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Abstract—Resource allocation in wireless access networks has
been an intensively researched topic recently: many proposed
solutions tackle radio channel access and dynamic spectrum
allocation, but traditional issues of queuing, bandwidth sharing
and packet processing at wireless access points have been targeted
as well. In most of the related work the competition for high
quality of service is usually solved by central coordination
among users via optimizing a specific target aspect of the overall
communication. In this paper we take a turn and provide users
with the possibility of resource allocation suggestions. We propose
a wireless access sharing framework in which users have a say
in optimizing their quality of service on the long term, and we
tackle its analysis with the tool set of stochastic game theory.
Our findings show that greedy users become polite against their
counterparts when the load is relatively low with the goal of
preparing for situations with high load.

Index Terms—wireless network, quality of service, access point,
resource allocation, stochastic game

I. INTRODUCTION

The current state in the evolution of Internet is the "wireless
Internet" in which Internet access has become available for
anybody, anywhere at any time via mobile devices. As a direct
consequence, if the network operators can win the trust of
costumers by running the Internet without any degradation or
interruption in their services, the era of the Internet as "critical
infrastructure for society" will begin. In order to reach this
desired situation, the once so popular research topic of quality
of service (QoS) has to be revived.

Indeed, the quality of user experience in wireless access
networks has been and, with the ever-increasing competition
for costumers, will be an important factor in the telecommu-
nications industry. The proliferation of mobile device usage
and the boom of the Networked Society (a.k.a the Internet of
Things) forces the network operators to put all their efforts on
improving the service quality continuously. With this in mind,
we believe that the renaissance of QoS research has arrived.

In this paper we propose a service quality assurance frame-
work with which the existing tools in the hand of network
operators are extended with the capability of user-driven
quality control. In our system the users (and their smart
mobile devices) get an opportunity to signal their online
demand for scarce resources towards the network, which in
turn can improve its decisions on resource allocation with
the ultimate goal of raising the satisfaction of its users. As a
specific example, we make the case of user signals for urgent
bandwidth demands, and of the scheduling decisions made at
the access point based on those.

Our contribution in this paper is two-fold. First, we derive
the model of the proposed framework with the elements of
stochastic game theory. Our model describes the state of
the access network via the users’ bandwidth demand, their
backlogged jobs, and the strategies they can choose with the
aim of reaching a desirable bandwidth allocation. Second,
hindered by the analytical complexity, we present a numerical
evaluation of our model, and we show simulation results
for different heuristic policies. Our main assumption is that
urgent bandwidth demands, if not served with the required
resource allocation, lose their valuation with time: jobs are
depreciated in the backlog. Our goal is to show that despite this
pushing time constraint even a user-driven resource allocation
framework may alleviate congestion situations.

The paper is organized as follows. In Sec. II we introduce
the setting in which our proposed framework can be imple-
mented. In Sec. III we discuss both seminal and fairly recent
related works. In Sec. IV we provide our stochastic game
theoretical model and in Sec. V we show the related numerical
analysis with some insightful results. Finally, in Sec. VI we
summarize our findings.

II. BACKGROUND

The average size and complexity of web pages has been
growing. An average web page has over 100 objects and is
1200K in size [1]. The rendering of such page is far from
trivial. It is a resource consuming task causing heavy load on
the user terminal. The page load times can be even in the range
of 5 secs with a 10Mbps connection on a modern PC [2].

The web page load time is a key performance metric for
user Quality of Experience (QoE) thus many techniques aim
to reduce this Key Performance Indicator (KPI). The two main
factors that web page load time depends on are the terminal
CPU and the network capacity. The potential of the enhance-
ment of either of the two factors was analyzed in [2]. The
authors estimated the following gains: a) when computational
time is zeroed but the network time is unchanged, the page
load time is reduced by 20% b) if the network time is reduced
to one fourth, but the computational time is unchanged, 45%
of the page load time is reduced. In this paper we introduce a
third aspect besides the CPU of the terminal and the network
capacity. We demonstrate that cooperation of the network and
the terminal can also result in QoE enhancement.

Our focus of interest for QoE enhancement is the start
render time KPI (T1). The start render time is the moment



something first displays on the user’s screen and gets in-
teractive. Human-computer interaction (HCI) guidelines [3]
recommend a 1-2 second start render time. Giving the user
visual feedback that something is happening shows the user
that the terminal is responsive. Also the user can already
start the browsing as most of the information of the web
page i.e., the textual content is already available, while large
pictures are still being downloaded in the background. Start
render optimization takes place before the first content appears
to the user. The start render is composed of time to first
byte connect time, server response time, processing objects
in the head of the page, initial page parsing and rendering.
Optimizing the start render time is a matter of optimizing each
of these delay components. There are several approaches to
address this problem: a) new protocols to improve Round Trip
Time (RTT) and introduce prioritization of objects e.g., SPDY
and QUIC [4], b) server side optimization of the content by
modules like pagespeed mod [5], or data compression proxy
like [6] and c) client side methods like caching, prefetching
and preloading. We focus on a mobile broadband environment
in which users share a common radio resource in a cell. In this
environment the main issue is the competition between users
on the radio resource that none of the above methods address.

Today some operators apply Deep Packet Inspection (DPI)
middle boxes e.g., [7] to introduce traffic differentiation in
the network for the internet traffic. However, end-to-end en-
cryption e.g., HTTPS, SPDY, QUIC make it impossible to
support any kind of QoE enhancement in a middle box for
such encrypted traffic. In this paper we show how priority
information extracted at the terminal and fed back to the
network can reduce the time needed to start rendering the web
page. The issue of encrypted traffic is avoided by gathering
information at the client side which is fully aware of the
browser status. Only traffic priority information is gathered
and communicated to the network node, with the consent of
the user, avoiding privacy issues.

III. RELATED WORK

Dynamic assignment of network resources has been heavily
studied since the appearance of integrated communication
systems [8]. Contradicting goals like service differentiation,
fairness, low delay, low delay-variation, starvation avoidance
have to be integrated in a properly operated network. The
class of potential scheduling solutions include priority schemes
with various levels of aggregations, different implementations
of weighted fair queuing (WFQ) [9] like resource sharing,
again with various levels of aggregations. The common root
of these service class based service differentiation mechanisms
is the system’s (or service provider’s) centric optimization of
resource sharing. However, in recent communication systems
more short term dynamic effects are considered. The start
render time KPI, mentioned above, is a good example for the
need of user oriented dynamic resource assignment.

Many works have targeted the dynamic nature of wireless
access sharing. The considered optimization methods include

several models where the parameters are optimized by numer-
ical investigations and a set of problems that can be attacked
with general stochastic optimization tools, e.g., Markov de-
cision processes (MDP) [10]. Those related works that turn
to distributed allocation schemes mostly apply the tool set
of game theory [11], [12], but some employ other modeling
techniques, e.g., portfolio theory [13]. In the current work we
adopt a specific game theoretic framework for dynamic user-
driven resource sharing that is able to account for the stochastic
and sequential nature of demand for access: stochastic games.

The analytical tools developed for system oriented resource
sharing are not applicable for the quantitative assessment and
optimization of user oriented resource sharing. The analytic
potential of the stochastic game theory approach for user-
oriented dynamic behavior has been recently discovered by
many researchers. A wide range of dynamic resource sharing
mechanisms of wireless networks have been defined through
stochastic games, here we mention only those few that we
think are the most closely related to our work. The authors of
[14] apply a linear program formulation to find the stationary
policy for maximizing throughput given power and delay
constraints. In [15] a multi-level game theoretic model is given
which accounts for an evolutionary game within the set of
secondary spectrum users, and for a potential game played
among the providers competing for larger slices of spectrum.
In contrast to these works we build an abstract model for
wireless access, and apply an allocation mechanism of discrete
resource units.

IV. MODEL AND ANALYSIS

In this section we first present our framework, engineered
to solve the issues described in Sec. II, then we build its
simplified model, and give an analytical formulation and an
example for solving the problem of finding the optimal policy.

A. The Boosting Framework

In Fig. 1 we depict the components of our framework, i.e.,
the radio access point, two terminals and a content provider
server, with a toy example that introduces the notion of
“boosting” in a case of web page rendering. The prioritizing
(or boosting) logic in the wireless access point is stylized
with different queues and a Weighted Fairness Queuing (WFQ)
scheduler. The “Normal user” with Terminal A is not using
the boosting service, while the “Boosted user” with Terminal
B indeed does. The plots drawn at both users show time on
their x axes, and the cumulated downloaded data and the
received bandwidth on their y axes with dotted and dashed
lines respectively. Solid sections show the web objects that
are downloaded in the respective bandwidth-time products.

As the result of boosting, the toy example shows that
although the total time to download all 3 web objects is
the same for the 2 users, the “Boosted user” gets hold of
the first 2 objects earlier than the “Normal user”, which is
proved to be critical in terms of QoE, hence the benefits of
using our proposed Boosting Framework. While the download
bandwidth for the "Normal user" remains at the same level
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Fig. 1. The Boosting Framework in a toy example for 2 users

throughout the download session, the “Boosted user” receives
higher bandwidth allocation at the beginning, and lower at the
end. The boosting service in this case is implemented in the
wireless access point, and is triggered by the Chrome web
browser’s custom plugin which sets the weights higher in the
beginning and lower at the end compared to the default value
for the WFQ scheduler in the wireless access point. In the
following we model this as submitting bids to an auction where
boosting bandwidth is allocated to users for time slots.

B. Discretized model

We split the time horizon into uniform slots and assume that
in a given time slot only one user can get a unit amount of
boosting bandwidth, resulting in the fact that one unit of the
user’s jobs gets boosted. This way we discretize our model and
make sure that the auction in which the wireless access point
selects the user whose job will be boosted is a single-unit
auction. We apply a second-price auction: highest bid wins
and pays the second highest bid for the single item. The usual
notions and notations related to our auction are listed below:

• Users are denoted as I = {1, 2, . . . , i, . . . , n}.
• The amount of boosted jobs of user i in a given time slot t is

denoted by xi(t) ∈ {0, 1} ∀i such that
∑
i xi(t) = 1 ∀t. The

amount of boosted jobs is defined in terms of traffic volume
(given by the product of time slot length and the amount of
bandwidth allocated for boosting). In each time slot only
one user wins the opportunity to get its jobs boosted.

• Stochastic demand: di(t), job arrival events are linked to
time slots and job sizes are defined in the aforementioned
boosted traffic volume units.

• Jobs that are not boosted cumulate in the backlog of the
respective user, denoted as Ji for user i. We denote a job
with ji in the backlog Ji = {ji} of user i, its size as |ji|
and its age, i.e., the time it spent in backlog, with j̃i.

• The value of getting a boosting opportunity is ui(t) =
ui(xi(t), Ji(t)), ∀i, i.e., all the backlogged jobs influence
the received utility because by not getting the opportunity
all those jobs get delayed, hence negative effect on QoE.

• Users bid for boosting bandwidth with bi(t) in the discrete
time slots. In a system implementation the bids are best
produced by a browser plugin, just as it is suggested in the
toy example of Sec. IV-A.

• The second highest bid, i.e., the price to be paid, is denoted
by ci(t). The budget of user i in time slot t is mi(t).
Accounting user budgets and subtracting costs to be paid at
auctions are best handled by the access point in a possible
system implementation.

C. Analysis

The system behaves as follows. In each time slot the system
is in one of the states S that describe traffic backlog to boost
and remaining budget for each user. If there are less jobs to be
boosted than what the system can handle in a time slot, then
naturally all of them get boosted. On the other hand, when
the resource demand exceeds the offer, i.e., there are more
jobs waiting for being boosted in the system than what can
be served, a job ends up either being boosted or staying in
backlog by the end of the time slot.

The aim of the analysis is to find the stationary policy
that optimizes the service allocation according to various
KPIs. The possible state transitions from one time slot to the
subsequent one are due to job arrivals and serving jobs, which
latter is driven by the job backlogs via boosting attempts. A
Markov decision process based policy optimization approach
would require the definition of selected actions πi(bi|s) =
P [Ati = bi|St = s] ∀t, where Ati denotes the random variable
depicting user i’s action in time slot t when the system is in
state s. Due to the high memory dependence of the system
behavior the MDP based analysis is infeasible.

Instead of state space based optimization, we treat the prob-
lem as searching for a policy in a bid-based stochastic game.
In this setting the jobs are generated at users randomly, then
they submit bids, finally one unit of the winner’s backlogged
jobs gets served. The auction winning user’s job gets boosted,
others’ jobs to be boosted remain in their backlogs.

The payoff function users optimize is defined as follows.
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Definition 1. The user payoff is equal to the sum of utilities
of jobs served minus the cost paid for the service, i.e., for user
i and time T : pi(T ) =

∑T
t=1 ui(t)− ci(t).

Although the value of boosted jobs is what directly affects
the user QoE, we also integrate the cost that a user has to cover
from its centrally allocated budget into the payoff. Doing so
we intend to make the payoff resonate with the repeated and
stochastic character of the game: this creates an incentive not
to use up all the allocated funds at one, but keep savings for
periods when multiple jobs arrive.

We assume that the rational users strive to maxi-
mize their payoffs, and therefore seek the optimal strat-
egy: b∗i = argmaxbi limT→∞

pi(T )
T with budget constraint∑T

t=1mi(t)− ci(t) ≥ 0, ∀T . The strategy (bidding policy)
of the user allows for describing a wide range of dynamic
user and system behavior. Therefore optimization of various
KPIs can be implemented through these user strategies.

D. Toy example

In order to demonstrate the complexity and the flexibility
of the model, here we show a specific example. We assume a
game of 2 players, unit-size jobs, service capability of 1 job
per time slot in total and for both players a utility decreasing
with the age of the head job of the player’s backlog: ui(t) =
u− ai(t). For the sake of simplicity we assume that a player
can choose between 2 actions in each time slot: either bids
with the actual utility of its head job, or bids with zero.

In Fig. 2 we demonstrate two cases in which both players
have one job, the first player’s head job is i time slots old,
the other player’s head job is j time slots old. The left-hand
side shows the case in which the players adopt the policy in
which they bid with the head job utility, the right-hand side
graph shows the case for zero value bids. The circles represent
states and only those are shown that will be reached from the
one-one job state until ending up in an empty system (no new
job arrivals are supposed). In the circles we depict the number
of jobs for the two players. On the arrows, we show the payoff
of the player that wins the auction between the two states.

In the first case, whoever has the more recent job (e.g.,
i < j << u) will win the auction, but has to pay the other
player’s utility as cost (e.g., pi = u − i − (u − j) = j − i).
Then the other player can get its job boosted without any cost
(e.g., pj = u− j−1), but with less utility, as the head job got

older. In the second case the first time slot gets auctioned to a
randomly selected player with no cost, hence e.g., pi = u− i,
and the other player gets the second time slot for no cost, as
in the first case. Based on these payoffs, as long as j − i >
0.5(u− i) + 0.5(u− i− 1) stands, i.e., u > j > u− 0.5, the
first player is better off with the utility-based bidding policy.
Otherwise, and this is the more probable case of the variables,
zero value bidding results in higher payoffs. Furthermore, if
j− i < u− i− 1, i.e., j < u− 1, it is actually more profitable
for the first player to let the second player, with the older head
job, win. The lack of costs compensates the player for the loss
of utility in the latter time slot.

Note that this toy example with artificial payoff assumes
that no new jobs arrive before the second allocation, and we
assume that players either bid with their actual head job utility
or with zero. These are restrictive assumptions, but keep the
example tractable and show that even without the stochastic
element of job arrivals how the sequential (or repeated) nature
of the game rules out the utility-based strategy from the set
of dominant strategies in these second-price auctions.

V. NUMERICAL ANALYSIS

Based on the model presented in Sec. IV, we wrote and
ran a discrete-time simulation. In this section we present its
parameter settings, the analysis we made the cases for and
finally the results we obtained.

A. Bidding policies and simulation parameters

We are interested in the interplay of different bidding
policies. In our simulations we assume that users switch
among our heuristic bidding strategies following an evolution-
ary process, i.e., moving towards policies that provide higher
payoff. First we refine the valuation of boosting (of Sec. IV-B)
for which the users bid in each round.

Definition 2. The value of boosting a job of user i is max(u−
εt, 0), i.e., the initial utility is linearly diminishing with the
rounds spent in backlog.

Before introducing the policies we investigated, let us define
the term opportunity cost.

Definition 3. The opportunity cost is the future loss of valu-
ation of backlogged jobs: if a user does not get the boosting
bandwidth in a given time slot, the valuation of its backlogged
jobs decreases by the next time slot. Therefore the opportunity
cost for user i with jobs Ji = {ji} is

∑
ji∈Ji |ji|ε where |ji| is

the size of the job ji still in backlog and ε is the depreciation
of backlogged jobs from Def. 2.

Now, given the time-sensitive job utility and the opportunity
cost, we define three heuristic bidding policies.

Definition 4. With greedy policy the player bids its whole
budget; with rational policy one bids the actual utility of the
jobs to be boosted; and with generous policy one bids the
opportunity cost (Def. 3). In all policies the player’s budget
is the upper limit of the bid.



We run simulations with the following parameters in order
to demonstrate the pros and cons of the proposed heuristic
policies, and to compare the distributed auction-based alloca-
tion with traditional bandwidth sharing.
• Number of users: |I| = 30.
• Jobs are generated at users with independent and identically

distributed exponential random inter-arrival times having
mean β = 1

λ = |I| (Poisson process), and all the jobs are
unit-sized.

• The age of a job ji for user i is given by the number of
rounds the job has spent in the user’s backlog, i.e., a job’s
age is 0 in the round it arrived, 1 in the following round,
and so on.

• Jobs in the backlog are continuously served with the band-
width not allocated for boosting, therefore in each time slot
their size decreases by δ = 0.2. This however does not
induce any valuation for the user.

• Users bid for a bandwidth-timeslot unit in each round. For
the auction winner i xi = 1 in the given round and xj =
0 ∀j ∈ I \ i. This traffic opportunity is used to boost jobs
in the winner’s backlog under FIFO policy.

• Each user gets the same budget increment in each round that
they use for bidding. Users strive to increase their payoffs
which is the value of boosted jobs minus the cost of winning
the auction.

• We assume the same initial utility and depreciation for all
jobs and all players: u = 1 and ε = 0.1u.

B. Fitness of policies with various job arrival rates

It is well-known that the rational policy, i.e., truthful
bidding, would be the optimal strategy in case the game
was a one-shot game because of the desirable characteristics
of second-price auctions. We make the case, however, for a
stochastic game, a repeated game with many different states
represented by the job backlogs.

In Fig. 3 we depict the number of players implementing
each policy in systems with increasing load levels. We let users
change their applied bidding strategy mimicking the dynamics
of evolutionary game theoretical models: we assume that when
a given user wants to bid for boosting jobs it randomly
selects one of the policies with probabilities proportional to
the average cumulated payoffs of users grouped by their actual
strategies. In the beginning users are evenly split among the
policies to start with. The job arrival rate is 0.003 in Fig. 3(a),
0.03 in Fig. 3(b) and 0.3 in Fig. 3(c) with a number of players
of 30 in all cases. The solid, dashed and dotted lines show the
evolution of player counts with the 3 presented policies on
the y-axis in the function of simulation rounds on the x-axis.
When the load is low (Fig. 3(a)) the generous policy prevails,
when the system is saturated (Fig. 3(b)) the rational policy
seems to provide the highest payoff, while in an overloaded
system (Fig. 3(c)) no policy is better than the others.

The generous bidding strategy pays off on the long run
when the average system load is low because in most cases
the relatively low bid is enough to get jobs boosted, and the
budget is saved for bursty times. Intuitively, when the system

is close to its saturation it is worth bidding with the actual
value of the jobs to-be-boosted (rational policy) in order to
beat users applying other bidding strategies and to get jobs
boosted as soon as possible. In any case it is not beneficial to
burn up the whole budget in single bids applying the greedy
policy, unless the system is overloaded for a long time (Fig.
3(c)) but then no policy beats the others at providing the user
better chance to get boosting opportunity.

C. The raise of social welfare compared to central allocation

In the second set of simulations we compare the utilities
of boosted jobs in a system where users all bid following
the rational policy with a system in which users get to boost
their jobs in a traditional round robin fashion. The job arrival
rates are the same as in the previous batch of simulations.
Both system simulations are launched with the same job arrival
patterns, randomly generated beforehand.

The results are presented in Fig. 4: the subplots represent the
three cases of job arrival rates, i.e., in Fig. 4(a) λ = 0.003, in
Fig. 4(b) λ = 0.03 and in Fig. 4(c) λ = 0.3 with 30 users and
fixed unit-sized jobs. On the y-axis the accumulated utility, on
the x-axis the number of rounds are depicted. Note that as in
the central allocation scheme no budget is distributed to users
and they do not pay for boosting jobs, the accumulated utilities
are compared, not the payoffs. When the load is low (Fig.
4(a)) the two schemes perform the same way since competitive
situation is rare: at most a few users want to boost their jobs
throughout the rounds. However in a saturated system (Fig.
4(b)) the rational policy outperforms the central allocation
because round robin processing does not distinguish among
jobs based on their values as bidding users do. The central
allocation allows users to boost their jobs if its their round even
is other users have more recent, thus more valuable, jobs to be
boosted. In an overloaded system (Fig. 4(c)) this phenomenon
is even more conspicuous.

VI. CONCLUSION

Users’ quality of experience in wireless access networks has
been and, with the proliferation of mobile device usage and the
boom of the Networked Society (a.k.a the Internet of Things),
will be an important factor in telecommunications. With our
framework the existing tools in the hand of network operators
are extended with the capability of user-driven quality assur-
ance: users (and their smart mobile devices) get an opportunity
to signal their online demand for scarce resources towards the
network, which in turn can improve its decisions on resource
allocation with the ultimate goal of raising the satisfaction of
its users. We have shown an example for dynamically weighted
queuing in which the actual bandwidth demands are pondered
in the access point with user-provided weights. We call the
"fast lane" service as boosting: boosted jobs receive a pre-
defined fraction of the total bandwidth, but in turn the number
of simultaneously boosted jobs is limited.

First, we derived the model of the proposed framework
with the elements of stochastic game theory, accounting for
users’ bandwidth demand and their backlogged jobs, and the
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users’ strategies they can choose in order to reach the desirable
allocation. Second, hindered by the analytical complexity, we
chose the numerical evaluation of our model, and we have
shown simulation results for different heuristic policies. Our
main assumption is that urgent bandwidth demands, if not
served, lose their valuation with time. Based on the results we
draw the following conclusions: although users can always be
viewed as greedy players when they compete for boosting op-
portunity, as a surprising result we have shown situations when
users start saving on their budget and allow their counterparts
(generous policy) to access the boosting opportunity when the
system load are moderate. The seemingly polite users save
their budgets for forthcoming load peaks. When the system
is saturated a more aggressive (rational policy), but not over-
greedy (greedy policy) behavior proves to be the best on the
long run. More importantly, in these latter cases the distributed
scheme beats the traditional central allocation.

Finally, we argue that our model is flexible enough to
cover various optimization targets a network operator can
be interested in. With the handouts of budgets, the operator
has the power of implementing its preferences in the service
policy, should it be minimizing the average delay, maximizing
the fairness, or avoiding starvation. Given the constraints of
budgets, users will choose the policy that best fits their payoff.
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