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Abstract—This paper presents a closed-form analysis of the configuring the switching time of a TF at all switches along
time-blocking probability in time-driven switching networks.  the path.
Time-blocking occurs when transmission resources are available
in both input and output, but there is no schedule, i.e., output
resources are outside a pre-defined time delay that is allowed for Supper-cycle
the input. This situation may happen in architectures based on [ Wwith80,000 timeframes
pipeline forwarding The main constraints affecting the schedula- (1 UTC second)
bility of resources are the load and the maximum delay allowed

between input and output. The analysis yields the exact blocking Time-cyele 0 Time-cycle 2 Time-cycle 79
probgt_)ilities for a_II possible scheduling_d_e_lays and under all load 7 | T T, T
conditions for a single node, as well as initial results for a network || | | | | |
Of nodes 0 1 999 0 1 999 0 1 999 (CTRUTC
Index Terms—optical networks; sub-lambda switching; frac- 0 1
tional lambda switching; time-driven switching; blocking proba- beginning beginning
of a UTC second of a UTC second

bility analysis; combinatorial analysis; switching analysis.
Fig. 1. Cycles and use of UTC in TDS.
I. INTRODUCTION
One of the key issues in TDS networks is to find the

Time-Driven Switching (TDS) is a technique where switchschedulingfor forwarding TFs (which contain packet flows)
ing decisions are controlled by a common time referencglong the end-to-end path. Scheduling is a fundamental prob-
like the one provided by GPS (Global Positioning Systengm because the TDS architecture aims at minimizing delays,
or Galileo, the European system now under deploymeafad consequently buffering: if a TF at the input cannot be
that delivers UTC (Coordinated Universal Time) everywherscheduled for transmission on the output, then the flow using
around the globe with high precision [1] and for low costhat TF must be denied admission, which means that it is
TDS operation is based on UTC 1PPS (pulse per secomidcked ortime-blocked
and does not require high frequency synchronization betweenndeed, the problem of blocking can be decomposed into
switches or input/output ports, thus from this perspective TQfiree factors: i} there are no resources at the output: this is
is different and much less demanding than SONET/SDH sy#e traditional problem faced in circuit switching networks
tems. Furthermore, the TDS operation is completely decouplggrmally named ‘call blocking’; i{) resources are available
from bit synchronization of the serial links, again a majost the output, but the internal structure of the switch prevents
simplification. connecting the input and the output, this is normally called

A promising example of TDS networks isAB [4], [5], ‘space blocking’; iii) resources are available at the output,
where the capacity of an optical channel is divided into @and the switch can be configured to connect the input and the
large number of sub-channels by using time units, called Timeudtput, but it is impossible to find a feasible schedule mapping
Frames (TFs), of equal duration. The result is the realizatidtom the input TF to the output TF, this is time-blocking.
of end-to-end sub-channel pipes that deliver information with Time-blocking is normally solved by buffering, and indeed
minimum buffering and delay and with no delay jitter. A workin TDS switches if K buffers for K TFs per input are
ing prototype of RS networks with TDS is now operationalused time-blocking is zero; however, in all optical ultra-fast
at DISI in Trento [2]. switches buffering is not trivial and with today technology it

As was mentioned, TDS networks are managed based isrlimited to only a few TFs.
the UTC second (i.e., 1PPS) that is divided into Time-FramesIn the design of a TDS network time-blocking as well
(TFs). A group of K contiguous TFs forms a time-cycleas space-blocking must be taken into account. In [6] three
(TC); L contiguous TCs are grouped into a super cycle thdifferent architectures for all opticalNS TDS switches were
is equal to one UTC second or 1PPS, as shown in Figdroposed and analyzed from the complexity andedulability
In this example: X = 1000 and L = 80. In TDS, all point of view. Schedulability is the ration of the number of
TFs are aligned with respect to UTC at the input prior techedulable input/output combinations versus the total number
switching, which constitutes a necessary condition for pipelireé possible combinations. One of the architectures was found
forwarding (PF). A path is set up end-to-end by properliechnically feasible and non-space-blocking, and for this ar-



chitecture the time-blocking was computed in the simple caseDef. 1 (z-forwarding scheme)— A switch is under
when no delay or buffer is available. z-forwarding scheme iff the content of a TF can be buffered
In this work we compute the time-blocking of non-spacearbitrarily for : TFs prior to being forwarded,= 0,1, .., z.
blocking time-driven-switches for the general case of both In other words, for the:-forwarding scheme the maximum
immediate and non-immediate forwarding. scheduling delay of a TF is equal toTFs. z = 0 means the
Let z < K — 1 be the number of buffers available to delaymmediate-forwarding (IF) scheme or zero scheduling delay.
a TF switching from input to output. We define two basic Def. 2 (A schedulabl&F): — For a pair of input and
cases: ij Immediate forwarding (IF)the case of: = 0; (i) output, a TF k of the output (i.e.,¢f“*) is schedu-
Non-immediate forwarding (NIF)the case ot > 0. lable iff tfovt="1" and at least one TF in the set
In essence, our objective is to compute the time-blockingfi" |i = 0,1, ..,2.} is available.
probability as a function ot and the load of the input ports Def. 3 (A blockedTF): — For an input output pair, a TE
and output ports. Note again thatzif= K — 1 then each and of the output (i.e.z %) is blocked ifft f?**="1" and all TFs
every TF at the output is schedulable for each and every Tithe set{tfi".|i =0,1,..,2.} are busy. We use a symbol
at the input and time-blocking is zero. ‘1,’ to denote the blocked TF, i.etfP“'="1,".
The contribution of this paper is the exact (closed-form) An example of schedulable and blocked TFs is shown in
computation of the time-blocking for all values of In Fig. 2.
addition we provide preliminary results on the methodology

to compute the time-blocking in multi-node scenarios. (We re- Input LA SR CEEIE NN NI
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The paper is organized as follows, in Section Il the blocking
problem is formulated, while providing the analysis approachig. 2. illustration whenk = 12,0 = 4,2 = 2: tfgut andtfgut are
Then Section Il provides the analysis for the case when blocked;tf9“*, ¢ f2“* are schedulable.

1, while Section IV provides the analysis for any value of

z. Section V formulates and analyzes the multi-hop scenario,Given an input and output pair of a strictly non space-
while conclusions are discussed in Section VI. blocking switch operating underforwardingscheme, we aim
at derivingp.r, the probability that all available TFs of the
) . o output are found blocked under a given the Id&d b).

A. Basic assumptions and definitions Let Cy; be the number of input/output TFs combinations

We assume independence of each channel (i.e., input audh that all thea available TFs of the output are found
output), thus we examine a single input channel and a singllecked, andC;.:,; be the total number of input/output TFs

Il. PROBLEM FORMULATION AND ANALYSIS APPROACH

output channel of the switch. combinations. The time-blocking probability is the ratio be-
Load definition— The load is defined as the number of busyweenCy;;, and Ciorar:

TFs per TC per channel. For all channels, the busy TFs within Co

each TC is assumed to be distributed uniformly at random. Let PaF = 1)

b denote the number of busy TFs per TC. The load of a channel -
is identified by the paif K, b), whereK is the number of TFs B. Run, run-length and blocked positions
in each TC, as was shown in Fig.1. o Run and run-lengthA run is defined as a group of equal
For the sake of using simple notations we Wsilentical symbols that are positioned consecutively. For examples, runs
for all the inputs and the outputs, but this assumption is ngt 0's are 0’, *00’, ‘000’ and so on. A number of symbols
required for the analysis and in Sect. IV-C we present resuismposing a run is itsun-length In between two adjacent
where the load of the input and the output are different.  runs of0Q’s there is one run otl’s, and vice versa.
To formulate the problem, we define the following nota- Because of the periodic nature of TCs, the last TF of a TC

tions: and the first TF of the next TC are positioned consecutively.
 a denotes the number of free TFs per TC= K — b; Therefore, in each arrangement the number of ruroénd
« tfx denotes a TH in a TC; the number of runs df’s are equal, excluding the trivial cases
o tfy" denotes TR of theinput, 0 < k < K;; of all zeros and all ones.
o tf2"" denotes TH: of the output 0 < k < K For instance, the cyclical arrangement of 4 symbalsand
« z denotes the number of buffers (or maximum schedulirgy symbols 0’ shown in the input in Fig.2, there are 3 runs
delay measured in TFs), < z < K;; of 1's and 3 runs o0’s.
« the symbol 0’ denotes a busy TF; Blocked positionsFor a givenz-forwarding scheme, arrange-
« the symbol 1’ denotes an available (or free) TF. ments of thea available TFs and thé busy TFs in the

Note that the TF index is periodic, which implies that ifnput may generate positions such that available TFs in the
k > K thenk = (k mod K) since K TFs are grouped in a output that are positioned ‘beneath’ (with reference to the
TC. input/output mapping as in Fig. 2) apéocked i.e., ¢ fo“="1;".



Input [o]o]oJoJoJo][1[oJo[1[1]o]oJo[o]o]o]1]

In a switch in isolation time-blocking happens only when
all available TFs of the output are in blocked positions, since
the input TF can be chosen freely.
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l:] a blocked position

Fig. 3. Example of blocked positions when = 1, given a sample C. General form of the time-blocking probability

combination of the input. . L
P For a given value ofr satisfying (3), letC(z) be the

number of arrangements found in the input such that each
In order to highlight the idea of blocked positions, whicl®f these arrangements generate exactlplocked positions.
is important in the following analysis, let's consider th&ivenC(z), we have the following result:
following examples: Theorem1: — For a stand-alone switch, the time-blocking
« Forz = 0 (i.e., the IF (immediate forwarding) SCheme)probability for the generat-forwarding schemep.r is given

any arrangement in the input generateblocked posi-

tions. Obviously, if an output’s available TF is ‘positioned b2 9
beneath’ a busy TF of the input, it is blocked since: 0. D = Z C(x) <x> / <K> ' @
» For z =1, the content of a TF can be delayed at most w=max{a,(b—za)} a b

one TF duration prior to being forwarded. Fig. 3 shows
how blocked positions are generated. In fact, for every Proof: Givenz blocked positions generated by the input,
pair of adjacent00’ symbols the right symbol generateshe number of ways to arrange alkvailable TFs of the output
a blocked position. Consequently, if there dre- 1 into blocked positions so that a time-blocking occurs(ﬁ
consecutived’s, then there aré — 1 blocked positions.  Thus, the subtotal number of combinations, denoted'as,
o For z =2, a content of TF can be delayed at most twgenerated by both the input and the output such that time-
TF durations. Only runs whose run-length is greater thdnocking happens is given by:
two, such as,000’, * 0000’ and so on, generate blocked
positions. Consequently, if there dreonsecutivé’s and Csup = C(2) (x> )
[ > 2, then there aré — 2 blocked positions. a
Consequently, the number of blocked positions generated b){f z < a, then (¥) = 0. Thus, we only consider > a
a given arrangement (of available TFs and busy TFs) {fle , a case where a time-blocking occurs). From Lemma 1,
the input depends on the specifieforwarding scheme and gpgerve that:
the given load(K,b) of the input. For a run oD’s, there
is a relation between the run-length the number of blocked
positions generated, and Let /; be the run-length of run
of 0’s. Let z; be the number of blocked positions generated
by runi, then:

e if (b—za) > a < K > (z+2)a then for any combination
in the input, we haver,,;, = (b — za) > a.

o if (b—2a) <a< K < (z+ 2)a then for somer such
thatd — za < x < a, we are not interested in. Thus we
setrin = a.

z; :{ li—z i 2>z @) Combined with (3) we have the range of meaningiul
0 otherwise. values for computing time-blocking probability:

We are interested in runsuch thatl; > z.

Bounds of the number of blocked positio@§ven an arrange- max{a, (b —za)} <z <b—2z. ®)

ment in the input, let: C Z* be the total number of blocked

positions generated from all runs 6% in a TC. The sum ofC’,, over all meaningful: yields C:

Lemma 1 (Bounds ofr): For a given load(K,b), z is Tmax b—z .
bounded by: Cok = Y Cuoup = > C(@( ) :
r— . — a
be2a =Ly <L < Tpgg =b—2 . (3) T=Tmin z=max{a,(b—za)}

Meanwhile, total numbers of combinations at the input and
t the output are computed &§) for each input and output.
hus, we have®, ;.;:

Proof: From (2), we yieldz,,,,.. = b — z when all theb
busy symbols form a single run in the input, which is obviousl
the longest possible run.

To computex,,;,, we further observe that, in a cyclical K\ (K K\ 2
arrangementy symbols of 1’ can split at maximunu runs of Ctotal = ( b) < b> = ( b> .
0’s, where every run has the same length:df.e., [; = = for
all 7) such that no blocked position is generated according to u
(2). The remaining number of symbol3'‘is (b—za). Sinceno  The derivation ofC(z), i.e., the number of combinations
more run of0’s can be formed due to running out of symbolén the input generating exactly blocked positions, is one of
‘1’ to split them. Thus, placements of remainir@ symbols the main contribution of this paper and we dedicate Section Il
generate blocked positions. Therefofg,;, = (b — za). B andlV to its computation.



[1l. ANALYSIS FOR 1-FORWARDING CASE per run. Basic combinatorics (see Chapter 2 of [3]) yields

a—1
We separate the analysis of thdatwarding scheme from (ﬁq ' b ¢ di .  the bols O’ |
the general case, because its simpler mathematics allows fot ;_e.num ero ;]sprc])smc;]ns 0 _t” bsym IOS INto bol
descriptions and explanations that will help in deriving the ~ diStinct runs such that there will be at least one symbo

ok ie(b—1
general case. forwarding means there is a single position in  P€ run, which is(, 1),

the buffer:» — 1. « a multiplicative factor of 2 reporting of the two subcases:
Let v be the number of runs d's. For z = 1 all runs
satisfyl; > z. Summing (2) over all runs yields: a—1\/b—-1
C’case 1=2 .
u u u u—1 u—1
in = Z (i —2) = Zli —uz. Following the same counting methods we obtain:
i=1 i=1 i=1

) u . a—1\/b—-1 a—ufa—1\(b—-1
Since}";" , z; = x (total number of blocked positions) andCcase 2= Y u_1)”" 7w 1) \uq)
>, l; = b (total number of symbol«)’), the equation above

becomes: o fa—=1\(b—=1\ b—ufa—-1\/b-1
u=>b—x. 6 ¥ \u-1 v ) u \u—-1)\u—-1)"

(6) holds only forz = 1, and it is the reason why this caseSUmming together the three cases leads to (7).
can be treated differently from the general one. In this caseSubstituting (7) into (4), replacing = b —z, z = 1 and
the computation of?(z) can be done in two different ways.@ = K — b yields the time-blocking probability for the 1-
The first one, considering a linear disposition of the symbol§rwarding scheme:

which gives the result with a problem decomposition in form Zb—l K (befl)( b—1 )( x )
of summation. The second one, which will be used also in thep,p — =*="{e.0-a)} e b-a 1/ b-a VKD (g
general case, considers the cyclic disposition of the symbols (f)

and gives the results in form of a multiplicative decomposition
that, however, counts the number of possible pattertimes,
so that the final result must be divided by

A. Additive decomposition -
The time cycle patterns may be viewed as non-cyclic

patterns withb symbols 0’ and thea symbols 1'. It is easy

to identify three possible cases of non-cyclic patterns:

Case 1:the first and the last symbol of the cycle are different,

implying that there are: runs of0’'s andu runs ofl’s. Case

1 has two obvious and identical (from the combinatorial point "~ 1.7 -

of view) sub-cases: the first symbol I8 ‘and the last one is ! ! T Kooa 0(Fscheme)

K=64, z=1
‘1’, or vice versa. e ] /| T s e soheme)
Case 2:both the first and the last symbol of the cycle até * , , : 4 ; ; : :
so that there are runs of0’s, and (u + 1) runs of1’s. O maled load per tmereycle
Case 3:both the first and the last symbol of the cycle &0& *
so that there aréu + 1) runs of0’s and« runs of1's. Fig. 4. Examples of numerical result fer= 0 andz = 1.
It is easy to see that the three cases above form a partition , ,
of the set of the dispositions, and this is valid for any given  F9- 4 shows numerical examples obtained from (8) for 1-

so thatC'(z) can be computed as the sum of the three casd@rwarding scheme and results forforwarding (IF) scheme.
For = = 1, C(z) is given by: In the graph, numerical results f¢& = 64,z = 1) and for

(K = 128,z = 0) are very close to each other. However, a
C(z) = Ctase 1t Cease 2+ Cease 3 (7) quick investigation on the actual numbers shows that they are

Kfa—1\/b—-1 not identical.
T ou\u—1 u—1)"
IV. ANALYSIS FOR GENERAL z-FORWARDING CASES
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wherez is implicit in u according to (6). Equation (6) holds only for = 1, since this is the only
The following provides the derivation of (7). case where conditioly > = always holds. If(6) is not valid,
Consider case 1: the number of dispositions is the prodygk relationship between, » and b becomes more complex.

of the following terms: When conditionl; > z is not satisfied by all runs o®’s,

« the number of dispositions of the symbols 1’ into v« these runs are divided into two subsets: those that leads to
distinct runs such that there will be at least one symbblocking positions and those that do not. Table | summarizes



TABLE |

SUMMARY OF THE NOTATION USED FOR THE GENERAL CASE Lemma 3: Forl < z < K, the size ofV is bounded by:
Notation ]| Explanation { by —‘ = Umin SV < Umag = min{a - u, bv} (13)

a number of symbolsT’ (i.e. number of free TFs), z—1

b number of symbolsO’ (i.e. number of busy TFs), b .

2 number of buffers] < z < K, Proof: We havev = vy, = [ ] when all runs inV

ple bloclking rp])ro;aability undee-forwarding scheme, have the maximum allowed length= (z -1).

i run-length of runi, .

o numbergof blocked positions generated by #in The upper bound depends on the ratio betwigeand the

x total number of blocked positions generated by number of symbolsl’ not used to separate runsihthat can
all runs of0’s in a given arrangement, separate runs iv. That isa—.

U set of all runs of0’s such thatl; > z,

u number of runs i, u = ||U], o If b, >a—uthenv,,q; = a—u.

1%7; tottal ?uTber of %ymboliﬂ;hoctfugi?d by all runs irl, o If b, < a—wu, we can split allb, symbols 0’ in runs of
set of all runs of0’s such tha i < 2,

v number of runs iV, v = |V||, length one, so that,a, = by

by total number of symbols0” occupied by all runs irV, Thereforev,nar = min{a—u, bv}- n

A set of all runs ofl’s, u + v = ||A[],

C(u,v) number of combinations that generate exaatly L.
blocked positions, given a valid pair ¢fi, v), A. Deriving C(z)
C(x total number of combinations in the output that generates . . . .
) exactly = blocked positions, for all valid pairs dfu, v). Equations (9)-(13) define the limits dfu, v) for a given

value of blocking positiong: satisfying (5). Recall that in a
time-cycle,t fx 1 is adjacent ta f.

the notation we use. Thefbrwarding case is the special case 1 heorem2: Given a valid pair of(u,v), the number of

whereV = . patterns, denoted &S(u, v), that exactly generates blocked
One of the key differences between thdotwarding case POSIUONs, Is:

and the general case is the presence of n(_)n-v(iliﬁj) o _ KCyuCoCy, Gy, 14

couples, i.e., values of, and v that do not satisfy all the (u,v) = wt v ’ (14)

constraints of the problem. This fact forces us to separatel% L ) )
count for all and any the valitk., v) couples, while the simple Wherea is implicit in b, b, u, v given the relations (9)-(13).
relation (6) allowed for a unique computation. Given thid € factorsCu,, Co, Gy, andGy, are defined in (15)-(18) of
additional complexity, partitioning the set of patterns as wig€ Proof, respectively.
did for = = 1 becomes excessively cumbersome, so we resort Proof: The goal is computing the total number of possible
to the analysis considering the cyclic disposition of TFs. Patterns distributing thé, symbols 0" into U runs, theb,

We now define some general bounds for the parametersSyfbols 0’ into V runs, and the: symbols 1" into runs in
the problem, that will be the upper and lower limits of thd\. To obtain this we showlthat there exists a factorization of
indexes used in the formulas derived afterwards. Summing {I_Q? problem that countstv times the total number of patterns.

over all runs inU yields (with some algebraic manipulations):The factorization starts counting the possible dispositions of
the runs themselves givenandv, then counts the dispositions

0<by=xz+zu<b. (9) of the symbols in the runs in different sets U, andV, finally
all possibleK cyclic shifts of the above patterns are counted

The number of symbols, is given by: showing that each pattern is counted exaectlyv times.

by=b—by, =b—x—2u>0. (10) Cyv: number of dispositions of the runs in U within
- the total number of possible runs+v of UUV. Further
While by construction, we have: combinatorics yields:
1<u+v<a. (112) Cuv:(u—i—v). (15)
u

Lemma 2: The size ofU is bounded by:
C,: number of dispositions of the symbols 1’ into the

1= tUmin < U < Umaz = min{ Lb _ TJ , a} ] (12) (u—+v) distinct runs such that each run has at least one symbol.
z Again, some combinatorics [3] yields:
Proof: When there is only one run od’'s, we have 1
Umin = 1. From (9) we haveu = buT*m and u = Uz C, = ( a= ) . (16)
iff b, = b. b, = b implies that all symbols0’ of the input utv-—1

are in runs belonging t& andV=(), v = 0. Settingv = 0 in C,,: number of dispositions of the, symbols 0’ into the
(11) yieldsu < a SO thatu,q, < min{[*Z%], a}. u distinct runs such that each run has at leasymbols. The
Note thatu =0 iS not Considered Since |t means thel’e iéounting method Consists in first p|aC||(|gf 1) Symbo's into
one run of0’s with Iength smaller thal’lz, orb< z. In this every rune [U’ then d|str|but|ng the remainin@t _ (Z — 1)’LL
case we do not have time-blocking. B symbols in all theu runs such that each run has at least one



symbol. Using the same combinatoric result used@rwe normalized load. While it was an easy prediction that time-

have: blocking probability would decrease exponentially increasing
by — (2 — Du — 1 the buffering capability, a similar decrease simply increasing
Ch, = < w1 ) (17) K was not an easy prediction. The phenomenon is similar to

_ - _ the classic result that gives smaller and smaller call blocking
Cy, . number of dispositions of thi, symbols 0 into the probability for a given load as the granularity of the calls
v distinct runs such that each run has at least one symbol afitreases.

no run has more thatx — 1) symbols: .
B. Sanity checks

v i by—i(z—1)—1Y\ & .

Cy, = { >izo (—1) (f)( i ) if v >0, (18) The result for the general case presented above is rather
1 v=0 [ b, =v. complex and might be appalling. Here we discuss some limit

Deriving (18) is long and cumbersome and we refer tHedses where the exact result can be easily obtained with

interested reader to the Technical Report [7]. heuristic reasoning.

The time-cycle boundary can be at any TF, thus thereiare 1) Immediate forwardingThis is the case whe< K —1,
possible shifts for each disposition counted so far. The total= 0. For any combination in the output, we always have
number of possible dispositions given a valid péirv) is % = Tmin = Tmaz = b, aNdC(z) = (5)- Thus, the equation
thenK C,,,C,Cy,Cy,. However, each combination is actually(4) shrinks to:
countedu+v times and the numbex C,,,,C,Cy, Cp,, must be K\ /b K\ 2 b K
divided by u+wv, thus resulting in (14). PoF = <b> (a>/(b) = (a)/(b) : (20)

Again lack of space forbids to include the proof of multiple
counting here, which can be found in [7]. The rationale is thafivial combinatorics also reach the same result.

each of theC,,C,C,,C,, can be transformed into exactly 2) 1-forwarding: This is the case whebh < K —1, z = 1.
u + v other patterns by shifting it circularly of an appropriaté;Or z = 1, we haveV=) or b, = 0, andb, = b = x + u.

number of TFs. m Lettingv = 0 in the formulas of theorem 2 yields
Theorem3: The total number of disposition§'(x) that K (a—1\ (b, —(z—1u—1
generates exaat blocked positions is given by: Cluw=0) = (u B 1) ( w1 > : (21)

min{| 2% J,a}  min{a—u,b,} which is equivalent to (7) remembering that= 1 < b =
C(z) = Z { Z C’(u,v)|u+v<a} . (19) by; v=0; z=0b—u.
u=1 v=] 2 B 3) Arbitrary (full) time-frame forwarding:This is the case
whenb < K — 1, 2z = K — 1. Replacingz = K — 1 in (3)
Proof: A pair of (u,v) is valid iff v andv jointly satisfy yields 2,40 = b—z = b— (K —1) < 0 sinceb < K — 1. This
(11), (12) and (13). Sincé€’(u,v) is computed through (14) implies that there is no single combination where we can find

for any valid pair of(u, v), the sum ofC'(u, v) over all valid . > ; The intuition of zero blocking for this special case is
pairs of (u, v) leads to the total number of dispositio6%z) confirmed.

in the output that generates exacblocked positions. =
C. Load Assumption Relaxation

The results presented in previous sections can be modified
to accommodate different loads of the input and the output.
Let (K,b;) and (K, b,) denote the load for the input and for
the output respectively. And let; and a, be the number of
available TFs at the input and the output, respectively. Thus,
(5) becomes:

—e——  K=64z=2
1e-1 ° K=128,z=2
———w——  K=64,z=4
le2 4| — —A—-- K=128,2=4
— O —  K=64,=8
|| ——m—— K=1282=8

Time-blocking probability

Te-5 y max{a;, (b; — za;)} <x <b—z. (22)
. /
b // ar and the modified version of (4) is:
/
1e-7 1 {/ ./ bi—z
1e-8 / LYS _ X K K
’ ref > (A e

T " T T T rz=max{a;,b;—za;}
0.75 0.80 0.85 0.90 0.95
normalized load per time-cycle

min{Lbi’;waai} min{a; —u,b, }
Fig. 5. Examples of numerical result fer> 1. C(x) _ Z { Z C’(u, U)|u+v<a} ’ (24)
u=1 -

b
v=[2y

Examples of numerical results for variousand K values
are shown in Fig. 5. One interesting property is the reduetereb, = b, — b, = b; — x — zu > 0, while (9), (15), (16),
tion in time-blocking probability ads< increases for a given (17), (18) and (14) are reused without any change.



V. MULTI-HOP SCENARIO FORMULATION AND ANALYSIS

A route from a source to a destination node is connected
by H — 1 consecutive switches. Switches are similar in terms
of being strictly non space blocking and having the same
z-forwardingscheme. Hops and switches are indexed as shown

ﬁml)
T [ oo |

hop h-1

o Z time-frames "
4 1

=+ umblocked positions

in Fig. 6.

hop 0 [0[x1JoJo] ... ...... [1]0]
hop 1 [oJo]1]o] o] o]
hop B-1 \1\-0\-0\1| ......... \1|-1|
hop & [1]Jof1fo] .. ...... [1] 0]
hop -1 \0\1\-0\0| ......... \o|'o|

0 1 2 3 E-1

Fig. 6. H hops from source node to destination node with- 1 switches
in between. There ar& TFs per hop and TFs (out of K') are busy.

We aim at finding the probability that aftéf hops there is
no scheduleto forward a TF from input to output.

A. Additional Notations and Definitions

Let [2] be the set of integer§0, 1,2, --- , 2}, tf\") be TF
k at hoph, ‘1" a schedulable TF, andl’ a blocked TF.

Def. 4 (schedulabldF at hoph): — A TF tf,gh) is said
to be schedulable‘,f,gh):‘ls’, iff it is available and at least
one TF in the set{tf,y:l)ﬁ € [#]} is schedulable (i.e.,
tf"- =1, for at least onei €[z)).

A TF tf" is blocked,tf™="1,", iff it is available and
all TFs in the set{tf,g’jl)ﬁ € [#]} are either blocked dbusy
(et V=1, or tf" V=0 for all i €[z)).

-1

also blocked from

e RS RN N P ——
7D i
2
2 O, [3,] 010 [1,] 0 | cserrrssres
= time-frames
"
hop h Q 1, D

Fig. 7. lllustration of blocked TFsl}'.

Note that all available TFs of the first hop (i.&.= 0) are
schedulable. That is iff\”) = 1", thentf{” ='1,".

Blocked TFs are useless in the process of searching for a

schedule for setting up aXP. An illustration of a blocked TF
is shown in Fig. 7.
Def. 5: — A TF position in a TC at hoph is said to

Fig. 8. Example of unblocked positions.

unblocked position, it becomes a schedulable TH," If
V=0 or tf"7Y = *1, for all i €[z], thentf" is
a blockedposition. If an available TF is placed intdocked
position, it becomes blockedl;'.

Let x be the number oblockedpositions, and ley be the
number ofunblockedpositions:

r+y=K. (25)

Let also, at generic hop:
e «ap_1 be the number of schedulable TFs (i.e., symbols
‘1,)at hoph —1;
e [5_1 be the number ofinblockedpositions generated by
hop h — 1 for hop A;
e «p, be the number schedulable TFs (i.e., symbdlg)‘
hop h;
e Pr(ap = a) be the probability thaty, = a;
e Pr(apn—1 = a) be the probability thaty,_; = a.
For the first hop (i.e.h = 0), we have:

1 if

a = ag,

Pr(ag =a) = { 0 otherwise. (26)
In general, at hog — 1, a is bounded by:
0<a<a. (27)

Note that ifa,_1=0, then8,_1=0. For a;,_1=a> 0, on one
extreme case, when dllschedulable TFs at hap—1 form a
unique run, then we obtain the minimum valueurfblocked
positions:

Ymin = min{a + z, K }.

On the other extreme case, when each schedulable TF forms
one run, and two consecutive schedulable TFs are split by an
interval of at least TFs, then we obtain the maximum value

of unblockedpositions:

Ymaz = min{(z + 1)a, K}.

Thus at hoph — 1, givenay_1 = a > 0, y (the number of
unblockedpositions) is bounded by:

min{a + z, K} <y < min{(z + 1)4, K} . (28)

An example of multi-hop time-blocking is shown in Fig. 9.
In the example,H = 4 and each switching node use 2-

be unblockedposition iff it is in a forwarding range of one forwarding scheme. Each hop contains one channel, where

schedulable TF of the previous hap- 1.

In other words, iftféh_l):‘ls’, then all TF positionsf,g’j‘r)i,

K = 12 TFs. In the example, until the third hop, there are

two schedulable TFs. However, all available TFs of the fourth

i €[z], are unblocked If an available TF is placed in anhop are blocked.



hopo  [0J1JofoJof1J1JofJoJo]1]0] D. Nonzero scheduling delay

\ SO \\“ i The analysis for zero scheduling delay is rather straightfor-
pz O[OS IR o] 1]o ff‘ 7T ward. The idea is that we can derive the quangty(c, = @)
NN N using a hop-based computation. In this section, we apply
o SO this approach to analyze cases of nonzero scheduling delay
P17 iy .
hop 2 \0\0\1\1\0\411,\0\0\0\0\0\1‘11,\ schemes (i.es > 1).
W OO R Let us introduce two following conditional probabilities:
ey RN o Pr(Bp—1=yloyp—1 = a) is the probability that?, 1=y,
hop 3 \0\11,\0\0\0\0\11,\11,\0\1,,\0\0\ giventhatah,lzd.
¥ 0 1 2 3 4 5 6 7 8 o 10 11 e Pr(ap = a|Br—1 = y) is the probability thaty,=a, given
—————— > blocked —_— schedulabe that 6 h—1=Y:
It follows that the next two coupled equations can be recur-
Fig. 9. Example where there is blocking after 4 hops. sively used to comput®r(«;, = a) for any hoph > 1:
Pr(Bhn-1=y) =
B. Exact Solution of the Multi-Hop Case a
. . . Pr(Bn_1 =ylap_1=a) Pr(ap_1=a), (31
Even if the multi-hop case is much more complex than the &z:% (Br-1 = ylan— ) (a1 ), B

single node in isolation, the problem can still be formulated
with an exact solution, that we sketch in the following,
referring the reader interested in more details and numericaPr (o), = a) =

results to the Technical Report [8]. min{(z+1)a,K}
> Prlap=alfu1=y) Pr(Bi1=y). (32)
C. Zero scheduling delay y=0

For this special case, we have the following: We can obtain the time-blocking probability if we are able to
Lemma 4: For z = 0, the probability that there aré compute two conditional probabilitieBr(ay, = a|Bn_1 = y)
schedulable TFs at hap is given by: and Pr(B,_, = y|lay,_1 = a). More specifically, the time-
blocking probability afterH hops is computed by (32) for

a (a\(K-a
Pr(ap =a) = Z M Pr(aj_1 =a) . (29) @m-1 =0 where

K
a=0 (a) N
Pr(on = a|fh-1 =y) =
Proof: Let Pr(aj, = alap—1 = a) be the conditional O(5Zy) o .
probability that there aré schedulable TFs at hal, givena { 6 fa<y&a-a<K-y, (33)
schedulable TFs at hop— 1. 0 otherwise.

An available TF of hoph becomes a schedulable TF if it is ~ o
positioned “below” a schedulable TF of hép-1. To generate !N order to havea schedulable TFs at hop, we distribute
exactlya schedulable TFs for hop (i < &), @ available TFs @ available TFs among unblockedpositions generated by

are distributed “beneath” the possible positions, obtainingoP ~ — 1, which yields (4). To block the other(a — a)
the number(%). available TFs, they must be arranged am@Aig— y) blocked

The othera — @ available TFs must be placed under th@0Sitions, which yieldg%~¥). Meanwhile, without any con-
(K — &) busy TFs of hoph — 1 so that no more schedulablestraint, the total number of dispositions(ig). Thus, we derive
TF is generated, yielding the numbgf ~%). Pr(ap = a|Bn—1 = y) as in (33).

Meanwhile, without any constraint, the total number of Finding Pr(8,—1 = ylan—1 = @) is more challenging. In-
ways to distribute: available TFs intaC TF positions is(%). ~creasing the number of hops, schedulable TFs tend to form

Thus, we obtain: “batches” rather than being uniformly distributed amoRg
A A positions. The exact computation 8% (5,_1 = y|an_1 = @)
(O (5=H depends not only on a certainforwarding scheme but also

(30) on the distribution of the position of thé& schedulable TFs,

K
(“) which is no longer uniform.

Taking the sum over all possibiedifferent from 0 we obtain  In fact, an exact solution for time-blocking probability is
(29). W possible if we are able to compute probabilities associated with
With the initial condition of Pr(«g = a) given in (26), (29) all possible distribution ofi schedulable TFs. We demonstrate
is used recursively to obtain the time-blocking probability fothe process to obtain the exact time-blocking probability by

the IF scheme. examining following example.



ALL POSSIBLE PATTERNS ANDy VALUES FORK = 6,a =2,z = 1.

State |

TABLE Il

Pattern

S0
52
S3
541
542

a
0
1
2
2
2

000000
100000
110000
101000
100100

R W N Ol

this analysis allow the design of systems taking into account
the tradeoffs between cost (the amount of buffering) and
performance (time-blocking).

The extension of the exact combinatorial analysis to a
network of switches, i.e., a sequencefobwitches in series,
was also proved feasible, but, due to correlations introduced
by recursive buffering, requires the computation of a set of
conditional probabilities that grows geometrically with the
number of time-framed<, making its use unfeasible in any

1) An example for smalk': We perform the exact solution meaningful scenario. Yet, the availability of theoretical results
for a set of small parameter&’ = 6,a = 2, z = 1. Following  enaples further research to establish (hopefully tight) bounds

(27) and (28) we have < 4 <2 andy € {0,2,3,4}.
For each possiblé, we consider all possible patterns taking
into account the ordering of run-lengths 6% and of 1's.
For example, by allowing shifting the two following patterns|i]
are interchangeablén1000 = 100010. All patterns and their
correspondindgi andy are given in Table Il. The number of 2
patterns is small. Transition probabilities between patterns can
be easily computed as shown in Table III.

TABLE Il E‘}
TRANSITION PROBABILITY BETWEEN PATTERNS

(5]

| so |s2 |s3 | sa | saz |
S0 1 0 0 0 0
S92 6/15 | 8/15 | 1/15| O 0
s3 || 3/15 | 9/15 | 2/156 | 1715 | 0 [6]
S41 1/15 | 8/15 | 3/15 | 2/15 | 1/15
8492 1/15 | 8/15 | 2/15 | 2/15 | 2/15

: . - 7

Let s;, be the vector associated with the probability that[ ]

hoph is at the state,, s,= (Pr(s.)). LetS be the transition
matrix given in Table Ill. We havay = (0,0, -2, & 6},

) »157 157 15 [8]
And the vectors;, is computed by:

s, =so x S .

The above equation is used to compusig_, then (32) is
applied to compute the blocking probability.

Unfortunately this exact approach is computationally unfea-
sible as soon a# grows, which means for any meaningful
real system. However, the existence of an exact solution is
the starting point to obtain approximations and bounds. We
are now working on deriving bounds that can be used for the
design of TDS based networking systems. Early results, can
be found in [8].

VI. CONCLUSIONS

TDS is a novel networking technique that is based on
pipeline forwarding for performance optimization and for
service guarantees. The technique is especially suited to
support ultra-fast switching with extremely large capacities
(multi-terabit/s). Under such conditions, however, buffering
information at switches is difficult and costly. Consequently,
in TDS there is associated with a notiehe-blockingproblem,
arises when a switch cannot be scheduled to exploit available
resources on both an input and an output.

This paper presented an exact combinatorial analysis of
the time-blocking probability of a single switch. Results from

to be used in networks design.
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