
A Novel Approach for Phase-Type Fitting
with the EM Algorithm

 Axel Thümmler and Peter Buchholz Miklós Telek
 University of Dortmund Budapest University of Tech. and Econ.
 Department of Computer Science Department of Telecommunications
 August-Schmidt-Str. 12 Magyar Tudósok krt. 2
 44227 Dortmund, Germany 1117 Budapest, Hungary
{thuemmler, buchholz}@ls4.cs.uni-dortmund.de telek@hit.bme.hu

Abstract

The representation of general distributions or measured data by phase-type

distributions is an important and non-trivial task in analytical modeling. Although

a large number of different methods for fitting parameters of phase-type

distributions to data traces exist, many approaches lack efficiency and numerical

stability. In this paper, a novel approach is presented that fits a restricted class of

phase-type distributions, namely mixtures of Erlang distributions, to trace data.

For the parameter fitting an algorithm of the expectation maximization type is

developed. The paper shows that these choices result in a very efficient and

numerically stable approach which yields phase-type approximations for a wide

range of data traces that are as good or better than approximations computed with

other less efficient and less stable fitting methods. To illustrate the effectiveness

of the proposed fitting algorithm, we present comparative results for our approach

and two other methods using six benchmark traces and two real traffic traces as

well as quantitative results from queueing analysis.

Keywords:

Performance and dependability assessment/analytical and numerical techniques,

design of tools for performance/dependability assessment,

traffic modeling,

hyper-Erlang distributions.

-1-

1 Introduction

The central idea of traffic modeling lies in constructing analytically tractable models that

capture the most important statistical properties of an underlying measured data trace. For

analytical performance and dependability modeling measured data has to be represented or

approximated by phase-type (PH) distributions in several cases [11], [25]. The procedure of

estimating the parameters of a phase-type distribution according to some sample data or with

respect to some other known distribution is commonly denoted as phase-type fitting.

Among the large number of available fitting methods, expectation-maximization (EM)

algorithms [19] are general methods of finding the maximum-likelihood estimate of the

parameters of an underlying distribution from a given data trace when the data is incomplete

or has missing values. EM algorithms for phase-type fitting have been available for some time

[1], [4], but the application of the basic approach to general PH distributions turns out to be

extremely costly and the fitted distribution depends heavily on the initial values [20]. Thus, it

seems that fitting general PH distributions is not appropriate if the number of phases increases

above 4, which is often the case for small coefficients of variation or traces that cannot be

adequately represented by a PH distribution of low order. To overcome these problems the

class of PH distributions used for fitting has to be restricted which is in principle possible in

the basic EM algorithm by initializing only some elements in the matrix with non-zero values,

but it seems to be more appropriate to develop an EM algorithm tailored to specific types of

PH distributions. Based on earlier work from [10], El Abdouni Khayari et al. developed an

EM algorithm in [8] to fit the parameters of a hyperexponential distribution to values of a data

trace. The resulting approach is extremely efficient and yields good fitting results for heavy-

tailed distributions with monotonically decreasing density functions. However, the use of

hyperexponential distributions restricts the class of distributions, which can be represented. In

fact, hyperexponential distributions cannot adequately capture general distributions with

increasing and decreasing densities or with a coefficient of variation less than one.

Since the fitting of parameters of a PH distribution is in general a non-linear optimization

problem, apart from the EM algorithm also other optimization algorithms can be applied.

-2-

However, the optimization problem for general PH distributions is too complex to yield

satisfactory results if the number of phases is larger than two or three. As shown in several

papers [2], [3], [13], [14], the fitting problem becomes much easier if acyclic instead of

general phase-type distributions are used, because for this type of distributions a canonical

representation exists which reduces the number of free parameters to 2N compared to N2 + N

for the general case, where N is then number of phases [5]. On the other hand, the restriction

to acyclic PH distributions does not seem to limit the flexibility of the approach. However,

even in the acyclic case, the resulting optimization is still complex and contains local optima

and saddle points. To overcome the problem of convergence to a local optimum, the fitting

algorithm is usually started with several initial settings and the best fitting is chosen.

Apart from acyclic phase-type distributions several other restricted classes have been used.

For our approach the works of Johnson [15] and Schmickler [24] are most important, since

both use mixtures of Erlang distributions, which are also used in our work and will be denoted

as hyper-Erlang distributions (HErD) according to [9]. However, in contrast to our approach,

the mentioned techniques fit some moments and specific properties of the distribution or

density function using nonlinear optimization.

In this paper, an EM algorithm for the fitting of hyper-Erlang distributions is presented.

The approach, which will be denoted as G-FIT, extends the fitting procedure of [8] from

hyperexponential to hyper-Erlang distributions, which extends the class of representable

distributions significantly since mixtures of Erlang distributions of unlimited order are

theoretically as powerful as acyclic or general PH distributions (see Theorem 1). However,

the class of distributions still allows the realization of a very efficient fitting algorithm. In

particular the fitting time is independent of the number of states; it depends only on the

number of Erlang branches, which might be significantly lower than the number of states. In

fact, for M Erlang branches and a trace with K samples the time complexity of our algorithm

is in O(M·K). Thus, distributions with a large number of states can be fitted efficiently.

Furthermore, the fitting algorithm is rather stable due to the specific structure of the density

function, which yields a fast and reliable convergence of the EM method. Additionally, the

-3-

fitting of the first three moments using a polynomial of degree 5 is introduced and it is shown

how moment fitting can be integrated in the proposed EM algorithm that fits the empirical

distribution function.

Apart from the efficiency of the approach, the quality of the approximation for a given

number of phases is important. We tested the approach on a set of six benchmark traces [3]

and compared it with general PH-fitting [1] and fitting of acyclic PH distributions [14]. As

expected, G-FIT is significantly faster than the other two approaches. Additionally, we were

able to reach with an identical number of states a similar or better fitting quality than with the

other two approaches on almost all examples. This result was not expected, because hyper-

Erlang distributions of a given order are in general less flexible than acyclic or general PH

distributions of the same order. The practical applicability of G-FIT is demonstrated by fitting

a call center trace [21] and a large traffic trace, which was recorded at the Web proxy server at

the University of Dortmund in March 2005. The presented EM algorithm is implemented in

the software package G-FIT, which is available for download on the Web [12].

The paper is organized as follows. Section 2 introduces the considered class of hyper-

Erlang distributions, it studies its relationship to general phase-type distributions, and it

introduces the fitting of the first three moments of a hyper-Erlang distribution. Section 3

develops a specialized EM algorithm for fitting the continuous parameters of a hyper-Erlang

distribution and Section 4 presents an approach for finding optimal settings of the discrete

parameters of the distribution. Experimental results obtained from fitting synthetically

generated benchmark traces and two real traffic traces as well as quantitative results from

queueing analysis are presented in Section 5. Finally, concluding remarks are given.

2 Hyper-Erlang Distributions and its Properties

2.1 Hyper-Erlang Distributions

We consider a mixture of M mutually independent Erlang distributions weighted with the

(initial) probabilities α1,…,αM with αm ≥ 0 and α1+α2+…+αM = 1. The number of phases of

-4-

the m-th Erlang distribution is denoted with rm. We assume 1 ≤ r1 ≤ … ≤ rM without loss of

generality. Furthermore, let λm be the scale parameter of the m-th Erlang distribution. Note,

that the individual Erlang distributions need not have the same mean. According to [9], we

call this mixture of Erlang distributions a hyper-Erlang distribution (HErD). The HErD

belongs to the class of acyclic phase-type distributions [2]. Besides the Erlang distribution, for

M = 1, the hyperexponential distribution is a special case of a HErD with rm = 1 for all

m = 1,…,M. Let X be a hyper-Erlang random variable. The probability density function (pdf)

for X is given by

m
m

r 1M
xm

X m m
m 1 m

(x)f (x) e
(r 1)!

−
−λ

=

λ= α λ
−∑ , (1)

and the cumulative distribution function (cdf) is given by

()m
m

ir 1M
m x

X m
m 1 i 0

x
F (x) 1 e

i!

−
−λ

= =

λ
= − α∑ ∑ . (2)

The i-th moment E[Xi] is given by
M

i m
m i

m 1 m m

(r i 1)! 1E[X]
(r 1)!=

+ −= α
− λ∑ . (3)

A common measure to characterize the flexibility in approximating a given general

distribution function is the range of variability of the squared coefficient of variation 2
Xc ,

which is defined in terms of the first and second moment, i.e.,

2
2
X 2

E[X]c 1
E[X]

= − . (4)

Recall that an Erlang distribution with r phases is defined as the sum of r independent

identical exponentially distributed random variables. Thus, the HErD is constructed from a

mixture of sums of exponential distributions. The number of states of a HErD is the overall

number of exponential distributions involved in its construction. Keeping this in mind, the

overall number of states of a HErD is given by
M

m
m 1

N r
=

= ∑ . (5)

-5-

� � � � � � � � � � �

� �

� � � � �

� �

� � � � � �

� � � �

� �

� � � � � �

Figure 1. State transition graph of a hyper-Erlang distribution

Figure 1 shows the state transition graph of a HErD, which corresponds to an absorbing

continuous-time Markov chain where a state change occurs after an exponentially distributed

delay with mean 1/λm, m = 1,…,M, and the time until absorption has a HErD. The absorbing

state is shown as a dashed circle in Figure 1.

Let f(x; M, r, α, λ) denote the density function of the HErD with M Erlang branches,

where r = (r1, r2, … ,rM) ∈ NM is a vector containing the number of phases of each Erlang

branch, α = (α1, α2, …,αM) ∈ RM is a vector with the initial probabilities for each Erlang

branch and λ = (λ1, λ2, …,λM) ∈ RM is a vector with the scaling parameters, respectively.

Using the constraint M
m 1 m 1=∑ α = , a HErD with M Erlang branches has 2M−1 continuous

parameters given by α and λ and M discrete parameters given by the vector r. Let HN be a set

of all HErD with N states, i.e.,

()
M M

 N m m m m m
m 1 m 1

f x;M, , , 1 M N, 0, 0, r 1, 1, r N
= =

⎧ ⎫⎪ ⎪= ≤ ≤ λ > α ≥ ≥ α = =⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑r α λH . (6)

Note, that the set HN contains all HErD distributions having at most N states, since HErD

with less than N states are obtained by simply setting some αm values to zero. The versatility

of the HErD in approximating general distributions is shown by the following theorem.

Theorem 1:

(i) Let F denote the set of all probability density functions of nonnegative random variables,

then H∞ is a dense set in F. In fact, for every density function f ∈ F it is possible to

choose a sequence of hyper-Erlang densities hλ,M(x) œ HN with M Erlang branches each

having scale parameter λ, such that

-6-

,MM
lim lim h (x) f (x)λλ→∞ →∞

= (7)

for all x at which f(x) is continuous.

(ii) Let h be a hyper-Erlang density out of the set HN, with N ≥ 2. The parameters of h can be

tuned such that the squared coefficient of variation of h equals 1/N or takes on an

arbitrary value greater or equal to 1/(N–1) with h still being an element of HN.

Proof: The proof of (i) can be found in [16]. In particular, the hyper-Erlang densities hλ,M(x)

are to be chosen so that λm = λ, rm = m, and αm = () ()() ()F m F (m 1) F Mλ − − λ λ for

m = 1,…,M, where F is the cdf of f ∈ F. For the proof of (ii) we distinguish three different

cases. Let c0 be the value that should be matched by the squared coefficient of variation of a

hyper-Erlang density h ∈ HN.

Case 1: c0 = 1/N: It is a well known fact that the squared coefficient of variation of an Erlang

distribution with r phases equals 1/r, independent of the scaling parameter λ (see e.g.

[25]). Thus, to obtain a squared coefficient of variation c2 = c0 = 1/N we simply

choose M = 1, r1 = N, and α1 = 1.

To find a hyper-Erlang distribution with coefficient of variation that is greater or equal to

1/(N–1) we only have to consider the case M = 2 with α1 := α, α2 := 1–α, r1 = 1, and

r2 = N–1, i.e., a mixture of an exponential distribution and an Erlang distribution with N–1

phases. Simplifying Eq. (4) with the help of Eq. (3) the general form of the squared

coefficient of variation for this hyper-Erlang distribution is given by

2 2
2 1 2

2
1 2

(1) (N 1) N 2c 1
((1) (N 1))
− α ⋅ − ⋅ ⋅λ + α ⋅λ= −

− α ⋅ − ⋅λ + α ⋅λ
. (8)

Case 2: 1/(N–1) ≤ c0 < 1: A possible setting of the scaling parameters and weights is λ1 = 1,

λ2 = N–1, and α = () ()0(N 1) c 1 N 2− ⋅ − − .

Case 3: c0 ≥ 1: It is sufficient to consider the case N = 2, i.e., a hyperexponential distribution

with 2 phases. Recall, that H2 is also a subset of HN. A possible setting of the scaling

parameters and weights is λ1 = 1, λ2 = 1/(2c0), and α = 2(c0–1)/(2c0–1).

 ■

-7-

Note that Theorem 1 states that any probability density function of a nonnegative random

variable can be approximated arbitrarily close by a hyper-Erlang distribution. That is, for

every point of continuity of a general density function f, there exist values λ and M such that

the finite hyper-Erlang density hλ,M(x) is arbitrarily close to f(x).

2.2 Hyper-Erlang Distributions as Subclass of PH

In this section, we intend to shed some light onto the relationship between sub-classes of PH

distributions. Let A and B be sets of specific PH distributions. We consider three types of

relationships between sets A and B.

(i) A < B means that all finite-state distributions of A can be represented by an

appropriately selected finite-state distribution of B and B contains at least one

distribution that cannot be represented by a distribution of A even with an infinite

number of states.

(ii) A ≤∞ B means that all finite-state distributions of A can be represented by an

appropriately selected finite-state distribution of B and B contains at least one

distribution that can only be represented by a distribution of A with an infinite

number of states.

(iii) A ≠ B means that none of the relationships (i) and (ii) hold.

Note, that relationship (i) means that a distribution of B cannot be approximated arbitrarily

close by a distribution of A, whereas in relationship (ii) this approximation is possible.

According to this definition, we consider the relationship between some well-known sub-

classes of phase-type distributions and their versatility in representing general distributions. In

particular we consider exponential distributions (ED), hyperexponential distributions (HED),

Erlang distributions (ErD), hyper-Erlang distributions (HErD), hypoexponential distributions

(HoED), acyclic phase-type distributions (APHD), and phase-type distributions (PHD). A

detailed definition of these distributions as well as the computation of their squared

-8-

coefficient of variation 2
Xc can be found in standard textbooks (see e.g. [25]). Nevertheless,

we briefly introduce the HoED, also called generalized Erlang distribution by some authors.

In fact, the HoED is an Erlang distribution where the scaling parameters are not necessarily

identical in each phase. A HoED where scaling parameters λi are pairwise different in each

phase has the probability density function

n

N
x

X n n
n 1

f (x) a e−λ

=
= λ∑ , where

N
i

n
i ni 1,i n

a
= ≠

λ=
λ − λ∏ and λn ≠ λi for n ≠ i. (9)

Similarly the probability density function can be expressed in closed-form if some of the

scaling parameters are equal.

� � � � � �
�

� � 	

� � � � � � � �
�

� � 	

� � � � � �
�

� 	

� � � � � � � � � � 	

�

� � � 	

�
 � 	

� � � � � � � � � � � �
�

� � � 	 � � 	

�

�

�
�

�
�

�

� � � � � � � � � � �

�

� � � � � � � �
�

� � � � � � � �
�

Figure 2. Relationship of sub-classes of phase-type distributions

Figure 2 shows the relationship between the distributions introduced above according to

the cases (i) to (iii). The results for 2
Xc for the HErD are presented in Theorem 1. The classes

of distributions that are dense in the set of general distributions, i.e., HErD, APHD, and PHD,

are combined in the gray shaded area. Most of the relationships can be simply explained by

comparing the possible range of the squared coefficient of variation that a distribution can

take on. Since the HErD is a generalization of ErD and HED, which are both generalizations

of ED, these distributions can be represented by a distribution of HErD with the same number

of states. Comparing the possible range of the squared coefficient of variation, we see that the

ED is less expressive than HED and ErD, which are again less expressive than HErD.

Similarly, the relationship ErD < HoED < APHD can be explained. Furthermore, HED is

clearly different from ErD and HoED. The relationship between APHD and PHD is true,

since there is a simplification of the distributions from PHD to APHD. Nevertheless, a PHD

can be approximated arbitrarily close by an APHD [3].

-9-

The relationship between HErD and HoED as well as HErD and APHD needs a further

explanation. Comparing the squared coefficient of variation range of HoED and HErD we see

that HoED are less expressive than HErD. On the other hand, one might think that an N-state

HoED can be represented by an (N+1)-state HErD such that the relationship HoED < HErD

holds, but it can be shown by a comparison of the densities (see Eqs. (1) and (9)) that even a

two-state HoED with distinct scaling parameters cannot be represented by any finite-state

HErD. Nevertheless, due to Theorem 1 all distributions of HoED can be approximated

arbitrarily close by a distribution of HErD but not vice versa. Comparing HErD with APHD,

we see that HErD is a special case of APHD, but any APHD can be approximated arbitrarily

close with a HErD (see Theorem 1), hence the relationship “≤∞” holds. On the other hand

considering a finite number of states, HErD is less expressive than APHD with the same

reason as for HoED. We conclude from this comparison that HErD is the most versatile sub-

class of APHD, since HErD also provides full flexibility but can be more efficiently tuned to

match general distributions than APHD as shown in Section 3.

2.3 Matching Moments with Hyper-Erlang Distributions

In this section we consider the problem of adjusting the parameters of a hyper-Erlang

distribution to match the first three empirical moments jµ̂ , j = 1,2,3, as estimated from trace

data. First of all we consider the case M = 2, i.e., a mixture of two Erlang distributions with

number of phases r1 and r2, respectively. Without loss of generality we assume r1 ≤ r2. The

moment matching problem for mixtures of Erlang distributions was extensively studied by

Johnson and Taaffe [15], [17], [18]. They provided conditions under which the problem is

solvable, but determined the solution only for the case r1 = r2. Suppose n* is the smallest

integer that satisfies the inequality

2 2
1 2

2 2
2 1 1 3 2

ˆ ˆ
n* max , 1

ˆ ˆ ˆ ˆ ˆ
⎧ ⎫µ µ⎪ ⎪> −⎨ ⎬

µ − µ µ µ − µ⎪ ⎪⎩ ⎭
, (10)

then the following cases must be distinguished (see [15]):

(i) If r1, r2 < n*, then the first three moments cannot be matched exactly.

-10-

(ii) If r1 < n* ≤ r2, then the moment matching problem has (at least) one solution.

(iii) If n* ≤ r1 = r2, then the moment matching problem has a unique solution.

(iv) If n* ≤ r1 < r2, then the moment matching problem has (at least) two solutions.

In case (iii) a simple closed-form solution exists (see [17]) whereas in cases (ii) and (iv) the

solution can only be determined numerically. In fact, the roots of a polynomial of degree five

must be computed. In Appendix A.1 we show how to determine the parameters λ1, λ2, and α1

(α2 = 1–α1) for cases (ii) to (iv). Our results are in contrast to the results from Schmickler who

determined a polynomial of degree six for the matching problem, but did not provide any

conditions when it gives feasible solutions [24]. In fact, we were not able to find any correct

solution with his polynomial.

Suppose now we have given a hyper-Erlang distribution with M Erlang branches and

number of phases of each branch rm, m = 1,…,M. For matching the first three empirical

moments only three of the 2M–1 free continuous parameters are needed. The moments of a

HErD with more than two branches can be reduced to the two-branch case by subtracting the

contributions of the other branches, if their parameters are known. To be precise, let i1 and i2,

with 1 ≤ i1 < i2 ≤ M, be the indices of the two Erlang branches to be used for the moment

matching. Then we define the j-th reduced moment jµ� by

1 2

M
m

j j m j
m 1,m i ,i m m

(r j 1)! 1 1ˆ
(r 1)!= ≠

⎛ ⎞+ −µ = µ − α ⋅⎜ ⎟⎜ ⎟− βλ⎝ ⎠
∑� , (11)

where
1 2i iβ = α + α is the portion of the two branches used for matching the moments. Note

that the reduced moments are not necessarily moments of a distribution function. A sufficient

condition for values 1µ� , 2µ� , and 3µ� to be moments of a distribution with support on [0, ∞] is

{ }2 2
1 2 1 1 3 2min , , 0µ µ − µ µ µ − µ >� � � � � � . (12)

If condition (12) holds we can apply the procedure for matching the moments 1µ� , 2µ� , and

3µ� with a mixture of the two Erlang branches i1 and i2. Denote ′α and (1)′− α the initial

probabilities of this two-branch solution. Finally, we have to set the weights
1iα and

2iα

properly, i.e.,
1i

′α = α ⋅β and
2i (1)′α = − α ⋅β .

-11-

3 An EM Algorithm for Fitting Hyper-Erlang Distributions

3.1 Fitting Mixture-Densities with the EM Algorithm

The mixture-density parameter estimation problem is probably one of the most widely used

applications of the EM algorithm [6]. In this case, we assume the following probabilistic

model

() ()
M

m m m
m 1

p x p x
=

Θ = α θ∑ , (13)

where the parameters are Θ = (α1,…,αM, θ1,…,θM) such that α1+α2+…+αM = 1 and each pm

is a density function parameterized by θm. In other words, we assume that M component

densities are mixed using M mixing coefficients αm. Note that in general θm can be a vector of

parameters for each density function pm, but it is a single value in our HErD fitting method.

Let T = {x1,…,xK} be a data set of measurements supposedly drawn from the distribution

(13). That is, we assume that these data values are drawn from independent and identically

distributed random variables with probability density function (13). The log-likelihood

expression for this mixture density for the trace T is given by

() () ()
K K M

k m m k m
k 1 m 1k 1

log L log p x log p x
= ==

⎛ ⎞
Θ = Θ = α θ⎜ ⎟

⎝ ⎠
∑ ∑∏T , (14)

which is difficult to optimize because it contains the logarithm of a sum. If we consider T as

incomplete data and assume the existence of unobserved data items yk ∈ {1,…,M}, k=1,…,K,

whose values inform us which component density “generates” each data item of T, the

likelihood expression can be significantly simplified. That is, we assume yk = m if the k-th

sample xk was generated by the m-th mixture component pm. If we know the values

y = (y1,…,yK) the log-likelihood expression of Eq. (14) becomes

() ()()k k k

K

y y k y
k 1

log L , log p x
=

Θ = α θ∑yT . (15)

The problem in dealing with Eq. (15) is, that we do not know the values of yk. If we

assume yk as random values drawn from a random variable Y, we can derive an expression for

the probability mass function (pmf), denoted by q(y), of the unobserved data. First, we guess

-12-

at parameters for the mixture density, i.e., we guess that ()1 M 1 M
ˆ ˆˆ ˆ ˆ, , , , ,Θ = α α θ θ… … are the

appropriate parameters. Given Θ̂ , we can easily compute the mixture components

()m k m
ˆp x θ for each k and m. Keeping in mind that αm is the probability of choosing the

m-th mixture component we can compute the pmf of the unobserved data given the observed

data T and the estimates Θ̂ using Bayes’s rule

() () ()
()

()
()

k k ky y k yk k k
k k M

k
m m k m

m 1

ˆˆ ˆ ˆ p xq y p x y ,
ˆq y x ,

ˆp x ˆˆ p x
=

α ⋅ θΘ ⋅ Θ
Θ = =

Θ α ⋅ θ∑
 (16)

and

() ()
K

k k
k 1

ˆ ˆq , q y x ,
=

Θ = Θ∏y T , (17)

where y ∈ {1,…,M}K is an instance of the unobserved data independently drawn from Y. The

expected value of the complete-data log-likelihood with respect to the unknown random

variable Y given the observed data T and the current parameter estimates Θ̂ , is given by

() () () ()
K{1, ,M}

ˆ ˆ ˆQ , E log L ,Y , log L , q ,
∈

⎡ ⎤Θ Θ = Θ Θ = Θ ⋅ Θ⎣ ⎦ ∑
y

y y
…

T T T T . (18)

Inserting Eqs. (15) and (17) into Eq. (18) we get

() ()() ()k k k
K

KK

y y k y i i
k 1{1, ,M} i 1

ˆ ˆQ , log p x q y x ,
=∈ =

Θ Θ = α θ ⋅ Θ∑ ∑ ∏
y …

 (19)

and rearranging the sums and the product results in (see Appendix A.2)

() () () ()() ()
M K M K

m k m k m k
m 1 k 1 m 1 k 1

ˆ ˆ ˆQ , log q m x , log p x q m x ,
= = = =

Θ Θ = α ⋅ Θ + θ ⋅ Θ∑∑ ∑∑ . (20)

Note that the computation of the expectation in Eq. (18) constitutes the E-step of the EM

algorithm. In general, the main difficulty in computing this expectation is to obtain an

expression for the marginal distribution of the unobserved data. However, for the mixture

density problem discussed in this section the marginal distribution can be simply computed by

Eqs. (16) and (17). The M-step of the EM algorithm is to maximize the expectation computed

in the E-step with respect to Θ. To maximize Eq. (20), we can maximize the term containing

αm (first sum in Eq. (20)) and the term containing θm (second sum in Eq. (20)) independently

-13-

since they are not related. According to [19], a Lagrange multiplier can be applied to find the

expression for αm, resulting in

()
K

m k
k 1

1 ˆq m x ,
K =

α = Θ∑ . (21)

The computation of θm depends on the form of the mixture density component pm and is

addressed in the next section for a mixture of Erlang distributions.

3.2 Application to Hyper-Erlang Distributions

In this section we develop the formulas for application of the EM algorithm to the mixture

density parameter estimation problem when the m-th mixture component is an Erlang

distribution with a fixed number of phases, i.e.,

()
m

m k

r 1
xm k

m k m m
m

(x)p x e
(r 1)!

−
−λλλ = λ

−
, (22)

and the mixture distribution is described by the parameter vector Θ = (α1,…,αM,λ1,…,λM).

The parameters αm, m = 1,…,M, that maximize Eq. (20) are determined according to Eq. (21).

In order to determine the parameters λm, m = 1,…,M, that maximize Eq. (20) we set the

derivatives with respect to λm of Eq. (20) equal to zero

() ()()
K

k m k m
k 1 m

ˆq m x , log p x 0
=

∂Θ λ =
∂λ∑ . (23)

Putting Eq. (22) into Eq. (23) and applying logarithm-rules we get

()
()

K

m k
k 1

m K

k k
k 1

ˆr q m x ,

ˆq m x , x

=

=

⋅ Θ
λ =

Θ ⋅

∑

∑
. (24)

Note that Eqs. (21) and (24) together with Eq. (16) are simple closed-form expressions for the

parameters of a HErD according to a given number of Erlang branches M and a given number

of phases rm per branch.

-14-

3.3 Implementation Issues

A high-level pseudo-code representation of the EM algorithm tailored to the parameter

estimation of HErD is presented in Figure 3. Note that each iteration (see steps (2) to (7) in

Figure 3) is guaranteed to increase the log-likelihood value and the algorithm is guaranteed to

converge to a local maximum of the likelihood function [19]. To check whether convergence

is reached, we compute in each iteration either

(i) the maximal difference of the values of the parameter vectors of successive iterations,

(ii) the relative difference of the log-likelihood values of successive iterations,

and stop the algorithm when the computed difference is below a predefined ε, e.g. ε = 10-6.

The computational complexity of the E-step is O(M·K) when computing the numerator and

denominator of the unobserved data pmf separately. The complexity of the M-step is also

O(M·K). Thus, the overall computational complexity for one iteration of the EM algorithm is

O(M·K). Note that the log-likelihood (see Eq. (14)) can be computed without additional effort

during the E-step of the fitting algorithm.

A straightforward computation of the Erlang densities (22) can exhibit numerical

difficulties, since for a high number of Erlang phases (e.g. r > 50) large factorials and large

power values must be computed. To avoid these difficulties, we suggest an evaluation of (22)

in logarithmic form, i.e.,

() m m k m m k(r 1) ln(x) ln(r 1)! x
m k m mp x e − λ − − −λλ = λ , (25)

with pre-computed logarithms of the factorial values, i.e.,
r

i 1
ln r! ln i

=
=∑ . (26)

On a standard PC with 3 GHz Pentium CPU running the operating system Linux, the EM

algorithm requires about 2.4 seconds for 100 iterations when fitting a HErD with M = 5

Erlang branches to a trace with K = 104 samples. The overall number of iterations required to

achieve convergence depends on several factors, i.e., the initial setting of αm and λm, the

number of Erlang branches M, and the trace data. However, for small values of M (i.e.,

-15-

M ≤ 10) the algorithm converges faster than for larger values of M, since fewer parameters

have to be optimized. With M ≤ 10 the number of iterations is almost always less then 100 to

reach convergence with ε = 10-6.

(1) Choose initial parameter estimates ()1 M 1 M
ˆ ˆˆ ˆ ˆ, , , , ,Θ = α α λ λ… …

(2) REPEAT

(3) Compute ()m k m
ˆp x λ for m=1,…,M and k=1,…,K according to Eq. (25)

(4) E-step: Compute the pmf of the unobserved data for m=1,…,M and k=1,…,K

 () () ()
M

k m m k m i i k i
i 1

ˆ ˆˆ ˆ ˆq m x , p x p x
=

Θ = α ⋅ λ α ⋅ λ∑

(5) M-step: Compute αm and λm that maximize Eq. (20) for m=1,…,M

 ()
K

m k
k 1

1 ˆq m x ,
K =

α = Θ∑ and () ()
K K

m m k k k
k 1 k 1

ˆ ˆr q m x , q m x , x
= =

λ = ⋅ Θ Θ ⋅∑ ∑

(6) set ˆ :Θ = Θ
(7) UNTIL convergence reached according to criterion (i) or (ii)
(8) RETURN optimal parameter vector Θ = (α1,…,αM,λ1,…,λM)

Figure 3. Pseudo-code of the EM algorithm tailored to hyper-Erlang distributions

4 Finding the Best Hyper-Erlang Distribution

4.1 Optimizing the Discrete Parameters of a Hyper-Erlang Distribution

With the EM algorithm presented in Section 3.3 we can optimize the continuous parameter

vectors α and λ of a HErD for a predefined setting of the number of Erlang branches M and

number of phases of each Erlang branch rm, m = 1,…,M. However, in order to find the “best”

N-state HErD we have to consider all HErD out of the set HN as candidates. In other words,

we have to determine a setting of the number of phases r1,…,rM that maximizes the log-

likelihood. Due to the efficiency of the algorithm it is feasible to enumerate all possible

settings of M and r1,…,rM and to fit for each such setting a HErD, if N is small (i.e, N ≤ 10)

and K is not too large (i.e., K ≤ 106). Comparing the fitted HErD according to their log-

likelihood values and choosing the one with the maximum log-likelihood value gives the best

HErD in this case. Formally, we denote the discrete parameter setting of a HErD f(x; M, r, α,

-16-

λ) by the tuple (M, r). The following lemma provides a recursive formula to compute the

overall number of settings of an N-state HErD, denoted by SN. This recursion can also be used

to enumerate all possible settings in algorithmic fashion.

Lemma 2: The overall number of different N-state settings, SN, is given by ϕN(N,0), where

n m

m m 1
i j

(n, j) (n i, i)
⎢ ⎥⎣ ⎦

−
=

ϕ = ϕ −∑ and 1
0, if j n,

(n, j)
1, if j n.

>⎧
ϕ = ⎨ ≤⎩

 (27)

Proof: If we allow Erlang branches with zero phases, we can assume N Erlang branches

where N–M branches have zero phases. To compute SN, we have to count the number of

possibilities to choose values rn ∈ {0,1,…,N}, n = 1,…,N, such that 0 ≤ r1 ≤… ≤ rN and

r1+…+rN = N. A first observation is that r1 = 0 or r1 = 1, otherwise the sum of the rn-values

would be larger than N. Assume now r1 = … = rN-M = 0 then it must hold rN-M+1 ≤ N/M,

otherwise the sum of the rn-values would be larger than N. Thus, for every possible choice of

rN-M+1 = i with i ∈ {0,…, N M⎢ ⎥⎣ ⎦ }, we have to count the number of possibilities for choosing

rN-M+2,…,rN such that i ≤ rN-M+2 ≤ … ≤ rN and rN-M+2+…+rN = N–i. This is exactly what the

recursive function ϕm(n,j) computes, i.e., it counts the number of possibilities to choose m

values rN-m+1,…,rN such that j ≤ rN-m+1 ≤… ≤ rN and rN-m+1+…+rN = n. To obtain the recursion

in Eq. (27) we have to sum up the number of possibilities to choose m–1 values for every

possible choice of rN-m+1, i.e., rN-m+1 = j + i with i = 0,…, n m⎢ ⎥⎣ ⎦ . ■

In fact, for N = 5, 6, 7, 8, 9, 10 only SN = 7, 11, 15, 22, 30, 42 settings exist. Unfortunately,

for larger N the number of settings grows exponentially, e.g., for N = 20 we have 627

different settings. Thus, for large values of N, i.e., N > 10, it is not feasible to apply the EM

algorithm for every possible setting. The same holds when fitting even one setting takes some

time, which may be the case for very large traces (e.g. K > 107 samples). In these cases we

recommend using one of the following strategies:

(i) Progressive pre-selection: In a first round enumerate all possible settings and apply the

EM algorithm until convergence with ε = 10-3 is reached. This requires only a few

iterations for each setting. Select the settings with the best log-likelihood values and put

them into a priority queue. We commonly consider at least 5 and at most 50 settings in

-17-

this round. Then start a second round with continuing iteration of the selected HErD

until convergence with ε = 10-4 is reached. Finally, start a third round with the 50% best

of the priority queue until ε = 10-6. Experimental results when applying this strategy are

presented in Section 5.

(ii) Special structures: If the empirical distribution of the trace has a small squared

coefficient of variation (i.e., c2 < 1) we recommend to fit the HErD only with one, two,

or three Erlang branches, i.e., M = 1, M = 2, or M = 3. Note that the number of N-state

settings with M ≤ Mmax Erlang branches is
maxM (N,0)ϕ , e.g., for N = 50 and Mmax = 2

only 26 settings must be fitted. For monotonically decreasing empirical distributions

with large squared coefficient of variation (i.e., c2 > 1) we recommend to fit the HErD

only with N, N–1, or N–2 Erlang branches. Note that M = N corresponds to a

hyperexponential distribution, which was shown to fit heavy-tailed distributions with

large squared coefficient of variation quite well in [10].

(iii) Body/tail fitting: Fit the body of a distribution, i.e., the part of the distribution that

contains most samples, with a (say) 10-state HErD with M = 1, 2, and 3 Erlang

branches, which requires only 1+5+8 = 14 runs of the EM algorithm. Fit the tail of

distribution with a (say) 5-state hyperexponential distribution, i.e., M = 5 and r1 = … =

rM = 1. Apply this combined body/tail fitting on a 15-state HErD. Thus, an overall

number of 14 settings must be evaluated. A good application example for this approach

is the Pareto-II distribution discussed in Section 5.

The first approach works automatically, but requires additional effort, which is not

required if the other two variants are used. In practice especially variant (ii) works well, but

requires some pre-analysis of the data and an experienced user to decide about a good range

for the discrete parameters. The separate fitting of body and tail, as suggested in (iii), is often

used for heavy-tailed distributions (e.g., [23]), but requires an appropriate definition of body

and tail, and the number of states used for their approximation. Additionally, the low

complexity of the presented HErD fitting method allows us to optimize the body and the tail

fitting parameters together, which is preformed separately in [14]. The results from [8] seem

-18-

to indicate that a common fitting algorithm might yield excellent results for fitting heavy-

tailed distributions.

4.2 Combining Moment Matching with Likelihood Maximization

With the moment matching procedure described in Section 2.3 we can match the first three

moments of a HErD with M ≥ 2 Erlang branches by only adjusting two of the M Erlang

branches, i.e., the M–2 remaining Erlang branches (scale parameters and initial probabilities)

remain unchanged. There are M·(M–1)/2 possibilities to choose two Erlang branches for

matching. To integrate moment matching and likelihood maximization, we propose to try all

possibilities, which can be done rather efficiently, and to finally choose the one with the

largest log-likelihood. For the combination of moment matching with the EM algorithm for

log-likelihood maximization two strategies are considered:

(i) Apply the moment matching for a fitted HErD, i.e., first use G-FIT for maximum

likelihood estimation and then adjust the moments in the result that G-FIT found. We

tried this approach with quite good results, i.e., the log-likelihood value decreases only

marginal when the first three moments are matched. It is also reasonable to iterate

between G-FIT and moment matching, i.e., first use G-FIT then moment matching and

then G-FIT again with initial distribution obtained from the previous moment matching.

We applied this approach for the Pareto-II distribution discussed in Section 5.

(ii) To fit heavy-tailed distributions with a (say) 15-state HerD, a good strategy is to first

apply G-FIT for finding the best (say) 10-state HErD as described in Section 4.1. Then

we suggest to add a new Erlang branch with one phase, zero initial probability and

arbitrary scale parameter and to use this branch together with one of the remaining

branches for moment matching. Indeed, one of the remaining branches should be chosen

such that the log-likelihood value is maximized. After matching the moments we apply

G-FIT where we use the 11-state HErD as initial distribution. Repeating this approach

five times, we generate the 15-state HErD as desired (including a 5-states

hyperexponential distribution responsible for the tail). Usually the repeated use of G-

-19-

FIT is rather efficient, since only a small number of iterations is required after the

distribution has been modified due to moment matching.

The second strategy is quite useful for heavy-tailed distributions, since our experience is

that the log-likelihood measure is mainly influenced by the body of a distribution and not by

the tail (see example in Section 5.2). Therefore, the EM algorithm tends to fit the body

perfectly for the cost of neglecting the tail in some sense. In contrast, the moments matching

approach captures the tail behavior of a heavy-tailed distribution much better, since heavy-

tailed distributions are characterized by their low order moments, which differ in orders of

magnitude.

Recall, that the EM algorithm converges to a local maximum of the log-likelihood

function. Thus, the vector Θ = (α1,…,αM, λ1,…,λM) of the continuous parameters of the HErD

returned by the EM algorithm depends on the initial estimates 1α̂ ,…, Mα̂ and 1λ̂ ,…, Mλ̂ . Our

experience shows, that reinitializing the EM algorithm with a HErD that matches the first

three moments exactly, forces the EM algorithm to converge to a local maximum with a better

tail fitting.

5 Experimental Results

5.1 Fitting Hyper-Erlang Distributions to Synthetically Generated Traces

In the experiments a hyper-Erlang distribution (HErD) and an acyclic phase-type distribution

(APHD) are fitted for given traces with 104 samples drawn from known distributions. In

particular we consider two Weibull distributions with scale parameter η = 1.0 and shape

parameter β = 0.5 and β = 5.0, respectively, and a uniform distribution with left and right

boundary equal to 0.5 and 1.5. In addition we consider a Pareto-like distribution with heavy-

tail index α = 1.5 and b = 2.0. This distribution was previously used in [13] as an example of

a heavy-tailed distribution, which is not monotonically decreasing. According to [13] it is

denoted a Pareto-II distribution. Furthermore, we consider the shifted exponential distribution

as well as the matrix exponential distribution, which are part of a set of benchmark

-20-

distributions for PH fitting algorithms defined in [3]. The non-standard density functions used

for the experiments are summarized in Figure 4.

 Weibull(η,β): () ()x1
x

weibullf (x; ,) e
β

η
β− −β

η ηη β = ⋅ ⋅

 Pareto-II(α,b):
b x

1
paretoII

b ef (x; , b) x
()

α −
−α−α =

Γ α

 Shifted exponential (SE):
x1

2
SE x (x 1)1 1

2 2

e ,0 x 1
f (x)

e e , x 1

−

− − −

⎧ ≤ <⎪= ⎨
+ ≥⎪⎩

 Matrix exponential (ME): () ()2
x1

ME (2)
f (x) 1 1 cos(2 x) e−

π
= + ⋅ − π ⋅

Figure 4. Probability density functions of considered distributions

With respect to the set of distributions we compared the fitting quality of the HErD found

by G-FIT with the quality of the APHD found by the tool PH-FIT [14]. The PH-FIT tool

approximates the optimal parameter set of an APHD by minimizing a predefined distance

measure with a non-linear optimization algorithm. This algorithm uses an iterative

linearization method based on numerical computation of partial derivatives and the simplex

method to determine the direction in which the distance measure decreases most. In the

presented comparison the fitting parameters of the PH-FIT tool were the following: only body

fitting is applied (i.e., no separate tail fitting) and the distance of the original and the

approximate distributions is calculated up to the largest sample value. Furthermore, we run

PH-FIT with 3 rounds (i.e., starting from 3 different initial guesses) and at most 200

modifications in each round.

Figure 5 shows the empirical density functions for the six traces as well as the density

functions for the fitted HErD and APHD with N = 5 states and N = 10 states, respectively. For

some of the distributions also results when fitting a HErD with 50 states are plotted. Densities

of traces are approximated by histograms with intervals of width 0.05. The results for G-FIT

are obtained by fitting a HErD with the algorithm of Figure 3 for all possible discrete

parameter settings. Recall, that for N = 5 only 7 settings and for N = 10 only 42 settings are

-21-

considered. The EM algorithm stops when convergence is reached according to the log-

likelihood criterion with ε = 10-6 (see criterion (ii) in Section 3.3). From the curves of Figure

5 we conclude that the fitting quality of HErD is almost always as good as the quality for

APHD. Moreover, in some cases the results for HErD are better than for APHD, e.g. when

fitting the uniform distribution with 5 states. The reason why PH-FIT did not find the best

solution in these cases is that the optimization process got stuck in a local optimum.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.5 1 1.5 2

p
d

f

x

Weibull(1.0,0.5)

Empirical distribution of trace
G-FIT with 5 states

PH-FIT with 5 states
G-FIT with 10 states

PH-FIT with 10 states

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.5 1 1.5 2

p
d

f

x

Weibull(1.0,5.0)

Empirical distribution of trace
G-FIT with 5 states

PH-FIT with 5 states
G-FIT with 10 states

PH-FIT with 10 states
G-FIT with 50 states

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.5 1 1.5 2

p
d

f

x

Uniform(0.5,1.5)

Empirical distribution of trace
G-FIT with 5 states

PH-FIT with 5 states
G-FIT with 10 states

PH-FIT with 10 states
G-FIT with 50 states

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 1 2 3 4 5 6

p
d

f

x

Pareto-II(1.5,2.0)

Empirical distribution of trace
G-FIT with 5 states

PH-FIT with 5 states
G-FIT with 10 states

PH-FIT with 10 states

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.5 1 1.5 2 2.5 3

p
d

f

x

Shifted Exponential

Empirical distribution of trace
G-FIT with 5 states

PH-FIT with 5 states
G-FIT with 10 states

PH-FIT with 10 states
G-FIT with 50 states

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2 2.5 3

p
d

f

x

Matrix Exponential

Empirical distribution of trace
G-FIT with 5 states

PH-FIT with 5 states
G-FIT with 10 states

PH-FIT with 10 states
G-FIT with 50 states

Figure 5. Densities of fitted HErD and APHD for synthetically generated traces

-22-

1. Moment 1.99 1.99 (0.0%) 1.98 (0.5%) 1.99 (0.0%) 1.91 (4.3%) 1.99 (0.0%) 1.99 (0.0%)
2. Moment 25.61 22.47 (12.3%) 20.98 (18.1%) 23.78 (7.1%) 17.77 (30.6%) 24.26 (5.3%) 25.76 (0.6%)
3. Moment 995.13 512.55 (48.5%) 422.44 (57.5%) 638.04 (35.9%) 300.78 (69.8%) 701.43 (29.5%) 1156.57 (16.2%)
Log-likelihood
CPU time [sec]
Phase lengths
1. Moment 0.92 0.92 (0.0%) 0.92 (0.1%) 0.92 (0.0%) 0.92 (0.0%) 0.92 (0.0%) 0.92 (0.0%)
2. Moment 0.89 1.02 (14.1%) 1.02 (13.9%) 0.93 (4.6%) 0.93 (4.5%) 0.90 (1.1%) 0.89 (0.1%)
3. Moment 0.90 1.31 (45.6%) 1.31 (45.3%) 1.03 (14.4%) 1.03 (14.4%) 0.93 (3.6%) 0.91 (0.4%)
Log-likelihood
CPU time [sec]
Phase lengths
1. Moment 1.00 1.00 (0.0%) 1.00 (0.1%) 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%)
2. Moment 1.08 1.19 (10.6%) 1.24 (15.1%) 1.09 (1.4%) 1.09 (1.4%) 1.08 (0.6%) 1.08 (0.7%)
3. Moment 1.24 1.66 (33.9%) 1.85 (49.2%) 1.30 (5.2%) 1.31 (5.3%) 1.27 (2.7%) 1.27 (2.2%)
Log-likelihood
CPU time [sec]
Phase lengths
1. Moment 4.34 4.34 (0.0%) 3.89 (10.3%) 4.34 (0.0%) 3.78 (12.9%) 4.34 (0.0%) 4.34 (0.0%)
2. Moment 1057.62 323.6 (69.4%) 117.6 (88.9%) 340.7 (67.8%) 105.9 (90.0%) 911.7 (13.8%) 978.0 (7.5%)
3. Moment 1768568 100147 (94.3%) 12348 (99.3%) 114715 (93.5%) 12579 (99.3%) 1389436 (21.4%) 1674493 (5.3%)
Log-likelihood
CPU time [sec]
Phase lengths
1. Moment 1.51 1.51 (0.0%) 1.51 (0.1%) 1.51 (0.0%) 1.51 (0.0%) 1.51 (0.0%) 1.51 (0.0%)
2. Moment 3.58 3.61 (1.0%) 3.59 (0.3%) 3.61 (0.8%) 3.61 (1.0%) 3.59 (0.3%) 3.53 (1.5%)
3. Moment 11.55 11.96 (3.5%) 11.69 (1.2%) 11.79 (2.1%) 12.47 (7.9%) 11.59 (0.3%) 11.01 (4.7%)
Log-likelihood
CPU time [sec]
Phase lengths
1. Moment 1.06 1.06 (0.0%) 1.06 (0.0%) 1.06 (0.0%) 1.06 (0.2%) 1.06 (0.0%) 1.06 (0.0%)
2. Moment 2.12 2.15 (1.7%) 2.10 (0.7%) 2.16 (1.9%) 2.10 (1.1%) 2.13 (0.4%) 2.13 (0.5%)
3. Moment 6.57 6.66 (1.2%) 6.20 (5.6%) 7.24 (10.2%) 6.11 (7.0%) 6.59 (0.2%) 6.53 (0.7%)
Log-likelihood
CPU time [sec]
Phase lengths

G-FIT
Special cases

-8581.07

-10992.01

1,1,1,1,1,1,1,1
55

-20093.74
29

-13148.89

1402.30

1,1,1,1,2,4

13

34
16,34

-13253.28
205

5,12,15,18

1,13,17,19

174

2,2,2,3,11
137

-1166.51

21,29

-20108.91
423

-1855.00

309

M
at

ri
x

E
xp

on
en

tia
l

-9278.27 -9230.53

2,3 1,4,5

-8895.56 -8778.50
4 (2)

Sh
ift

ed
 E

xp
on

en
tia

l

-13327.48 -13265.52

1,1,3 1,3,6

-13376.14
5 (3) 140 90 (20)*

Pa
re

to
-I

I(
1.

5,
2.

0)

-20340.91 -20236.15 -20084.11
2 (2) 246 62 (23)
1,1,3 1,2,3,4

U
ni

fo
rm

(0
.5

,1
.5

)

-3105.56 -3804.21 -1852.51

5 10

W
ei

bu
ll(

1.
0,

5.
0)

-1673.19

5

W
ei

bu
ll(

1.
0,

0.
5)

2 (1)

13 (12)
-11364.43-11068.87

10
217 27 (14)

-10998.60

1,1,1,1,1,1,1,1,1,1

10 states
G-FIT PH-FITPH-FIT

Trace
G-FIT

5 states

1,1,1,1,1

-10986.43

1,...,1,2,2

1092.56

249 170 (72) 461 268
-11258.91

1,5,6,8

20 states

156

-13184.11

1,1,2,4,12

-8748.19

-19980.79

G-FIT

116

139

142 60 (17) 285 107

2 (1) 182 28 (13) 386

391.10

1,1,2,3,6,7

394.68-1674.49
434

1,2,17

-1827.56

Table 1. Quality indices of fitted HErD and APHD for synthetically generated traces

Table 1 presents several quality indices for the considered distributions. In particular, the

first three moments for each of the six traces as well as the fitted HErD and APHD are

presented. Relative errors of the fitted distributions are presented in brackets behind the

absolute values. Furthermore, Table 1 contains for each trace the log-likelihood value and the

CPU time required by G-FIT and PH-FIT. In the last row of each distribution the optimal

number of phases of each Erlang branch found by G-FIT is shown. Recall, that for N = 5 and

N = 10 the G-FIT results are found from the best fit when fitting a HErD for all possible

discrete parameter settings. Applying the progressive pre-selection (see strategy (i) in Section

4.1) yields almost always the same results but requires less CPU time (see numbers in

-23-

brackets in the rows with CPU time in Table 1). In fact, only for the shifted exponential trace

(log-likelihood –13280.73) the results are not as good as in the general case (indicated with an

asterisk behind the brackets in Table 1). The reason for this is that with progressive pre-

selection some settings may be canceled out of the priority queue in the first or second round,

which would get better when running the EM algorithm until convergence with ε = 10-6.

Results presented in Table 1 when applying G-FIT with 20 states are computed with

progressive pre-selection. Note, that not all of the ϕ20(20,0) = 627 settings are evaluated, but

only a part of them which seems to be reasonable (see strategy (ii) in Section 4.1). In fact, for

the Weibull(1.0,0.5) trace we considered all settings with M ≥ 12 Erlang branches (67

settings), for the Weibull(1.0,5.0) trace and the matrix exponential trace we considered all

settings with M ≤ 5 Erlang branches (192 settings), and for the Pareto-II trace and the shifted

exponential trace we fitted all settings with M ≤ 6 Erlang branches (282 settings). Comparing

the fitted HErD and APHD, it can be observed that for all distributions the fitting quality of

the 20-state HErD is much better than that of the 10-state APHD. Moreover, the fitting

process for the 20-state HErD is less time consuming as for the 10-state APHD, although the

number of states is doubled.

The last column in Table 1 shows results for G-FIT for some special cases. In particular,

for the Weibull(1.0,0.5) trace results for an 8-state hyperexponential distribution running the

EM algorithm until convergence with ε = 10-8 are presented. It can be observed that due to the

longer iteration time the moments are matched much better than in the case when stopping the

iteration with ε = 10-6. For the Weibull(1.0,5.0) trace and the uniform trace we fitted all

50-state settings with at most two Erlang branches (26 settings) until convergence is reached

with ε = 10-16. The time requirements for the fitting process are still very small as can be

observed from Table 1. For the shifted exponential trace and the matrix exponential trace we

applied progressive pre-selection with 50 states and M ≤ 4 Erlang branches (1154 settings).

Finally, for the Pareto-II trace we applied the body/tail fitting approach (see strategy (iii) in

Section 4.1). We used 6 states for the body and 4 states for the tail. For the body we fitted all

settings with two Erlang branches (3 settings) until convergence with ε = 10-10. As expected,

-24-

the first three moments are fitted very well with this approach and the tail-behavior of the

distribution is captured much better, although the log-likelihood value is worse compared to

the best 10-state HErD.

Figure 6 shows the probability density function and complementary cdf (ccdf) for the

Pareto-II distribution when fitting a trace with 106 samples. We considered the 10-state HErD

distribution found by progressive pre-selection, denoted by G-FIT(1,2,3,4), the HErD

distribution determined with the body/tail fitting approach, denoted with G-FIT(1,1,1,1,2,4),

and a HErD distribution obtained from additionally applying the moment matching as

described in strategy (i) in Section 4.2, denoted with MM+G-FIT(1,1,1,1,2,4). Comparing the

results we observe that the body is fitted quite similar in all cases, whereas the tail fitting

differs. In fact, the combined moment matching and likelihood maximization gives the best

tail fitting, even if the log-likelihood is slightly worse, i.e., G-FIT(1,2,3,4) gives log-

likelihood –1991435 and MM+G-FIT(1,1,1,1,2,4) gives log-likelihood –1993697. The tail

plot of Figure 6 indicates that the likelihood function is less sensitive to the tail fitting than the

three moments matching also in this case.

In a final experiment, we compared the results obtained by G-FIT with results from the PH

fitting tool EMpht [1]. Similar to G-FIT the tool EMpht applies the EM algorithm for

distribution fitting, but with no specialization to a sub-class of PH distributions. Throughout

all experiments G-FIT outperforms EMpht in terms of CPU time requirements. Furthermore,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5 6

p
d

f

x

Pareto-II(1.5,2.0)

Empirical distribution of trace
G-FIT(1,2,3,4)

G-FIT(1,1,1,1,2,4)
MM + G-FIT(1,1,1,1,2,4)

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0.1 1 10 100 1000 10000 100000

cc
d

f

x

Pareto-II(1.5,2.0)

Empirical distribution of trace
G-FIT(1,2,3,4)

G-FIT(1,1,1,1,2,4)
MM + G-FIT(1,1,1,1,2,4)

Figure 6. Densities and complementary cdf of fitted HErD for the Pareto-II trace

-25-

EMpht converges much slower to optimal parameter values than G-FIT. For example, for the

Weibull(1.0,0.5) trace EMpht required 260 seconds CPU time for 1000 iterations on a 5-state

PH distribution and reached only a log-likelihood value of –11481.29, which is worse than

that for G-FIT and also PH-FIT (see Table 1). For the uniform trace EMpht required 230

seconds CPU time for 1000 iterations on a 10-state PH distribution and reached a log-

likelihood value of –2034.95, which is also worse than that for G-FIT and PH-FIT. Fitting the

Pareto-II trace with a 10-state distribution seems to be not practicable since already 100

iterations take more than 270 seconds of CPU time with log-likelihood values still far away

from the optimum.

The results presented in this section underline the flexibility of the class of HErD for fitting

general distributions as theoretically shown in Section 2. Furthermore, we conclude from the

experiments that HErD can be fitted much more efficiently and in most cases more accurately

than APHD with the proposed EM algorithm. We believe that this is essentially due to the

more restricted structure of the HErD class which practically does not reduces its flexibility

on fitting. We think that other fitting algorithms over the HErD class would result in similar

fitting quality but are less efficient in terms of CPU time requirements.

5.2 Fitting Hyper-Erlang Distributions to Real Traffic Traces

To study an example with a real data traffic trace we used the call center data trace provided

by Avishai Mandelbaum [21]. The data archives all calls handled by the call center of one of

Israel’s banks over a period of 12 month from January 1999 till December 1999. For every

month about 20,000 to 30,000 calls are recorded. For every call the traces contain several

attributes, from which we used the service times as given in the traces for our study.

Furthermore, service times are scaled to have mean 1.0.

Figure 7 shows the empirical density functions for the traces of January and December as

well as the density functions for the fitted HErD with 5, 10, and 20 states, respectively.

Service times for January exhibited a quick-hang phenomena [21], i.e., there is a high

-26-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2

p
d

f

x

Call Center Trace - Service Time for January 1999

Empirical distribution of trace
G-FIT with 5 states

G-FIT with 10 states
G-FIT with 20 states

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2

p
d

f

x

Call Center Trace - Service Time for December 1999

Empirical distribution of trace
G-FIT with 5 states

G-FIT with 10 states
G-FIT with 20 states

Figure 7. Densities of fitted HErD for call center traces

percentage of calls with very short service times, while service times of December are free of

this problem. From Figure 7 we conclude that the traces are fitted very well by a HErD with

10 or 20 states whereas 5 states seem to be not sufficient to adequately represent the traces.

Furthermore, Figure 7 shows that the quick-hang phenomena can also be represented by the

HErD with 10 states or 20 states. The relative difference between the moments of the trace

and the moments of the 20-state HErD is at most 1%, which underlines the high accuracy of

the fitted distribution.

To provide a second example we considered a log-file from the Squid proxy server at the

University of Dortmund, which was recorded in March 2005. The considered trace contains

about 9⋅106 elements and shows heavy-tailed behavior. We used the requested data sizes at

the proxy server for fitting and scaled the trace to have mean 1.0. The empirical distribution

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

p
d

f

x

Squid Trace - Data Size

Empirical distribution of trace
MM + G-FIT with 10 states
MM + G-FIT with 15 states

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0.01 0.1 1 10 100 1000 10000 100000

cc
d

f

x

Squid Trace - Data Size

Empirical distribution of trace
MM + G-FIT with 10 states
MM + G-GIT with 15 states

Figure 8. Densities and complementary cdf of fitted HErD for the Squid trace

-27-

of the trace and the fitted HErD with 10 and 15 states are presented in Figure 8. For fitting we

applied the combined moment matching and likelihood maximization approach as proposed

in strategy (ii) in Section 4.2. In fact, we used a 5-state hyperexponential distribution for the

tail and the remaining states for the body.

The experiments in Figure 8 show, that the combined moment matching and likelihood

maximization yields excellent fitting results for the tail. The body of the distribution contains

two peaks in the intervals [0.0, 0.05] and [0.25, 0.3], which result from a high percentage of

short file sizes and a very large number of files with size close to 512 bytes. From Figure 8 we

observe that such peaks can be better approximated by HErD when increasing the number of

states. Furthermore, we observe a significant difference in the log-likelihood values. The

10-state HErD gives log-likelihood 4945880 and the 15-state HErD gives log-likelihood

5332334. Ignoring the tail-fitting completely gives log-likelihood values of 4898814 and

5321959, respectively. This is in accordance with the discussion at the end of Section 4.2

where we stated that the body of the distribution has a stronger impact on the log-likelihood

measure. From the results presented in this section we conclude that even very large traces

(i.e., 106 – 108 samples) can be fitted efficiently and accurately with the proposed method.

5.3 Comparison of Queueing Performance Measures

To evaluate the fitting quality, apart from measures directly related to the empirical

distributions, also performance measures for a queueing system with interarrival times drawn

from the distributions may be used. In the experiments presented in Figure 9 a

Weibull(1.0,5.0) trace and a Pareto-II(1.5,2.0) trace each having 106 samples is used as arrival

process for a G/M/1/K queue with mean service time 0.8. Both traces were scaled to have a

mean arrival rate 1.0. Applying a trace-driven simulation we determined the mean queue

length and the probability of blocking an arriving customer for different queue capacities. The

performance measures were determined from 100 replicated simulations, i.e., an overall

number of 108 arrival events were simulated. The width of 99% confidence intervals was

almost always below 1%.

-28-

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30

M
ea

n
 q

u
eu

e
le

n
g

th

Queue capacity

Weibull(1.0,5.0)

Trace-driven simulation
HErD with 2 states
HErD with 5 states

HErD with 10 states
HErD with 50 states

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30

B
lo

ck
in

g
 p

ro
b

ab
il

it
y

Queue capacity

Weibull(1.0,5.0)

Trace-driven simulation
HErD with 2 states
HErD with 5 states

HErD with 10 states
HErD with 50 states

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100

M
ea

n
 q

u
eu

e
le

n
g

th

Queue capacity

Pareto-II(1.5,2.0)

Trace-driven simulation
HErD with 2 states
HErD with 5 states

HErD with 10 states
HErD with 10 states + MM

 1e-04

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100

B
lo

ck
in

g
 p

ro
b

ab
il

it
y

Queue capacity

Pareto-II(1.5,2.0)

Trace-driven simulation
HErD with 2 states
HErD with 5 states

HErD with 10 states
HErD with 10 states + MM

Figure 9. Results for the G/M/1/K queuing system and its approximations

The same performance measures are determined for a HErD/M/1/K queue with

appropriately fitted HErD as arrival process. Steady-state performance measures for the

HErD/M/1/K queue are computed from numerical analysis of the underlying continues time

Markov chain. For both examples we observe that increasing the number of states for the

HErD increases the accuracy of performance measures. In fact, using only a 2-state HErD

overestimates the mean queue length for the Weibull trace and underestimated it for the

Pareto-II trace. Applying the 50-state approximation for the Weibull trace from Table 1,

performance measures are exactly matched. For the Pareto-II trace we considered two

different 10-state HErD from Figure 6, i.e., the HErD with maximum log-likelihood,

G-FIT(1,2,3,4), and the HErD with best tail fitting, MM+G-FIT(1,1,1,1,2,4). The results in

Figure 9 indicate that an appropriate tail fitting of the distribution is more important for

accurate queueing behavior than using a distribution with slightly better body fitting, i.e., the

HErD with maximum log-likelihood.

-29-

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100

p
m

f

Queue length

ρ = 0.5

Trace-driven simulation
2-state HErD

15-state HErD

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100

p
m

f

Queue length

ρ = 0.95

Trace-driven simulation
2-state HErD

15-state HErD

Figure 10. Distribution of M/HErD/1/100 queue length for different utilizations

In a final experiment we evaluate the behavior of an M/G/1/K queue that models the

service process at a proxy server. The original Squid trace and the fitted 15-state HErD are

used to simulate the service time distribution at the proxy server under different load

conditions. Varying the arrival rate we set server utilization ρ to several values between 0.1

and 0.95. Note that an adequate traffic model has to capture the autocorrelation dependencies

of the trace, if they are present. The importance of autocorrelation dependencies can be

estimated applying a statistical test for data independence. One test method is to plot the

autocorrelation function r(k) for various lags k and a 95% confidence interval around 0 for

r(k), a so-called magic window. If more than 95% of autocorrelation values are within this

interval, then the data trace may be considered as independent [22]. In the autocorrelation

function of the Squid trace only 4.2% of r(k) values are outside the 95% interval. Therefore to

model the statistical behavior of this trace the autocorrelation dependencies can be neglected.

In Figure 10, we compared the queue length distribution for the fitted HErD and the Squid

trace. In all experiments the queue capacity was limited to K = 100. Using the Squid trace, the

mean queue length is 24.9 for ρ = 0.5 and 41.6 for ρ = 0.95. For the 15-state HErD we obtain

a mean queue length of 22.1 and 38.3, respectively. This corresponds to about 11.4% and 8%

relative error. For the 2-state case we observe a relative error of 44.7% and 41.6%,

respectively.

Note that for an M/G/1 system with unlimited buffer the mean queue length depends only

on the first two moments of the service time distribution (Pollaczek-Khinchin’s mean-value

-30-

formula, see e.g. [25]). To demonstrate that Pollaczek-Khinchin’s formula is not applicable in

the limited buffer case considered in Figure 10, we also present the mean queue length

distribution obtained from a 2-state HErD which matches the first three moments exactly.

This shows that matching the first three moments only is not sufficient to yield accurate

queueing behavior. Comparing the queue length distributions obtained from the original trace

with that computed with the 15-state HErD trace, we conclude that our workload model is

quite accurate for a broad range of server utilizations.

6 Conclusions

We presented a novel approach that fits a restricted class of phase-type distributions to trace

data. For the parameter fitting we developed an EM algorithm, which is tailored to the special

structure of a hyper-Erlang distribution. One of the crucial ideas behind the fitting method

presented in this paper is the use of the smallest class of phase-type distributions, which is

still sufficiently general to approximate any non-negative distribution (see Theorem 1 and

Figure 2). The empirical experiences confirm the expectation that searching for best fitting in

a smaller class of distributions is numerically more effective and stable.

The effectiveness of the proposed fitting method is demonstrated by a comparison with

two other methods using six benchmark traces and two real traffic traces as well as

quantitative results from queueing analysis. We conclude from this comparison that hyper-

Erlang distributions are the most versatile sub-class of phase-type distributions, since hyper-

Erlang distributions provide practically the full flexibility of the PH class and can be

efficiently tuned to match general distributions.

References

[1] S. Asmussen, O. Nerman, and M. Olsson, Fitting Phase-type Distributions via the EM

Algorithm, Scandinavian Journal of Statistics 23, 419-441, 1996.

<www.maths.lth.se/matstat/staff/asmus/pspapers.html>.

-31-

[2] A. Bobbio, A. Horváth, M. Scarpa, and M. Telek, Acyclic discrete phase type

distributions: Properties and a parameter estimation algorithm, Performance Evaluation

54, 1-32, 2003.

[3] A. Bobbio and M. Telek, A Benchmark for Estimation Algorithms: Results for Acyclic-

PH, Stochastic Models 10, 661-677, 1994.

[4] P. Buchholz, An EM-Algorithm for MAP Fitting from Real Traffic Data, in: P. Kemper

and W.H. Sanders (Eds.), 13th Int. Conf. on Computer Performance Evaluation -

Modelling Techniques and Tools (TOOLS 2003), Urbana, IL, USA, LNCS 2794, 218-

236, Springer, 2003.

[5] A. Cumani, On the Canonical Representation of Homogeneous Markov Processes

Modeling Failure – Time Distributions, Journal on Microelectronics and Reliability 22,

583-602, 1982.

[6] A.P. Dempster, N.M. Laird, and D.B. Rubin, Maximum likelihood from incomplete

data via the EM algorithm, Journal of the Royal Statistical Society 39, 1-38, 1977.

[7] A. Edelman and H. Murakami, Polynomial roots from companion matrix eigenvalues,

Mathematics of Computation 64, 763-776, 1995.

[8] R. El Abdouni Khayari, R. Sadre, and B.R. Haverkort, Fitting world-wide web request

traces with the EM-algorithm, Performance Evaluation 52, 175-191, 2003.

[9] Y. Fang, Hyper-Erlang Distribution Model and its Application in Wireless Mobile

Networks, Wireless Networks 7, 211-219, 2001.

[10] A. Feldmann and W. Whitt, Fitting mixtures of exponentials to long-tail distributes to

analyze network performance models, Performance Evaluation 31, 245-258, 1998.

[11] B.R. Haverkort, Markovian Models for Performance and Dependability Modeling, in:

E. Brinksma, H. Hermanns, and J.-P. Katoen (Eds.), Formal Methods and Performance

Analysis (FMPA 2000), LNCS 2090, 38–83, Springer 2001.

[12] G-FIT, <ls4-www.cs.uni-dortmund.de/home/thummler/pubs.html>.

[13] A. Horváth and M. Telek, Markovian Modeling of Real Data Traffic: Heuristic Phase

Type and MAP Fitting of Heavy Tailed and Fractal Like Samples, in: M.C. Calzarossa

-32-

and S. Tucci (Eds.), Performance Evaluation of Complex Systems: Techniques and

Tools (Performance 2002), Rome, Italy, LNCS 2459, 405-434, Springer 2002.

[14] A. Horváth and M. Telek, Phfit: A general phase-type fitting tool, in: T. Field, P.G.

Harrison, J. Bradley, and U. Harder (Eds.), 12th Int. Conf. on Computer Performance

Evaluation - Modelling Techniques and Tools (TOOLS 2002), London, UK, LNCS 2324,

82-91, Springer 2002. <webspn.hit.bme.hu/~telek/tools.htm>.

[15] M.A. Johnson, Selecting Parameters of Phase Distributions: Combining Nonlinear

Programming, Heuristics, and Erlang Distributions, ORSA Journal on Computing 5, 69-

83, 1993.

[16] M.A. Johnson and M.R. Taaffe, The Denseness of Phase Distributions, Purdue School

of Industrial Engineering Research Memoranda 88-20, 1988.

[17] M.A. Johnson and M.R. Taaffe, Matching Moments to Phase Distributions: Mixtures of

Erlang Distributions of Common Order, Stochastic Models 5, 711-743, 1989.

[18] M.A. Johnson and M.R. Taaffe, Matching Moments to Phase Distributions: Nonlinear

Programming Approaches, Stochastic Models 6, 259-281, 1990.

[19] T. Krishnan and G.J. McLachlan, The EM Algorithm and Extensions, John Wiley &

Sons, 1997.

[20] A. Lang and J. L. Arthur, Parameter Approximation for Phase-Type Distributions.

Matrix Analytical Methods in Stochastic Models, Lecture Notes in Pure and Applied

Mathematics 183, 151-206, Marcel Dekker, 1997.

[21] A. Mandelbaum, A. Sakov, and S. Zeltyn, Empirical analysis of a call center, Tech.

Rep., Technion, Israel Institute of Technology, 2000.

<iew3.technion.ac.il/serveng/callcenterdata>.

[22] S. Resnick, Modeling Data Networks, TR-1345, School of Operations Research and

Industrial Engineering, Cornell University, 2002.

[23] A. Riska, V. Diev, and E. Smirni, An EM-based technique for approximating long-

tailed data sets with PH distributions, Performance Evaluation 55, 147-164, 2004.

-33-

[24] L. Schmickler, MEDA: Mixed Erlang Distributions as Phase-Type Representations of

Empirical Distribution Functions, Stochastic Models 8, 131-156, 1992.

[25] K.S. Trivedi, Probability and Statistics with Reliability, Queuing and Computer Science

Applications, 2nd Edition, John Wiley & Sons, 2002.

Appendix

A.1 Matching Moments with a Mixture of Two Erlang Distributions

We consider a mixture of two mutually independent Erlang distributions with initial

probabilities α1 and α2 := 1−α1 with 0 < α1 < 1 and scale parameters λ1 and λ2, respectively.

The number of phases of the two mixtures is denoted with r1 and r2, respectively. Without loss

of generality we assume r1 ≤ r2. Let µ1, µ2, and µ3 be the moments to be matched by the

mixture of the two Erlang distributions. In the following we show how to compute the

solution for λ1, λ2, and α1 for the moment matching problem according to the cases (ii) to (iv)

considered in Section 2.3. If case (iii) applies the unique solution can be computed in closed

form [17] by

1
1 2

2 2 1 3

2D

D D 4D D
λ =

+ −
, 1

2 2
2 2 1 3

2D

D D 4D D
λ =

− −
, 2

1 1
1 2

1 A− λα = λ
λ − λ

, (28)

with

1

1
A

r
µ= , 2

1 1
B

r (r 1)
µ=

+
, 3

1 1 1
C

r (r 1)(r 2)
µ=

+ +
, and (29)

2
1D A B= − , 2D AB C= − , 2

3D B AC= − . (30)

In cases (ii) or (iv) the moment matching problem can only be solved numerically. Using

Eq. (3) the first three moments depend on λ1, λ2, and α1 according to
1 1

1 1 1 1 2 2 2r r− −µ = α λ + α λ , (31)

2 2
2 1 1 1 1 2 2 2 2r (r 1) r (r 1)− −µ = α + λ + α + λ , (32)

3 3
3 1 1 1 1 1 2 2 2 2 2r (r 1)(r 2) r (r 1)(r 2)− −µ = α + + λ + α + + λ . (33)

-34-

The system of Eqs. (31) to (33) can be transformed into a polynomial equation of degree

five depending only on the reciprocal x := 1/λ2 of the scale parameter of the second branch,
5 4 3 2

5 4 3 2 1 0c x c x c x c x c x c 0+ + + + + = , (34)

with coefficients

()2
0 3 1 2 1 1 3 1c r (r 2) (r 1)= µ µ + − µ µ + ,

2 3
1 3 1 2 1 1 2 3 1 1 2 2 1 1 2 1 2c r r (r 1) 2 r (r 1)(r 1) (r 2)(2r 2r 3r r)= µ + + µ µ µ + + − µ + + + ,

()2 2
2 2 2 1 2 1 1 1 3 1 1 2 3 1 1c 2r (r 1) 3 (r 1)(r 2) r (r 1) r (2r 3)= + µ µ + + − µ µ + − µ µ + ,

()2 2
3 2 2 2 1 1 2 1 2 1 1 2 1 3 1 1 2c 2r (r 1) r (r 2)(r 2) 3 (r 1)(r 2)(r 1) r (r 1)(2r 1)= + µ + + − µ µ + + + + µ µ + + ,

()2 3 2
4 2 2 1 1 1 2 1 2 1 2 1 1 2 3 1 2c r (r 1) (r 1)(4 4r 4r 3r r) 2 r (r 1)(r 2) r r= + µ + + + + − µ µ + + − µ ,

()2
5 1 2 2 2 2 1 2 2 1 2 1 2c r r (r 1)(r 2) r r (r 1) r (r 1)(r 1)= + + µ + − µ + + .

The roots of polynomial equations cannot be found analytically beyond the special cases of

polynomials with degree less then five. Nevertheless, determining the roots of a polynomial is

a standard topic in numerical analysis and can be solved quite fast and numerically stable

using balanced-QR reduction of the companion matrix of (34) (see e.g. [7]). The roots of this

polynomial give five (real and complex) solutions for λ2 from which we can compute λ1 and

α1 and subsequently find the feasible solutions. The system of Eqs. (31) to (33) can be

transformed to a unique solution for λ1 depending only on λ2, which is given by

2 1
1 2 2 2 1 1 2 2 2 1

1 2 1
1 2 2 2 2 2 2 3

r r (r 1) 2 (r 1)(r 1) (r 2)
r (r 1) 2 (r 1)

− −

− −
+ λ − µ + + λ + µ +λ =
µ + λ − µ + λ + µ

, (35)

and finally we can determine a unique solution for α1 from Eq. (31) given by

1
1 2 2

1 1 1
1 1 2 2

r
r r

−

− −
µ − λα =
λ − λ

. (36)

Note that Eqs. (34), (35), and (36) give five solutions for λ1, λ2, and α1 fulfilling the

system (31) to (33). From these solutions we have to find the feasible solutions, i.e., the real-

valued solutions that fulfill the conditions λ1 > 0, λ2 > 0, and 0 < α1 < 1. As a result from our

experience and as also motivated in [18], the matching problem has a unique solution in case

(ii) and in case (iv) it has exactly two solutions though not yet proved.

-35-

A.2 Simplification of the Expectation of the Complete-Data Log-Likelihood

We start with the expectation of the complete-data log-likelihood function as provided in Eq.

(19), i.e.,

() ()() ()k k k
K

KK

y y k y i i
k 1{1, ,M} i 1

ˆ ˆQ , log p x q y x ,
=∈ =

Θ Θ = α θ ⋅ Θ∑ ∑ ∏
y …

. (37)

Introducing the indicator function δx,y with δx,y = 1 if x = y and 0 otherwise we can rewrite Eq.

(37) as

() ()() ()

()() ()

k
K

k
K

KK M

m,y m m k m i i
k 1 m 1{1, ,M} i 1

KM K

m m k m m,y i i
m 1 k 1 {1, ,M} i 1

ˆ ˆQ , log p x q y x ,

ˆlog p x q y x ,

= =∈ =

= = ∈ =

Θ Θ = δ α θ ⋅ Θ

= α θ δ ⋅ Θ

∑ ∑∑ ∏

∑∑ ∑ ∏

y

y

…

…

 (38)

Now, for every m ∈ {1,…,M} and k ∈ {1,…,K} the sum over the vector y in Eq. (38) can be

simplified, i.e.,

()

()

() ()

() ()

k
K

k

1 2 K

k

k 1 k 1 k 1 K

1 k 1 k 1 K

K

m,y i i
{1, ,M} i 1

KM M M

m,y i i
y 1 y 1 y 1 i 1

KM M M M M

m,y k k i i
y 1 y 1 y 1 y 1 y 1i 1,i k

KM M M M

k i i
y 1 y 1 y 1 y 1i 1,i k

k

ˆq y x ,

ˆq y x ,

ˆ ˆq y x , q y x ,

ˆ ˆq m x , q y x ,

q m x ,

− +

− +

∈ =

= = = =

= = = = = = ≠

= = = = = ≠

δ ⋅ Θ

= δ ⋅ Θ

= δ ⋅ Θ ⋅ Θ

= Θ ⋅ Θ

=

∑ ∏

∑ ∑ ∑ ∏

∑ ∑ ∑ ∑ ∑ ∏

∑ ∑ ∑ ∑ ∏

y …

"

" "

" "

() () ()
i

K M

i i k
y 1i 1,i k

ˆ ˆ ˆq y x , q m x ,
== ≠

Θ ⋅ Θ = Θ∑∏

 (39)

since ()M
m 1 i

ˆq m x , 1=∑ Θ = for all i = 1,…,K. Using Eq. (39) we can rewrite Eq. (38) as

() ()() ()

() () ()() ()

M K

m m k m k
m 1 k 1
M K M K

m k m k m k
m 1 k 1 m 1 k 1

ˆ ˆQ , log p x q m x ,

ˆ ˆlog q m x , log p x q m x ,

= =

= = = =

Θ Θ = α θ ⋅ Θ

= α ⋅ Θ + θ ⋅ Θ

∑∑

∑∑ ∑∑
 (40)

which is exactly Eq. (20).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

