
Time Blocking in Time-Driven-Switched Networks
V-T. Nguyen, R. Lo Cigno, Y. Ofek

Universit̀a di Trento – Dip. di Ingegneria e Scienza dell’Informazione (DISI)
M. Telek

Budapest University of Technology and Economics – Department of Telecommunications

Abstract—This paper presents a closed-form analysis of the
time-blocking probability in time-driven switching networks.
Time-blocking occurs when transmission resources are available
in both input and output, but there is no schedule, i.e., output
resources are outside a pre-defined time delay that is allowed for
the input. This situation may happen in architectures based on
pipeline forwarding. The main constraints affecting the schedula-
bility of resources are the load and the maximum delay allowed
between input and output. The analysis yields the exact blocking
probabilities for all possible scheduling delays and under all load
conditions for a single node, as well as initial results for a network
of nodes.

Index Terms—optical networks; sub-lambda switching; frac-
tional lambda switching; time-driven switching; blocking proba-
bility analysis; combinatorial analysis; switching analysis.

I. I NTRODUCTION

Time-Driven Switching (TDS) is a technique where switch-
ing decisions are controlled by a common time reference,
like the one provided by GPS (Global Positioning System)
or Galileo, the European system now under deployment,
that delivers UTC (Coordinated Universal Time) everywhere
around the globe with high precision [1] and for low cost.
TDS operation is based on UTC 1PPS (pulse per second)
and does not require high frequency synchronization between
switches or input/output ports, thus from this perspective TDS
is different and much less demanding than SONET/SDH sys-
tems. Furthermore, the TDS operation is completely decoupled
from bit synchronization of the serial links, again a major
simplification.

A promising example of TDS networks is FλS [4], [5],
where the capacity of an optical channel is divided into a
large number of sub-channels by using time units, called Time-
Frames (TFs), of equal duration. The result is the realization
of end-to-end sub-channel pipes that deliver information with
minimum buffering and delay and with no delay jitter. A work-
ing prototype of FλS networks with TDS is now operational
at DISI in Trento [2].

As was mentioned, TDS networks are managed based on
the UTC second (i.e., 1PPS) that is divided into Time-Frames
(TFs). A group of K contiguous TFs forms a time-cycle
(TC); L contiguous TCs are grouped into a super cycle that
is equal to one UTC second or 1PPS, as shown in Fig.1.
In this example:K = 1000 and L = 80. In TDS, all
TFs are aligned with respect to UTC at the input prior to
switching, which constitutes a necessary condition for pipeline
forwarding (PF). A path is set up end-to-end by properly

configuring the switching time of a TF at all switches along
the path.

Fig. 1. Cycles and use of UTC in TDS.

One of the key issues in TDS networks is to find the
schedulingfor forwarding TFs (which contain packet flows)
along the end-to-end path. Scheduling is a fundamental prob-
lem because the TDS architecture aims at minimizing delays,
and consequently buffering: if a TF at the input cannot be
scheduled for transmission on the output, then the flow using
that TF must be denied admission, which means that it is
blocked ortime-blocked.

Indeed, the problem of blocking can be decomposed into
three factors: (i) there are no resources at the output: this is
the traditional problem faced in circuit switching networks
normally named ‘call blocking’; (ii ) resources are available
at the output, but the internal structure of the switch prevents
connecting the input and the output, this is normally called
‘space blocking’; (iii ) resources are available at the output,
and the switch can be configured to connect the input and the
output, but it is impossible to find a feasible schedule mapping
from the input TF to the output TF, this is time-blocking.

Time-blocking is normally solved by buffering, and indeed
in TDS switches if K buffers for K TFs per input are
used time-blocking is zero; however, in all optical ultra-fast
switches buffering is not trivial and with today technology it
is limited to only a few TFs.

In the design of a TDS network time-blocking as well
as space-blocking must be taken into account. In [6] three
different architectures for all optical FλS TDS switches were
proposed and analyzed from the complexity andschedulability
point of view. Schedulability is the ration of the number of
schedulable input/output combinations versus the total number
of possible combinations. One of the architectures was found
technically feasible and non-space-blocking, and for this ar-



chitecture the time-blocking was computed in the simple case
when no delay or buffer is available.

In this work we compute the time-blocking of non-space-
blocking time-driven-switches for the general case of both
immediate and non-immediate forwarding.

Let z < K − 1 be the number of buffers available to delay
a TF switching from input to output. We define two basic
cases: (i) Immediate forwarding (IF):the case ofz = 0; (ii )
Non-immediate forwarding (NIF):the case ofz ≥ 0.

In essence, our objective is to compute the time-blocking
probability as a function ofz and the load of the input ports
and output ports. Note again that ifz = K − 1 then each and
every TF at the output is schedulable for each and every TF
at the input and time-blocking is zero.

The contribution of this paper is the exact (closed-form)
computation of the time-blocking for all values ofz. In
addition we provide preliminary results on the methodology
to compute the time-blocking in multi-node scenarios. (We re-
mark that the results are mathematically exact for the problem
defined, and therefore, validation through simulations is not
presented.)

The paper is organized as follows, in Section II the blocking
problem is formulated, while providing the analysis approach.
Then Section III provides the analysis for the case whenz =
1, while Section IV provides the analysis for any value of
z. Section V formulates and analyzes the multi-hop scenario,
while conclusions are discussed in Section VI.

II. PROBLEM FORMULATION AND ANALYSIS APPROACH

A. Basic assumptions and definitions

We assume independence of each channel (i.e., input and
output), thus we examine a single input channel and a single
output channel of the switch.
Load definition— The load is defined as the number of busy
TFs per TC per channel. For all channels, the busy TFs within
each TC is assumed to be distributed uniformly at random. Let
b denote the number of busy TFs per TC. The load of a channel
is identified by the pair(K, b), whereK is the number of TFs
in each TC, as was shown in Fig.1.

For the sake of using simple notations we useb identical
for all the inputs and the outputs, but this assumption is not
required for the analysis and in Sect. IV-C we present results
where the load of the input and the output are different.

To formulate the problem, we define the following nota-
tions:
• a denotes the number of free TFs per TC,a = K − b;
• tfk denotes a TFk in a TC;
• tf in

k denotes TFk of the input, 0 ≤ k < K;
• tfout

k denotes TFk of the output, 0 ≤ k < K;
• z denotes the number of buffers (or maximum scheduling

delay measured in TFs),0 ≤ z < K;
• the symbol ‘0’ denotes a busy TF;
• the symbol ‘1’ denotes an available (or free) TF.
Note that the TF index is periodic, which implies that if

k ≥ K then k = (k mod K) sinceK TFs are grouped in a
TC.

Def. 1 (z-forwarding scheme):— A switch is under
z-forwarding scheme iff the content of a TF can be buffered
arbitrarily for i TFs prior to being forwarded,i = 0, 1, .., z.

In other words, for thez-forwarding scheme the maximum
scheduling delay of a TF is equal toz TFs. z = 0 means the
immediate-forwarding (IF) scheme or zero scheduling delay.

Def. 2 (A schedulableTF): — For a pair of input and
output, a TF k of the output (i.e., tfout

k ) is schedu-
lable iff tfout

k =‘1’ and at least one TF in the set
{tf in

k−i|i = 0, 1, .., z.} is available.
Def. 3 (A blockedTF): — For an input output pair, a TFk

of the output (i.e.,tfout
k ) is blocked iff tfout

k =‘1’ and all TFs
in the set{tf in

k−i|i = 0, 1, .., z.} are busy. We use a symbol
‘1b’ to denote the blocked TF, i.e.,tfout

k =‘1b’.
An example of schedulable and blocked TFs is shown in

Fig. 2.

Fig. 2. Illustration whenK = 12, a = 4, z = 2: tfout
4 and tfout

9 are
blocked;tfout

2 , tfout
7 are schedulable.

Given an input and output pair of a strictly non space-
blocking switch operating underz-forwardingscheme, we aim
at derivingpzF, the probability that all available TFs of the
output are found blocked under a given the load(K, b).

Let Cblk be the number of input/output TFs combinations
such that all thea available TFs of the output are found
blocked, andCtotal be the total number of input/output TFs
combinations. The time-blocking probability is the ratio be-
tweenCblk andCtotal:

pzF =
Cblk

Ctotal
. (1)

B. Run, run-length and blocked positions

Run and run-length:A run is defined as a group of equal
symbols that are positioned consecutively. For examples, runs
of 0’s are ‘0’, ‘ 00 ’, ‘ 000 ’ and so on. A number of symbols
composing a run is itsrun-length. In between two adjacent
runs of0’s there is one run of1’s, and vice versa.

Because of the periodic nature of TCs, the last TF of a TC
and the first TF of the next TC are positioned consecutively.
Therefore, in each arrangement the number of runs of0’s and
the number of runs of1’s are equal, excluding the trivial cases
of all zeros and all ones.

For instance, the cyclical arrangement of 4 symbols ‘1’ and
8 symbols ‘0’ shown in the input in Fig. 2, there are 3 runs
of 1’s and 3 runs of0’s.
Blocked positions:For a givenz-forwarding scheme, arrange-
ments of thea available TFs and theb busy TFs in the
input may generate positions such that available TFs in the
output that are positioned ‘beneath’ (with reference to the
input/output mapping as in Fig. 2) areblocked, i.e.,tfout

k =‘1b’.



Fig. 3. Example of blocked positions whenz = 1, given a sample
combination of the input.

In order to highlight the idea of blocked positions, which
is important in the following analysis, let’s consider the
following examples:

• For z = 0 (i.e., the IF (immediate forwarding) scheme),
any arrangement in the input generatesb blocked posi-
tions. Obviously, if an output’s available TF is ‘positioned
beneath’ a busy TF of the input, it is blocked sincez = 0.

• For z = 1, the content of a TF can be delayed at most
one TF duration prior to being forwarded. Fig. 3 shows
how blocked positions are generated. In fact, for every
pair of adjacent ‘00 ’ symbols the right symbol generates
a blocked position. Consequently, if there arel > 1
consecutive0’s, then there arel − 1 blocked positions.

• For z = 2, a content of TF can be delayed at most two
TF durations. Only runs whose run-length is greater than
two, such as, ‘000 ’, ‘ 0000 ’ and so on, generate blocked
positions. Consequently, if there arel consecutive0’s and
l > 2, then there arel − 2 blocked positions.

Consequently, the number of blocked positions generated by
a given arrangement (of available TFs and busy TFs) in
the input depends on the specificz-forwarding scheme and
the given load(K, b) of the input. For a run of0’s, there
is a relation between the run-length the number of blocked
positions generated, andz. Let li be the run-length of runi
of 0’s. Let xi be the number of blocked positions generated
by run i, then:

xi =
{

li − z if li ≥ z,
0 otherwise.

(2)

We are interested in runi such thatli ≥ z.
Bounds of the number of blocked positions:Given an arrange-
ment in the input, letx ⊂ Z+ be the total number of blocked
positions generated from all runs of0’s in a TC.

Lemma 1 (Bounds ofx): For a given load(K, b), x is
bounded by:

b− za = xmin ≤ x ≤ xmax = b− z . (3)

Proof: From (2), we yieldxmax = b − z when all theb
busy symbols form a single run in the input, which is obviously
the longest possible run.

To computexmin, we further observe that, in a cyclical
arrangement,a symbols of ‘1’ can split at maximuma runs of
0’s, where every run has the same length ofz (i.e., li = z for
all i) such that no blocked position is generated according to
(2). The remaining number of symbols ‘0’ is (b−za). Since no
more run of0’s can be formed due to running out of symbols
‘1’ to split them. Thus, placements of remaining ‘0’ symbols
generate blocked positions. Therefore,xmin = (b− za).

In a switch in isolation time-blocking happens only when
all available TFs of the output are in blocked positions, since
the input TF can be chosen freely.

C. General form of the time-blocking probability

For a given value ofx satisfying (3), letC(x) be the
number of arrangements found in the input such that each
of these arrangements generate exactlyx blocked positions.
Given C(x), we have the following result:

Theorem1: — For a stand-alone switch, the time-blocking
probability for the generalz-forwarding scheme,pzF is given
by:

pzF =
b−z∑

x=max{a,(b−za)}
C(x)

(
x

a

)/(
K

b

)2

. (4)

Proof: Givenx blocked positions generated by the input,
the number of ways to arrange alla available TFs of the output
into blocked positions so that a time-blocking occurs is

(
x
a

)
.

Thus, the subtotal number of combinations, denoted asCsub,
generated by both the input and the output such that time-
blocking happens is given by:

Csub = C(x)
(

x

a

)
.

If x < a, then
(
x
a

)
= 0. Thus, we only considerx ≥ a

(i.e., a case where a time-blocking occurs). From Lemma 1,
observe that:

• if (b−za) ≥ a ⇔ K ≥ (z+2)a then for any combination
in the input, we havexmin = (b− za) ≥ a.

• if (b − za) < a ⇔ K < (z + 2)a then for somex such
that b − za ≤ x < a, we are not interested in. Thus we
setxmin = a.

Combined with (3) we have the range of meaningfulx
values for computing time-blocking probability:

max{a, (b− za)} ≤ x ≤ b− z . (5)

The sum ofCsub over all meaningfulx yields Cblk:

Cblk =
xmax∑

x=xmin

Csub =
b−z∑

x=max{a,(b−za)}
C(x)

(
x

a

)
.

Meanwhile, total numbers of combinations at the input and
at the output are computed as

(
K
b

)
for each input and output.

Thus, we haveCtotal:

Ctotal =
(

K

b

)(
K

b

)
=

(
K

b

)2

.

The derivation ofC(x), i.e., the number of combinations
in the input generating exactlyx blocked positions, is one of
the main contribution of this paper and we dedicate Section III
and IV to its computation.



III. A NALYSIS FOR 1-FORWARDING CASE

We separate the analysis of the 1-forwarding scheme from
the general case, because its simpler mathematics allows for
descriptions and explanations that will help in deriving the
general case. 1-forwarding means there is a single position in
the buffer:z = 1.

Let u be the number of runs of0’s. For z = 1 all runs
satisfy li ≥ z. Summing (2) over all runs yields:

u∑

i=1

xi =
u∑

i=1

(li − z) =
u∑

i=1

li − uz .

Since
∑u

i=1 xi = x (total number of blocked positions) and∑u
i=1 li = b (total number of symbols ‘0’), the equation above

becomes:

u = b− x . (6)

(6) holds only forz = 1, and it is the reason why this case
can be treated differently from the general one. In this case
the computation ofC(x) can be done in two different ways.
The first one, considering a linear disposition of the symbols,
which gives the result with a problem decomposition in form
of summation. The second one, which will be used also in the
general case, considers the cyclic disposition of the symbols
and gives the results in form of a multiplicative decomposition
that, however, counts the number of possible patternsu times,
so that the final result must be divided byu.

A. Additive decomposition

The time cycle patterns may be viewed as non-cyclic
patterns withb symbols ‘0’ and thea symbols ‘1’. It is easy
to identify three possible cases of non-cyclic patterns:
Case 1:the first and the last symbol of the cycle are different,
implying that there areu runs of0’s andu runs of1’s. Case
1 has two obvious and identical (from the combinatorial point
of view) sub-cases: the first symbol is ‘0’ and the last one is
‘1’, or vice versa.
Case 2:both the first and the last symbol of the cycle are ‘1’.
so that there areu runs of0’s, and(u + 1) runs of1’s.
Case 3:both the first and the last symbol of the cycle are ‘0’,
so that there are(u + 1) runs of0’s andu runs of1’s.

It is easy to see that the three cases above form a partition
of the set of the dispositions, and this is valid for any givenx,
so thatC(x) can be computed as the sum of the three cases.

For z = 1, C(x) is given by:

C(x) = Ccase 1+ Ccase 2+ Ccase 3 (7)

=
K

u

(
a− 1
u− 1

)(
b− 1
u− 1

)
,

wherex is implicit in u according to (6).
The following provides the derivation of (7).
Consider case 1: the number of dispositions is the product

of the following terms:

• the number of dispositions of thea symbols ‘1’ into u
distinct runs such that there will be at least one symbol

per run. Basic combinatorics (see Chapter 2 of [3]) yields(
a−1
u−1

)
,

• the number of dispositions of theb symbols ‘0’ into u
distinct runs such that there will be at least one symbol
per run, which is

(
b−1
u−1

)
,

• a multiplicative factor of 2 reporting of the two subcases:

Ccase 1= 2
(

a− 1
u− 1

)(
b− 1
u− 1

)
.

Following the same counting methods we obtain:

Ccase 2=
(

a− 1
u

)(
b− 1
u− 1

)
=

a− u

u

(
a− 1
u− 1

)(
b− 1
u− 1

)
,

Ccase 3=
(

a− 1
u− 1

)(
b− 1

u

)
=

b− u

u

(
a− 1
u− 1

)(
b− 1
u− 1

)
.

Summing together the three cases leads to (7).
Substituting (7) into (4), replacingu = b − x, z = 1 and

a = K − b yields the time-blocking probability for the 1-
forwarding scheme:

p1F =

∑b−1
x=max{a,(b−a)}

K
b−x

(
K−b−1
b−x−1

)(
b−1

b−x−1

)(
x

K−b

)
(
K
b

)2 (8)

Fig. 4. Examples of numerical result forz = 0 andz = 1.

Fig. 4 shows numerical examples obtained from (8) for 1-
forwarding scheme and results for 0-forwarding (IF) scheme.
In the graph, numerical results for(K = 64, z = 1) and for
(K = 128, z = 0) are very close to each other. However, a
quick investigation on the actual numbers shows that they are
not identical.

IV. A NALYSIS FOR GENERAL z-FORWARDING CASES

Equation (6) holds only forz = 1, since this is the only
case where conditionli ≥ z always holds. If (6) is not valid,
the relationship betweenx, u and b becomes more complex.
When conditionli ≥ z is not satisfied by all runs of0’s,
these runs are divided into two subsets: those that leads to
blocking positions and those that do not. Table I summarizes



TABLE I
SUMMARY OF THE NOTATION USED FOR THE GENERAL CASE.

Notation Explanation
a number of symbols ‘1’ (i.e. number of free TFs),
b number of symbols ‘0’ (i.e. number of busy TFs),
z number of buffers,1 ≤ z < K,

pzF blocking probability underz-forwarding scheme,
li run-length of runi,
xi number of blocked positions generated by runi,
x total number of blocked positions generated by

all runs of0’s in a given arrangement,
U set of all runs of0’s such thatli ≥ z,
u number of runs inU, u = ‖U‖,
bu total number of symbols ‘0’ occupied by all runs inU,
V set of all runs of0’s such that1 ≤ li < z,
v number of runs inV, v = ‖V‖,
bv total number of symbols ‘0’ occupied by all runs inV,
A set of all runs of1’s, u + v = ‖A‖,

C(u, v) number of combinations that generate exactlyx
blocked positions, given a valid pair of(u, v),

C(x) total number of combinations in the output that generates
exactlyx blocked positions, for all valid pairs of(u, v).

the notation we use. The 1-forwardingcase is the special case
whereV = ∅.

One of the key differences between the 1-forwarding case
and the general case is the presence of non-valid(u, v)
couples, i.e., values ofu and v that do not satisfy all the
constraints of the problem. This fact forces us to separately
count for all and any the valid(u, v) couples, while the simple
relation (6) allowed for a unique computation. Given this
additional complexity, partitioning the set of patterns as we
did for z = 1 becomes excessively cumbersome, so we resort
to the analysis considering the cyclic disposition of TFs.

We now define some general bounds for the parameters of
the problem, that will be the upper and lower limits of the
indexes used in the formulas derived afterwards. Summing (2)
over all runs inU yields (with some algebraic manipulations):

0 < bu = x + zu ≤ b . (9)

The number of symbolsbv is given by:

bv = b− bu = b− x− zu ≥ 0 . (10)

While by construction, we have:

1 ≤ u + v ≤ a . (11)

Lemma 2: The size ofU is bounded by:

1 = umin ≤ u ≤ umax = min
{⌊b− x

z

⌋
, a

}
. (12)

Proof: When there is only one run of0’s, we have
umin = 1. From (9) we haveu = bu−x

z and u = umax

iff bu = b. bu = b implies that all symbols ‘0’ of the input
are in runs belonging toU andV=∅, v = 0. Settingv = 0 in
(11) yieldsu ≤ a so thatumax ≤ min{b b−x

z c, a}.
Note thatu = 0 is not considered since it means there is

one run of0’s with length smaller thanz, or b < z. In this
case we do not have time-blocking.

Lemma 3: For 1 < z < K, the size ofV is bounded by:

⌈ bv

z − 1
⌉

= vmin ≤ v ≤ vmax = min{a− u, bv} (13)

Proof: We havev = vmin = d bv

z−1e when all runs inV
have the maximum allowed lengthli = (z − 1).

The upper bound depends on the ratio betweenbv and the
number of symbols ‘1’ not used to separate runs inU that can
separate runs inV. That isa−u.

• If bv > a−u thenvmax = a−u.
• If bv ≤ a−u, we can split allbv symbols ‘0’ in runs of

length one, so thatvmax = bv.

Therefore,vmax = min{a−u, bv}.

A. Deriving C(x)

Equations (9)-(13) define the limits of(u, v) for a given
value of blocking positionsx satisfying (5). Recall that in a
time-cycle,tfK−1 is adjacent totf0.

Theorem2: Given a valid pair of(u, v), the number of
patterns, denoted asC(u, v), that exactly generatesx blocked
positions, is:

C(u, v) =
KCuvCaCbuCbv

u + v
, (14)

wherex is implicit in bu, bv, u, v given the relations (9)-(13).
The factorsCuv, Ca, Cbu , andCbv are defined in (15)-(18) of
the proof, respectively.

Proof: The goal is computing the total number of possible
patterns distributing thebu symbols ‘0’ into U runs, thebv

symbols ‘0’ into V runs, and thea symbols ‘1’ into runs in
A. To obtain this we show that there exists a factorization of
the problem that countsu+v times the total number of patterns.
The factorization starts counting the possible dispositions of
the runs themselves givenu andv, then counts the dispositions
of the symbols in the runs in different setsA, U, andV, finally
all possibleK cyclic shifts of the above patterns are counted
showing that each pattern is counted exactlyu+v times.

Cuv: number of dispositions of theu runs in U within
the total number of possible runsu + v of U∪V. Further
combinatorics yields:

Cuv =
(

u + v

u

)
. (15)

Ca: number of dispositions of thea symbols ‘1’ into the
(u+v) distinct runs such that each run has at least one symbol.
Again, some combinatorics [3] yields:

Ca =
(

a− 1
u + v − 1

)
. (16)

Cu: number of dispositions of thebu symbols ‘0’ into the
u distinct runs such that each run has at leastz symbols. The
counting method consists in first placing(z− 1) symbols into
every run∈ U, then distributing the remainingbu − (z − 1)u
symbols in all theu runs such that each run has at least one



symbol. Using the same combinatoric result used forCa we
have:

Cbu =
(

bu − (z − 1)u− 1
u− 1

)
. (17)

Cbv : number of dispositions of thebv symbols ‘0’ into the
v distinct runs such that each run has at least one symbol and
no run has more than(z − 1) symbols:

Cbv =
{ ∑v

i=0 (−1)i
(
v
i

)(
bv−i(z−1)−1

v−1

)
if v > 0,

1 v=0 | bv =v.
(18)

Deriving (18) is long and cumbersome and we refer the
interested reader to the Technical Report [7].

The time-cycle boundary can be at any TF, thus there areK
possible shifts for each disposition counted so far. The total
number of possible dispositions given a valid pair(u, v) is
thenKCuvCaCbu

Cbv
. However, each combination is actually

countedu+v times and the numberKCuvCaCbuCbv must be
divided byu+v, thus resulting in (14).

Again lack of space forbids to include the proof of multiple
counting here, which can be found in [7]. The rationale is that
each of theCuvCaCbu

Cbv
can be transformed into exactly

u + v other patterns by shifting it circularly of an appropriate
number of TFs.

Theorem3: The total number of dispositionsC(x) that
generates exactx blocked positions is given by:

C(x) =
min{b b−x

z c,a}∑
u=1

{min{a−u,bv}∑

v=d bv
z−1 e

C(u, v)
∣∣
u+v≤a

}
. (19)

Proof: A pair of (u, v) is valid iff u andv jointly satisfy
(11), (12) and (13). SinceC(u, v) is computed through (14)
for any valid pair of(u, v), the sum ofC(u, v) over all valid
pairs of (u, v) leads to the total number of dispositionsC(x)
in the output that generates exactx blocked positions.

Fig. 5. Examples of numerical result forz > 1.

Examples of numerical results for variousz andK values
are shown in Fig. 5. One interesting property is the reduc-
tion in time-blocking probability asK increases for a given

normalized load. While it was an easy prediction that time-
blocking probability would decrease exponentially increasing
the buffering capabilityz, a similar decrease simply increasing
K was not an easy prediction. The phenomenon is similar to
the classic result that gives smaller and smaller call blocking
probability for a given load as the granularity of the calls
decreases.

B. Sanity checks

The result for the general case presented above is rather
complex and might be appalling. Here we discuss some limit
cases where the exact result can be easily obtained with
heuristic reasoning.

1) Immediate forwarding:This is the case whenb ≤ K−1,
z = 0. For any combination in the output, we always have
x = xmin = xmax = b, andC(x) =

(
K
b

)
. Thus, the equation

(4) shrinks to:

p0F =
(

K

b

)(
b

a

)/(
K

b

)2

=
(

b

a

)/(
K

b

)
. (20)

Trivial combinatorics also reach the same result.
2) 1-forwarding: This is the case whenb ≤ K − 1, z = 1.

For z = 1, we haveV=∅ or bv = 0, and bu = b = x + u.
Letting v = 0 in the formulas of theorem 2 yields

C(u,v=0) =
K

u

(
a− 1
u− 1

)(
bu − (z − 1)u− 1

u− 1

)
, (21)

which is equivalent to (7) remembering thatz = 1 ⇔ b =
bu; v = 0; x = b− u.

3) Arbitrary (full) time-frame forwarding:This is the case
when b ≤ K − 1, z = K − 1. Replacingz = K − 1 in (3)
yieldsxmax = b−z = b− (K−1) ≤ 0 sinceb ≤ K−1. This
implies that there is no single combination where we can find
x ≥ a. The intuition of zero blocking for this special case is
confirmed.

C. Load Assumption Relaxation

The results presented in previous sections can be modified
to accommodate different loads of the input and the output.
Let (K, bi) and (K, bo) denote the load for the input and for
the output respectively. And letai and ao be the number of
available TFs at the input and the output, respectively. Thus,
(5) becomes:

max{ai, (bi − zai)} ≤ x ≤ bi − z . (22)

and the modified version of (4) is:

pzF =
{ bi−z∑

x=max{ai,bi−zai}
C(x)

(
x

ao

)}/{(
K

bo

)(
K

bi

)}
, (23)

C(x) =
min{b bi−x

z c,ai}∑
u=1

{min{ai−u,bv}∑

v=d bv
z−1 e

C(u, v)
∣∣
u+v≤ai

}
, (24)

wherebv = bi − bu = bi − x− zu ≥ 0, while (9), (15), (16),
(17), (18) and (14) are reused without any change.



V. M ULTI -HOP SCENARIO FORMULATION AND ANALYSIS

A route from a source to a destination node is connected
by H − 1 consecutive switches. Switches are similar in terms
of being strictly non space blocking and having the same
z-forwardingscheme. Hops and switches are indexed as shown
in Fig. 6.

Fig. 6. H hops from source node to destination node withH − 1 switches
in between. There areK TFs per hop andb TFs (out ofK) are busy.

We aim at finding the probability that afterH hops there is
no scheduleto forward a TF from input to output.

A. Additional Notations and Definitions

Let [z] be the set of integers{0, 1, 2, · · · , z}, tf
(h)
k be TF

k at hoph, ‘1s’ a schedulable TF, and ‘1b’ a blocked TF.
Def. 4 (schedulableTF at hoph): — A TF tf

(h)
k is said

to be schedulable,tf (h)
k =‘1s’, iff it is available and at least

one TF in the set{tf (h−1)
k−i |i ∈ [z]} is schedulable (i.e.,

tf
(h−1)
k−i =‘1s’ for at least onei ∈[z]).
A TF tf

(h)
k is blocked,tf (h)

k =‘1b’, iff it is available and
all TFs in the set{tf (h−1)

k−i |i ∈ [z]} are either blocked orbusy

(i.e., tf
(h−1)
k−i =‘1b’ or tf

(h−1)
k−i =‘0’ for all i ∈[z]).

Fig. 7. Illustration of blocked TFs ‘1b’.

Note that all available TFs of the first hop (i.e.,h = 0) are
schedulable. That is iftf (0)

k =‘1’, then tf
(0)
k =‘1s’.

Blocked TFs are useless in the process of searching for a
schedule for setting up a FλP. An illustration of a blocked TF
is shown in Fig. 7.

Def. 5: — A TF position in a TC at hoph is said to
be unblockedposition iff it is in a forwarding range of one
schedulable TF of the previous hoph− 1.

In other words, iftf (h−1)
k =‘1s’, then all TF positionstf (h)

k+i,
i ∈[z], are unblocked. If an available TF is placed in an

Fig. 8. Example of unblocked positions.

unblockedposition, it becomes a schedulable TF, ‘1s’. If
tf

(h−1)
k−i =‘0’ or tf

(h−1)
k−i = ‘1b’ for all i ∈[z], then tf

(h)
k is

a blockedposition. If an available TF is placed in ablocked
position, it becomes blocked, ‘1b’.

Let x be the number ofblockedpositions, and lety be the
number ofunblockedpositions:

x + y = K . (25)

Let also, at generic hoph:

• αh−1 be the number of schedulable TFs (i.e., symbols
‘1s’) at hop h− 1;

• βh−1 be the number ofunblockedpositions generated by
hop h− 1 for hop h;

• αh be the number schedulable TFs (i.e., symbols ‘1s’)
hop h;

• Pr(αh = ã) be the probability thatαh = ã;
• Pr(αh−1 = â) be the probability thatαh−1 = â.

For the first hop (i.e.,h = 0), we have:

Pr(α0 = ã) =
{

1 if ã = a0,
0 otherwise.

(26)

In general, at hoph− 1, â is bounded by:

0 ≤ â ≤ a . (27)

Note that ifαh−1=0, thenβh−1=0. Forαh−1=â> 0, on one
extreme case, when allâ schedulable TFs at hoph−1 form a
unique run, then we obtain the minimum value ofunblocked
positions:

ymin = min{â + z, K}.
On the other extreme case, when each schedulable TF forms
one run, and two consecutive schedulable TFs are split by an
interval of at leastz TFs, then we obtain the maximum value
of unblockedpositions:

ymax = min{(z + 1)â, K}.
Thus at hoph − 1, given αh−1 = â > 0, y (the number of
unblockedpositions) is bounded by:

min{â + z, K} ≤ y ≤ min{(z + 1)â,K} . (28)

An example of multi-hop time-blocking is shown in Fig. 9.
In the example,H = 4 and each switching node use 2-
forwarding scheme. Each hop contains one channel, where
K = 12 TFs. In the example, until the third hop, there are
two schedulable TFs. However, all available TFs of the fourth
hop are blocked.



Fig. 9. Example where there is blocking after 4 hops.

B. Exact Solution of the Multi-Hop Case

Even if the multi-hop case is much more complex than the
single node in isolation, the problem can still be formulated
with an exact solution, that we sketch in the following,
referring the reader interested in more details and numerical
results to the Technical Report [8].

C. Zero scheduling delay

For this special case, we have the following:
Lemma 4: For z = 0, the probability that there arẽa

schedulable TFs at hoph is given by:

Pr(αh = ã) =
a∑

â=0

(
â
ã

)(
K−â
a−ã

)
(
K
a

) Pr(αh−1 = â) . (29)

Proof: Let Pr(αh = ã|αh−1 = â) be the conditional
probability that there arẽa schedulable TFs at hoph, given â
schedulable TFs at hoph− 1.

An available TF of hoph becomes a schedulable TF if it is
positioned “below” a schedulable TF of hoph−1. To generate
exactly ã schedulable TFs for hoph (ã < â), ã available TFs
are distributed “beneath” thêa possible positions, obtaining
the number

(
â
ã

)
.

The othera − ã available TFs must be placed under the
(K − â) busy TFs of hoph− 1 so that no more schedulable
TF is generated, yielding the number

(
K−â
a−ã

)
.

Meanwhile, without any constraint, the total number of
ways to distributea available TFs intoK TF positions is

(
K
a

)
.

Thus, we obtain:

Pr(αh = ã|αh−1 = â) =

(
â
ã

)(
K−â
a−ã

)
(
K
a

) . (30)

Taking the sum over all possiblêa different from 0 we obtain
(29).

With the initial condition ofPr(α0 = ã) given in (26), (29)
is used recursively to obtain the time-blocking probability for
the IF scheme.

D. Nonzero scheduling delay

The analysis for zero scheduling delay is rather straightfor-
ward. The idea is that we can derive the quantityPr(αh = ã)
using a hop-based computation. In this section, we apply
this approach to analyze cases of nonzero scheduling delay
schemes (i.e.,z ≥ 1).

Let us introduce two following conditional probabilities:

• Pr(βh−1 = y|αh−1 = â) is the probability thatβh−1=y,
given thatαh−1=â.

• Pr(αh = ã|βh−1 = y) is the probability thatαh=ã, given
that βh−1=y.

It follows that the next two coupled equations can be recur-
sively used to computePr(αh = ã) for any hoph ≥ 1:

Pr(βh−1 = y) =
a∑

â=0

Pr(βh−1 = y|αh−1 = â) Pr(αh−1 = â) , (31)

Pr(αh = ã) =
min{(z+1)a,K}∑

y=0

Pr(αh = ã|βh−1 = y) Pr(βh−1 = y) . (32)

We can obtain the time-blocking probability if we are able to
compute two conditional probabilitiesPr(αh = ã|βh−1 = y)
and Pr(βh−1 = y|αh−1 = â). More specifically, the time-
blocking probability afterH hops is computed by (32) for
αH−1 = 0 where

Pr(αh = ã|βh−1 = y) ={ (y
ã)(K−y

a−ã)
(K

a) if ã ≤ y & a− ã ≤ K − y,

0 otherwise.
(33)

In order to havẽa schedulable TFs at hoph, we distribute
ã available TFs amongy unblockedpositions generated by
hop h − 1, which yields

(
y
ã

)
. To block the other(a − ã)

available TFs, they must be arranged among(K − y) blocked
positions, which yields

(
K−y
a−ã

)
. Meanwhile, without any con-

straint, the total number of dispositions is
(
K
a

)
. Thus, we derive

Pr(αh = ã|βh−1 = y) as in (33).
Finding Pr(βh−1 = y|αh−1 = â) is more challenging. In-

creasing the number of hops, schedulable TFs tend to form
“batches” rather than being uniformly distributed amongK
positions. The exact computation ofPr(βh−1 = y|αh−1 = â)
depends not only on a certainz-forwarding scheme but also
on the distribution of the position of thêa schedulable TFs,
which is no longer uniform.

In fact, an exact solution for time-blocking probability is
possible if we are able to compute probabilities associated with
all possible distribution of̂a schedulable TFs. We demonstrate
the process to obtain the exact time-blocking probability by
examining following example.



TABLE II
ALL POSSIBLE PATTERNS ANDy VALUES FOR K = 6, a = 2, z = 1.

State â Pattern y

s0 0 000000 0
s2 1 100000 2
s3 2 110000 3
s41 2 101000 4
s42 2 100100 4

1) An example for smallK: We perform the exact solution
for a set of small parameters:K = 6, a = 2, z = 1. Following
(27) and (28) we have0 ≤ â ≤ 2 andy ∈ {0, 2, 3, 4}.

For each possiblêa, we consider all possible patterns taking
into account the ordering of run-lengths of0’s and of 1’s.
For example, by allowing shifting the two following patterns
are interchangeable:101000 ≡ 100010. All patterns and their
correspondinĝa and y are given in Table II. The number of
patterns is small. Transition probabilities between patterns can
be easily computed as shown in Table III.

TABLE III
TRANSITION PROBABILITY BETWEEN PATTERNS.

s0 s2 s3 s41 s42

s0 1 0 0 0 0
s2 6/15 8/15 1/15 0 0
s3 3/15 9/15 2/15 1/15 0
s41 1/15 8/15 3/15 2/15 1/15
s42 1/15 8/15 2/15 2/15 2/15

Let sh be the vector associated with the probability that
hoph is at the states∗, sh

.= 〈Pr(s∗)〉. Let S be the transition
matrix given in Table III. We haves0

.= 〈0, 0, 3
15 , 6

15 , 6
15 〉.

And the vectorsh is computed by:

sh = s0 × Sh .

The above equation is used to computesH−2 then (32) is
applied to compute the blocking probability.

Unfortunately this exact approach is computationally unfea-
sible as soon asK grows, which means for any meaningful
real system. However, the existence of an exact solution is
the starting point to obtain approximations and bounds. We
are now working on deriving bounds that can be used for the
design of TDS based networking systems. Early results, can
be found in [8].

VI. CONCLUSIONS

TDS is a novel networking technique that is based on
pipeline forwarding for performance optimization and for
service guarantees. The technique is especially suited to
support ultra-fast switching with extremely large capacities
(multi-terabit/s). Under such conditions, however, buffering
information at switches is difficult and costly. Consequently,
in TDS there is associated with a noveltime-blockingproblem,
arises when a switch cannot be scheduled to exploit available
resources on both an input and an output.

This paper presented an exact combinatorial analysis of
the time-blocking probability of a single switch. Results from

this analysis allow the design of systems taking into account
the tradeoffs between cost (the amount of buffering) and
performance (time-blocking).

The extension of the exact combinatorial analysis to a
network of switches, i.e., a sequence ofh switches in series,
was also proved feasible, but, due to correlations introduced
by recursive buffering, requires the computation of a set of
conditional probabilities that grows geometrically with the
number of time-framesK, making its use unfeasible in any
meaningful scenario. Yet, the availability of theoretical results
enables further research to establish (hopefully tight) bounds
to be used in networks design.

REFERENCES

[1] T. E. Parker, D. Matsakis, “Time and Frequency Dissemination: Ad-
vances in GPS Transfer Techniques,”GPS World, pp. 32-38, November
2004

[2] D. Agrawal, M. Baldi, M. Corr̀a, G. Fontana, G. Marchetto, V.T. Nguyen,
Y. Ofek, D. Severina, T.H. Truong, O. Zadedyurina, “Scalable Switching
Testbed not ’Stopping’ the Serial Bit Stream,”Proc of IEEE ICC’07,
Glasgow, Scotland, June 24–28, 2007.

[3] A. Tucker,Applied Combinatorics, John Wiley & Sons, 1980.
[4] M. Baldi and Y. Ofek, “Fractional lambda switching,”Proc. of the IEEE

ICC, vol. 5, pp. 2692–2696, 2002.
[5] D. Grieco, A. Pattavina, and Y. Ofek, “Fractional lambda switching

for flexible bandwidth provisioning in WDM networks: principles and
performance,”Photonic Network Communications, vol. 9, no. 3, pp.
281–296, 2005.

[6] V.T. Nguyen, R. LoCigno, and Y. Ofek, “Design and Analysis of
Tunable Laser-based Fractionalλ Switching (FλS),” Proc. of the IEEE
INFOCOM, 2006. (An extended version is to appear in IEEE Tr. on
Communications).

[7] V-T. Nguyen, R.Lo Cigno, Y. Ofek, “Time-Driven Switching
Blocking Analysis: A Single Node Case,”DISI Technical
Report DIT-07-045 – Ver. 1.0, University of Trento, 2006,
URL:http://dit.unitn.it/locigno/preprints/DIT-07-045.pdf.

[8] V-T. Nguyen, R.Lo Cigno, Y. Ofek, M. Telek, “Multi-hop Time-blocking
Anaysis for TDS,” DISI Technical Report DIT-07-046 – Ver. 1.0,
University of Trento, 2007, URL:http://dit.unitn.it/locigno/preprints/DIT-
07-046.pdf.


