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Abstract

The phenomena of batch arrivals arises often in

modern communication networks which are character-

ized by the coexistence of di�erent transmission speeds

and protocols. This paper proposes an e�ective numer-

ical algorithm to evaluate queueing models with �x size

batch arrivals.

The class of problems considered results in a quasi-

birth-death (QBD) Markov chain whose block size lin-

early increases with the number of customers arrive

to the system at an arrival instance. In the case of

a �x batch size the submatrices of the QBD process

has a special structure which is utilized to reduce the

computational complexity of the analysis. The steps

of the proposed numerical method is discussed together

with considerations on the memory and computation

requirements.

Numerical examples of \real" problem, which occurs

when local area network data packages are transmitted

through an ATM network, are evaluated.

Keywords: Quasi Birth Death process, batch arrival,

queue analysis.

1. Introduction

With the extremely rapid evolution of communica-

tion and computer systems and with the intention of

their integration, whose most well-known example is

the introduction of the asynchronous transfer mode

(ATM), the present and future communication net-

works are characterized by the coexistence of di�er-

ent transmission/service requirements, communication

protocols and transmission speeds. With very simple

assumptions on the stochastic behaviour of the network

�
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tra�c (memoryless or Markov modulated arrival and

service) the transfer of data from one part of a net-

work to an other results in complex queue behaviour

at the transfer point. For example, in one part of the

network packets of size 1500 byte are transmitted (IP

packet size used in Ethernet LANs) while in an other

part cells of size 48+5 byte (the size of ATM cells, pay-

load+header) are the base data units. This way when

a packet of size 1500 byte arrive to a node from which

cells are forwarded a single arrival instance means the

arrival of 32 data cells. This phenomena is commonly

referred to as batch arrival.

A queueing system with memoryless arrival and ser-

vice can be analysed by the underlying Markov chain.

When in addition the arrival and service is queue length

independent and the batch size is bounded the un-

derlying Markov chain has a nice block structure and

is referred to as a quasi-birth-death (QBD) Markov

chain [6]. For a good overview of the �eld we refer

to the book of Neuts [6].

There are several numerical methods to evaluate the

steady state behaviour of QBD processes. The most

well-known is the one proposed by Neuts which is of-

ten referred to as Matrix Geometric Method (MGM) [6]

and is based on an iterative procedure. In this pa-

per we refer to this method as SS (simple substitu-

tion) method to distinguish it from other QBD solu-

tion methods. Mitrani and Chakka proposed a one step

method based on the spectral expansion of submatri-

ces [4]. While Latouche and Ramaswami proposed an-

other iterative procedure with better numerical prop-

erties [3]. Naoumov et al. enhanced this method by

reducing the complexity of the iteration steps [5] with

a higher memory requirement. These numerical meth-

ods are quite recent hence the proper evaluation of their

performance is still an open research problem. Some

comparison can be found in [4, 3, 2], but we believe

that further investigation is needed to provide stable

implementations and a su�cient large set of evaluated



examples.

The special problem considered in this paper is the

e�ective analysis of QBD Markov chains, when the reg-

ular blocks of the QBD matrix has a special sub-block

structure due to the fact of �x size batch arrivals. Spe-

cial block structured Markov chains were already con-

sidered in previous works [7, 4], but the class of QBD

processes considered in this paper di�ers from the pre-

vious works, because it has a very special sub-block

structure, and we give an e�ective way of solution only

for this particular case. Although as the examples show

this special case arises often in real networks.

The rest of the paper is organized as follows. In the

next Section the detailed description of the problem

can be found. In Section 3 we present the proposed

algorithm for the introduced problem. In Section 4

a model that suitable for the application of the pro-

posed method is presented, while Section 5 is devoted

to the comparison of the proposed algorithm and the

algorithm of Naoumov et al., which is one of the best

methods for a general QBD process.

2. Quasi-Birth-Death processes

Consider an irreducible, homogeneous Discrete

Time Markov Chain where the state of system is de-

scribed by two random variables: I

n

and J

n

; I

n

is tak-

ing its value from f0; 1; : : :; Ng and J

n

is taking its

value from f0; 1; : : :g and the possible one-step transi-

tion probabilities are given by the submatrices

� A

j

{lateral transition{ from state (i; j) to state

(k; j), (i; k 2 f0; 1; : : :; Ng, j 2 f0; 1; : : :g);

� B

j

{upward transition{ from state (i; j) to state

(k; j + 1), (i; k 2 f0; 1; : : : ; Ng, j 2 f0; 1; : : :g);

� C

j

{downward transition{ from state (i; j) to state

(k; j � 1), (i; k 2 f0; 1; : : : ; Ng, j 2 f1; 2; : : :g);

and all the other transition probabilities equal to 0.

As it is seen from these de�nition A

j

, B

j

and C

j

are matrices of size (N + 1) � (N + 1). This kind of

Markov processes is called quasi-birth-death processes

since there are transitions only between neighbouring

levels (the level is de�ned by the value of J

n

). Assume

that an m (m � 1) threshold exists such that

� A

j

= A; 8j � m;

� B

j

= B; 8j � m � 1;

� C

j

= C; 8j � m+ 1;

which means that the transition probabilities are level

independent if j � m. The block structure of the tran-

sition probability matrix of a QBD process with m = 3

is:
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The left-upper corner submatrix of size (N + 1)m �

(N+1)m of the transition probabilitymatrix is referred

to as the irregular part and rest as the regular part of

the transition probability matrix.

The methods developed for the analysis of the level

independent QBD processes, such as the spectral ex-

pansion or the SS methods, pro�t from the regular part

and allow any structure in the irregular part including

transitions between non-neighbouring levels. The com-

plexity of these methods is O(L

3

), where L is the size

of submatrices which is (N + 1) in this case.

2.1. Processes with batch arrivals

A number of problems in telecommunication net-

works can be modeled with batch arrivals. A model

with �x size batch arrivals and single service di�ers

from the QBD processes only on the upward transi-

tions: the upward transitions are from level j to level

j +K instead of j + 1. In this case the formal descrip-

tion modi�es to:

� B

j

{upward transition{ from state (i; j) to state

(k; j +K)

� B

j

= B; 8j � m �K;

The block structure of the transition probabilityma-

trix of a process with batch arrivals (K = 2, m = 3)

is:
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One of the possible solutions to analyse this system

is through the transformation of the process to a QBD

process by introducing block size of K(N+1)�K(N +

1). The advantage of block size enlargement is that the

general methods of QBD processes can be used, but the

disadvantage is the increase of the computation time

and storage requirement.
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3. A method for �x size batch arrivals

In the description of the algorithmwe introduce bold

capital letters (A; B etc.) to denote the matrices of

size (N+1)K�(N+1)K while the matrices of size (N+

1)�(N+1) are denoted by italic letters (A; B etc). The

size of the irregular part of the QBD process is denoted

by m

0

and the transition probability submatrices of the

QBD process with size of (N + 1)K � (N + 1)K are

denoted by

� A

j

(A

j

= A; j � m

0

) for the lateral transitions,

� B

j

(B

j

= B; j � m

0

� 1) for the upward transi-

tions and

� C

j

(C

j

= C; j � m

0

+ 1) for the downward tran-

sitions.

Denote the steady state distribution of the DTMC

by p

i;j

and introduce vector q

j

; j � 0 as

q

j

= [p

0;j

; : : : ; p

N;j

]

and vector v

j

; j � 0 as

v

j

= [q

jK

; : : : ; q

(j+1)K�1

] :

The steady state distribution can be obtained by

solving the following system of equations:

0 = v

0

(A

0

� I) + v

1

C

1

0 = v

j�1

B

j�1

+ v

j

(A

j

� I) + v

j+1

C

j+1

m

0

> j > 0

0 = v

j�1

B+ v

j

(A � I) + v

j+1

C j � m

0

(3)

The solution of (3) can be found as v

j

=

v

m

0

�1

R

j�m

0

+1

; j � m

0

� 1, where R is the minimal

non-zero solution of the following matrix equation [6]:

B+R(A� I) +R

2

C = 0 (4)

and it can be get by the following iteratation (SS

method) [6]:

0) R

0

= 0

1) R

n+1

= �B(A � I)

�1

�R

2

n

C(A� I)

�1

2) IF (kR

n+1

�R

n

k > �) GOTO 1

3.1. Modi�ed SS method for �x size batch

arrivals

In case of �x size batch arrivals the matrices of the

QBD process has a special block structure:

� Lateral transitions: A =

2
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where S = (A� I)

�1

.

As a consequence of the special structure of the ma-

trices and Equation (5) we can get B(A � I)

�1

and

C(A � I)

�1

with the following equations:

B(A � I)

�1

=

2

6

6

4

BS 0 0 : : :

�BS(CS) BS 0 : : :

BS(CS)

2

�BS(CS) BS

.

.

.

.

.

.

.

.

.

.

.

.

3

7

7

5

(6)

C(A � I)

�1

=

2

6

4

(CS)

K

�(CS)

K�1

: : :

0 0

.

.

.

3

7

5

(7)

Since only the �rst row of blocks ((N + 1) rows)

contains non-zero elements of C(A�I)

�1

we only need

to calculate the �rst column of blocks ((N+1) columns)

of the R

2

n

matrix:

2

6

4

P

k

R

(1k)

n

� R

(k1)

n

P

k

R

(2k)

n

� R

(k1)

n

.

.

.

3

7

5

(8)

where R

(ij)

n

are the (N + 1)� (N + 1) submatrices of

R

n

.

Summarizing the results of (6), (7) and (8) we get a

modi�cation of SS algorithm for our problem:

0) R

0

= 0

1) R

n+1

= �B(A � I)

�1

�R

2

n

C(A� I)

�1

=

�

2

6

6
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�

(CS)

K

�(CS)

K�1

: : :

�

2) IF (kR

n+1

�R

n

k > �) GOTO 1

The complexity of an iteration step of the original

SS method is approximately O(2K

3

(N + 1)

3

). In the

3



modi�ed version the complexity of one iteration step

is O(K

2

(N + 1)

3

), since we only have to calculate the

�rst block of column ((N + 1) columns) of R

2

, and

the multiplication of R

2

n

with C(A � I)

�1

becomes a

vector-vector multiplication on the (N + 1) � (N + 1)

block level. Furthermore as a result of (6) and (7)

the complexity of the initialization of the iteration is

reduced from 7=3K

3

(N + 1)

3

to 2K

2

(N + 1)

3

.

There is a gain in the storage requirements as well.

In the original SS method we have to store 4 matrices

(R

n

, R

2

n

, B(A � I)

�1

and C(A � I)

�1

) of size (N +

1)K�(N +1)K. In the proposed method we only have

to store the full R

n

matrix, the �rst block of columns

((N +1) columns) of C(A�I)

�1

and R

2

n

, and the �rst

block of rows ((N + 1) rows) of the C(A � I)

�1

.

The advantage is signi�cant both in term of compu-

tational complexity and storage requirement when K

is large and N is small.

4. The system model

Consider a system where identical on-o� sources

transmit packets on a single output link. The out-

put link works in a slotted manner: there are �x size

time slots and in every time slot one data unit can be

transmitted. The transmission of a data unit may be-

gin only at the beginning of a time slot. This data unit

will be referred to as cell below. Moreover an in�nite

bu�er is assumed at the output link.

The packets arrive independently at the end of the

time slots and all of them has the same size. The prob-

ability of a packet arrival in a time slot depends on

the number of active sources, but only one packet may

arrive in a slot (even if there are more than one active

sources). The sources may change their states at the

end of the time slots independent of the arrivals and

the states of the others.

The system has the following parameters:

� S: the number of on-o� sources;

� M : the number of cells in a packet;

� �: the probability that an inactive source becomes

active;

� �: the probability that an active source becomes

inactive;

� 
(i): the probability of a packet arrival when i

sources are active at the beginning of the time slot.

These assumptions are reasonable if we consider a

�le server where TCP/IP over ATM is used. The slot-

ted output link has the property of the ATM and pack-

ets consisting of �x number of cells is a possible model

for large �le transfer since most of the IP packets has

the maximum transfer unit (MTU) size during bulk

transfers [8]. In Ethernet-based networks the MTU of

IP datagrams is set to be 1500 byte, therefore the al-

lowed packet size is 32 cells. The default MTU value in

IP over ATM environment is chosen to be 9180 byte,

and thus the MTU size is 192 cells [1]. The number of

active sources may refer to the number of simultane-

ously active connections.

The system behaviour at the end of the nth time

slot is characterized by

� the number of cells in the bu�er of the output link

(J

n

) and

� the number of active sources (I

n

).

The stochastic process fI

n

; J

n

g is Discrete Time

Markov Chain. We analyse this DTMC to get the

steady state distribution of the queue length. More-

over from the steady state distribution performance

parameters, like the packet delay distribution, can be

obtained.

The bu�er content changes as follows:

� If no packet arrives then a cell leaves the bu�er if

it has not been empty at the beginning of the time

slot: j ! max(j � 1; 0)

� If packet arrives then it is put in the bu�er and a

cell leaves the bu�er if it has not been empty at the

beginning of the time slot: j ! max(j�1; 0)+M

The probabilities of the state transitions can be ob-

tained from the parameters of the system model:

D

0

(i; j) := Pr(I

n+1

= j; no packet arrivesjI

n

= i) =

= (1� 
(i)) �

P

min(i;N�j)

k=max(0;i�j)

�

i

k

�

�

k

(1� �)

i�k

�

N�i

k+j�i

�

�

k+j�i

(1� �)

N�k�j

D

1

(i; j) := Pr(I

n+1

= j; packet arrives jI

n

= i) =

= 
(i) �

P

min(i;N�j)

k=max(0;i�j)

�

i

k

�

�

k

(1� �)

i�k

�

N�i

k+j�i

�

�

k+j�i

(1� �)

N�k�j

where �(i; j) identify a matrix element.

With packets consist of 4 cells (K = 4) the structure

of the transition probability matrix is

2

6

6

4
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0 0 0 D

1

D

0

0 0 0 D

1

D

0

0 0 0 D

1

.

.

.

.

.

.

3

7

7

5

(9)

This structures corresponds to problem presented in

Section 2, where N = S, K = M � 1, m

0

= 2, A = 0,

C = D

0

and B = D

1

.
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5. Performance comparison

Several papers indicated that the number of it-

eration steps in the SS method can be extremely

high, especially when the utilization of the system (i.e.

lim

n!1

P

1

i=1

Pr(J

n

= i)) approaches to 1 [3, 4, 2].

Latouche and Ramaswami proposed a logarithmic

reduction (LR) algorithm in which the number of iter-

ation steps is logarithm (base 2) of the number of steps

of the SS method [3]. Experiences with this algorithm

show that the number of required iteration steps is not

more than 40 for any reasonable example [3, 2].

Naoumov et al. enhanced this algorithm by de-

creasing the number of operation per iteration from

O(26=3L

3

) to O(19=3L

3

), where L is the block size of

the submatrices that is (N + 1)K in our case:

0) N = A; W = A; L = B; M = C

1) X = �N

�1

L; Y = �N

�1

M; Z = LY;

W =W+Z; N =N +Z+MX;

L = LX; M =MY

2) IF (jjZjj> �) GOTO 1

3) R = �BW

�1

Since this is one of the best general methods published

so far to obtain the steady state distribution of QBD

processes with level independent transitions we com-

pare our method to this one.

Both solution methods (the LR method and the one

presented in Section 3) have been implemented in C

using the Meschach library

1

for matrix operation. The

CPU time measurements have been performed on an

IBM RISC 6000 570 workstation and the reported CPU

time is only the time needed to �nd the R matrix.

In the experiments we have set the required relative

accuracy in both algorithm to � = 10

�10

, since the

results have shown that the changes in the R matrix

are quite marginal if we use smaller required accuracy.

The intensity of the sources is speci�ed as 


i

= min(i �

d; 1) where d is the parameter of the sources. In our

examples d has been chosen to be less than 1=N .

The in
uence of the number of users on the compu-

tational complexity have been investigated in two sce-

narios when the packet size has been 32 cells (Figure 1).

All parameters were the same in the two scenarios ex-

cept d. The second scenario, when d is higher, results

in a higher system utilization:

1

Meschach library for matrix computation is developed at

School of Mathematical Sciences, Australian National University

by David E. Stewart and Zbigniew Leyk and it is available via

netlib (ftp.netlib.org/c/meschach).
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Figure 1. Computation time versus the number of

sources

N K L Utilization

d = 0:4 d = 0:6

2 31 93 3.7 % 6.3 %

4 31 155 7.5 % 12.7 %

6 31 186 11.4 % 19.2 %

8 31 248 15.3 % 25.9 %

10 31 310 19.3 % 32.8 %

12 31 372 23.5 % 39.9 %

15 31 465 29.8 % 51.0 %

It can be observed that for small N the di�erence be-

tween the algorithms is not signi�cant, but for larger

N the proposed algorithm is more e�cient.

The sensitivity on the utilization of the system also

has been investigated (Figure 2). In the �rst and the

second scenario we used the packet size of 32 with

di�erent number of sources, in the third scenario the

packet size was increased to 192 cells. The block sizes

in the scenarios were the following:

n. of sources (N) upward step size (K) block size (L)

4 31 124

10 31 310

2 191 382

The utilization has been increased by the increase the

source intensity (d). We have found that the proposed

algorithm is very sensitive to the utilization and be-

comes ine�cient compared to the LR algorithm when

the utilization converges to 1. This is due to the high

number of iteration steps of the SS algorithm again.

As it was expected from the theoretical computational

complexity the batch size of 192 cells has improved the

performance of the proposed algorithm.

We have also studied the impact of the stopping cri-

terion (i.e. the relative accuracy, �) in the case of a

low (7.8%) and a high (72.2%) utilization (Figure 3).

We used the parameters of the second scenario in this
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Figure 2. Computation time versus the utilization

experiment. As it was expected, the presented curves

show that the proposed algorithm are much more sen-

sitive to the required accuracy than the LR algorithm,

since the number of needed iteration steps increases

much more in the SS algorithm. As a consequence of

this sensitivity we would have got a better image of

the proposed algorithm if we had used a larger � in the

previous investigations.

6. Conclusion

This paper presented a numerical algorithm to eval-

uate the steady state distribution of models with �x

size batch arrivals and single service. This class of

problems results in quasi-birth-death processes with

large block size, thus the general processes available

for analysis of QBD processes are ine�cient. The pro-

posed method pro�ts from the special block structure

of the QBD submatrices and reduces the computational

complexity and memory requirement of the numerical

analysis.

Numerical example of \real" problems, which occurs

when IP packages are transmitted through an ATM
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Figure 3. The computation time versus the required

accuracy

network, are evaluated. The e�ciency of the proposed

algorithm is demonstrated by comparing the compu-

tation time to an e�cient general method (LR) for

QBD analysis. The numerical results show that the

proposed algorithm is e�cient in the case of large size

batch arrivals, but it becomes ine�cient if the system

utilization converges on 1.
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