401.67
286

 
To provide a second example we considered the 

LBL-TCP-3 trace from the internet traffic archive [13]. 
The trace contains about 1.8·106 TCP timestamps from 
which we extracted the interarrival times of TCP 
packets and scaled the data set to have mean 1.0. The 
empirical distribution of the trace and the fitted HErD 
with 5 and 10 states are presented in Fig. 7. 
Furthermore, Tab. 3 shows statistical properties 
concerning the trace and the fitted distributions. The 
CPU time requirements are measured when applying 
progressive pre-selection for finding the best setting of 
the discrete parameters of the HErD. From the results 
we conclude that even very large traces (i.e., 106 – 108 



samples) can be fitted efficiently and accurately with 
the proposed method. 
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Fig. 7. Densities for LBL-TCP-3 trace 

 
6. Conclusions 
 

We presented a novel approach that fits a restricted 
class of phase-type distributions to trace data. For the 
parameter fitting we developed an EM algorithm, 
which is tailored to the special structure of a hyper-
Erlang distribution. One of the crucial ideas behind the 
fitting method presented in this paper is the use of the 
smallest class of phase-type distributions, which is still 
sufficiently general to approximate any non-negative 
distribution (see Theorem 1 and Fig. 2). The empirical 
experiences confirm the expectation that searching for 
best fitting in a smaller class of distributions is 
numerically more effective and stable. 

The effectiveness of the proposed fitting method is 
demonstrated by a comparison with two other methods 
using six benchmark traces and two real traffic traces. 
We conclude from this comparison that hyper-Erlang 
distributions are the most versatile sub-class of phase-
type distributions, since hyper-Erlang distributions 
provide practically the full flexibility of the PH class 
and can be efficiently tuned to match general 
distributions. 
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