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nal corvenience ¢f the homcgeneous model are lost.
A different ®pproach consistc in representing each

ccmponerit by a Multistate Homogernecus

rkov Model (HEMM) [1]

ﬁmu‘ whcse stochastic tehaviour appreximates, according to

some given criterion, h

that of the criginal component. This ap-
proach is a generalization of well-krowr techniques for appro-

ximating non-expcrierntial distributions by combinatione of se-

rice and/or parallel confipurations with constant transition

rates (also kncwn as "stage device", sce €.8. (3] [4]). One ef

the majcr advantages of this approach is that the overall sys
tem is thus still represented by a homogeneous Markov process,
so allowing the use of standard techniques for the analysis of

its behaviour.

In this context, the following questions arise natu-
rally:

a) What kind of dis
b)

tributions can be represented by MHMM's?
Can we use MHMM's to approximate an arbitrary distribution

as close as we want?

¢) Can a generic MHNMM be transformed into an equivalent canoni

cal form, i.e. a form having the minimum number of free pa-

rameters?

The answer to guestion ¢) is of noticeable practical
impertance, for at least two reasons: first, a canonical form
would simplify the computation of the beet approximation for a

given distribution, by not taking into account redundant para-

meters; second, the use of a minimal structure for each compo-

nent would also help to control the complexity of the overall
system model.

This paper presents some partial answers to the above

questions, by considering mainly MHMM's representable by acy-

clic transition graphs; they will be referred to as Triangular

MHMM's (TMHMM) since in that case the transition matrix can be

put in triangular form by 2 suitable recrdering of the states.

The paper is organized as follows. Section 2 reports

some basic definitions and the major properties of MHMM's and

TMHMM's. In section 3 we show that a generic TMHMM can always

be trarnsformed into any cne 0f three canonical forms, the choice

among them being a matter cf conv nience. Section 4 deals with
the computation of canonical forms and the related subject of

their unigueness. In section 5 the above results are used to

characterize the class of distributions representable by

w
=)
o
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TMHMK's. In particular, we show that there are aumuauac~w03m
which, although being linear combinaticns of mvaﬁmﬁa»me.
carnot be gencrated by a TMHMM (nor by 2 generic NMHMM) . This
negative result is, however, of 1ittle practical significarce
since we also show that any reasonably well-behaved distribu-
tion can be wnnnoxwamnma as well as desired by 2 TMHMM of suf-
ficiently high order.

2. BASIC DEFINITIONS AND PROPERTIES OF MHMM'S

pefinition 1. An n-state MHMM (shortly, 3ISIZvV is a time-con-
.
tinuous homogenecus Markov process with n discrete states re-

presented by the triple: (4, @ c), where

i i ix of or-
= Ais n:mﬁnnwnuwduon rate matrix, 1.€- a square matri
der n satisfying: N

uoﬁh
>wxw (o] Vi # k, 24 Ay
we adhere to the convention of amvnamm:nwvm vnodwawwnz vec-

i sition rate from
tors by column vectors: so, >wr is the tran

state k to state is .
t o}
- Qis the initial probability vector, i.e. 2 column vector
£

dimension n satis ying:

Q20 Vi,
i sion
- ¢ is the structure vector, i.e. a colum vector of dimens
n with 0/1- valued entries which represents a vmﬁnvnuoﬂw:m
i i i
of the set of n ctates into two mutually disjoint subsets U
i i a ijf C, = 1. U is
and D, such that 1 e U if n» - 0and 1 €D f 5

t € N " states.
the set of "up" ctates and D the cet of “down" S

7ith this definition, the state oqoumUnwwn< vector

P(t) is cbtained by solving the etandard Markov equation:

o = AP (1)
at
under the initial condition F(0) = Q. The formal solution of
(1) is :
Eiumnb.nwo (2)

The time function F(t) defined Dby:
F(t) = cT P(Y) (3)
ie the probability of the system being in some state 1 €D at
time t. Since we are dealing only with the use of MHMM's for

i t
mwu«oxwawnu:n failure-time distributions, we shall assume tha
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the D set is ergodic, so that the down states can be grouped

together into a single absorbing state which shall be identifi

ed with state n; so, the
oA:.:V

structure vector C will always be
x
equal to and will often be omitted for brevity . We

shall furthermore assume that nqb = 0, i.e. that the component

is initially "good"; under these conditions, (3) represents
the cumulative distribution function (cdf) of the transition
time from.the U set to the D set, i.e. of the failure time of
the component modelled by (A, 2, C); it will be referred to as
the cdf of the MHMM. Ve shall sometimes use the notation
F(t; A,Q) in order to make the dependence on A and  explicit.
It will be useful to consider the relations correspond
ing to (2) and (3) in the Laplace transform domain. Llet wmﬁmv

be the transform of P(t); then eq. (2) rewrites as:

P(s) = (s1 -1 Q (4)

where I is the identity matrix of order n, and (3) rewrites as:
- N(s)

F(s) = c'(sT - )7 Q- (5)
Q(s)

where N and Q are polynomials in s and Q(s) = det (sI - A) =
n

= u@w (s - Tpv. By being the eigenvalues of A.

Remark 2.1: Notice that Q(s) is specified by n-1 parameters
since one of the eigenvalues of A, by its definition, must be

zero. Furthermore, the condition neb = 0 implies F(0) = O and

so deg (N) < n- 2. Taking also into account the condition

F(4c2) = sF (s = o
(+e2) mWw;o nmmAﬁv 1 (nondegencracy of the cdf), it can be

easily checked that (5) is completely specified by no more

than 2 n- 3 parameters, i.e. that the

degrees of freedom.

cdf of an n-MHMM has 2 n~ 3

In the particular case of an MMM whose transition
graph has no cycles, the A matrix can always be put in lower
triangular form by a suitable reordering of

this reason such a model

is called Triangula
The major properties of TMHMM's have becn stated in [2]: in
particular, frcm the properties of triangular matrices we get
the following

Property 1. The A matrix of an n- TNMH

and a single zero eigenvalue; they coincide

¥ NERD

ac vector of dimension k with
to 1 and all cther entries equal to O.

wmnammmjum
i-th entry equal

i 587
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i it s t
the diagonal entries of A. From this property 1t fcllows tha

s m:
for an n- TMHMM the derominator of (%) has the simple for

n
Q(g) = s .Epﬁm + Ay

i=

= -4y

: (A, Q, C) a path is a sequence of m

Definition 2. In an MHM
e,

states iy i

..., i_such that
2’ m

A . #0 kK =1, 2, so0y m-1
iks10dk

In other words, a th is s nce onnected states 1in the
' pa s a sequence of C

1 a generic
transition graph corresponding to A. Fotice that for a g

i s
MMM some statcs may appear more than once in a path, while thi

obviously does not happen for a TMIMM.

: sS i if either
Definition 3. In @ MHMM a state 1 is called mnnmnﬁwww
e e

o] i s e
0 4 0 or it belongs to some path starting from another stat
i

k with @, # 0.

i i i 1 i states
Definition 4. An MHMM is termed irreducible if all its
— —

—_—

are essential; otherwise it is reducible.
The proof of the following property is almost trivial:
. h the
Property 2. A reducible MHMM is cdf-equivalent to (i.e. has

e
P —

same cdf of) an irreducible MHMM of lower order, obtained by
deleting all non-essential states in the former.

Notice that series and parallel configurations of n
states are particular cases of n- TMHMM's. In particular, for
a series the A matrix is bidiagonal, so that it is completely
specified by its n- 1 nonzero diagonal entries. such a matrix

will be termed an s-matrix.

Definition 5. For a given n- TMHMM: (A, Q) an elementary

—— &Awdy .
wma»mm (ES) of order m < n isa m- TMHEMM: (A, O ) where A
{s an s-matrix of order m with

A = -A, = A,
Ay x ik 1y ik
t D = n. Fig. 1 shows
where uu, »m. iess »3 form a path of A and Hj -
imple s 's tha
a 4-TMHMM together with its ES's. A simple nmwn:wcw shows
n-

N + st 2 - 1. An na
the number of ES's for given n 1s at most 2 1. An ES may
be represented by the notaticn:

B om S R ey >
1y *m-1
(recall that 4; = 0). It is immediate that the cdf of an ES

im

has Laplace transform:
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Fig. 1 - A 4-TMHMM and its 7 elementary series.

(6)
mﬁm+»wwv...nm+~

3. CANONICAL FORMS OF TNMHMM'S

In the previous section we have seen that the cdf of

a n-MHMM has at mest 2 n- 3 free parameters; this figure should

be compared wit

e number of parameters needed to specify an
n- MMM, which

is easily computed as Iln = (n= uvm + n- 2 for
a generic model and 24 =n(n-1)/2 + n- 2 for the triangular

case. Since the representation cf a cdf by an MHMM is so high

ly redundant, we suspect the existence of some cdf-precerving

transfermati i
crmation able to reduce a given model to a form of mini

mal cormplexity (canonical form). The existence of such forms

11 tas dm %
will be stated in the follewing for the triangular case.

: (4, Q) is a mixture of the

Theorem 1. The cdf of an n- TMHM

cdf's of its elementary series,

here each ES has a weight
proportional to the prcduct of the

transition rates along the

Markov processes model!

corresponding path and to the initial probability ef the first

result is useful also because it allow

1 is given in the tppendix.

, at least for moderate

values of n, to write out wqﬁmv of eq. (%) by simple inspec-—

tion of the transiticn graph.

To proceed further, wc need the following definition

and lemma.

Definition 6. Giver r positive real rnumbers ».H 2i, 2 ...Nm.:Vo.

e

N

their basic series (BS) are the n series cf 2, By ey 0% L

BS, =<4,6>
1 1
= K >
BS, »H »m
S = . >
BS =< f A, Ay

For a given n- TMHMM: (A, Q) its r-1 basic series are similar

ly defined using as >».m the ordered set of the eigenvalucs of
- A

Lemma 1. Givenan n- TMHM cdf of each of its ele-

: (4, Q), th

€
entary series is a mixture of the cdf's of its basic series.

The proof cf this lemma is rather involved and is
reported in the Appendix.
It basically relies on the following identity: given

two positive real numbers a and b, with a £ b,

a b ah
=w +(1 - W) —/m8m (7)
s + a s +b (s + a)(s + b)
where w = = e(0,1]. This identity shows that an elementary
b

series containing a stage with transition rate a can be substi
tuted (as long as the cdf is cencerned) with a mixture of two
series, one containing a stage with transition rate b and the
cther containing both a and b, provided that b>a. It is
therefore intuitive that by repeated use of (7) one can trang
form an ES into a mixture cf BS's.

Ve now state the following

Theorem 2. The cdf of an n- TMHMM: (A4, Q) is a mixture of the

cdf's of its basic series.
Prcef: from Thecrem 1 and Lemma 1.

From Th. 2 stems the following important

Ccrellary 2.1 (series canonical form). Any n- TMHMM :
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cdf-equivalent to a
rates >x+p.x = »:lr cqual to the eipgenvalues of - A, so ordered

that »H 25,2

series configuration (A, Q) with transition

.2 »wlp (see T'ip. 2). Ir other words, the

schema of Fig. 2 is a canonical form for TMHMM'e

Q 2N Qg Qs

Fig. 2 - The series canonical form.

The proof is immediate since from Th. 2 it follows

that for any (4, Q) there must exist nonnegative real numbers
B.» i =1, 2, ..., n-1 such that
n-1

F(t; 4, Q) = 2 By Fylt, 4) (8)

vwhere 3B, = 1 and F,(t; 4) is the cdf of the i-th basic series

of A. But it is easy to see that the r.h.s. of (8) is the cdf

of the series configuration in Fig. 2, provided that m» = bﬂ N
=

q.e.d.

Remark 2.1: It can be easily checked that (8) has the right

number

cf deprees of freedom to be a minimal representation of
(A, Q); indeed, (8) is specified by 2 n - 3 parameters, namely
n - 1 transition rates and n - 2 independent initial prcbabi-
lities.

Although the above series form is probably the most
compact representation of a TMHMM, there are at least two
other forms which have the advantage that the initial probabi-
lity is concentrated in the first state (i.e. Q = mﬁp.:vv.
This property is particularly useful when using the TMHMM as a
failure model for a component imbedded in a larger system
since it allows, e.g., to represent a repair action (with the
repaired component "as good as new") by a simple transition
from state n to state 1.

Caronical form A. Given the ordered set of n- 1 positive real
numbers f Zh, 2.2 Ap_y» the form (4%, a?.ig is canoni
cal for n- TMHMM's with eipgenvalues - 4., where

Markov processes modelling

4, ]
Y-t TApg
A = X a5 Apay |»n|w
i B
7. X o 8 . by - 9
= eeey N=1
xe [0, 4,11 =1, 2,
n=1
Mmu %, Ay

corresponding to the schema of Fig. 3. The proof is almost
trivial since it is easy to see that the cdf of this form

coincides with (8) when x, = Bidy-

1 .VrDL VfDn 2 .7 2

Fig. 3 - Canonical form A.

Canonical form B. Given the ordered set Np = »m = ...N»nu».
the form ( Mﬂ oﬁu.svv is canonical for n-TMHMM's with the

prescribed eigenvalues, where

|»4
o I

Nn o X5 |»u
o T
- - 0
A%, »m Xy . S

x»m?. C , i=1,2,...,0-2 n
corresponding to the schema of Fig. 4. The proof of canoricity
can te obtained by comparing the cdf of this form zwnznwjmw of

~ ST
the series form. Let y, = x.p\m.uu then the cdf of (4, ¢ )

is given by (8) provided that
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A%
Fig. 4 - Canornical form B.

After some alpgebraic manipulation, one gets the so-

lution of (9) with respect to the %w.m as

3
1 - 3
k=1 B :
Ty = i1 (10)
1 - 3 By
k=1
provided that HWM mx # 1. Let us suppese that this last con-
k=1
dition is satisfied for all i = 2, ..., N=23 then it is

easy to see that for any choice of mH such that mu 2 0, men 1,
the condition 0 < wMM 1 i1s satisfied for all i, so that N is
a legitimate transition rate matrix. Since there is a cne-to-
one correspondence between the series canonical form and

. oﬂu.:u

), then the latter is canonical too, g.e.d.

Remark 3.2: It is interesting to notice what happens if, for
4 i-1
some i < n-1, er Bx = 1 while rmu B # 1. In this case 7, =0

and Yk for k > 1 as given by (10) is undefined; however, this

is only possible if mr =0 Vk >1i, so that (9) is satisfied

by any choice of wv.m for k > i. Indee

nonical form becomes a reducible TI

since the states is+1,
i+2, ..., n-1 are no more reachable from state 1. Ve should
notice, however, that under such conditicns also

t
forme are reducible: in the series form, if mr = 0 for k= 141,
«eey, D=1, > 3

in form A

appens for states ¢, 3, ...,

Remark 3.3:

is reducible, then there

Markov processes modelling 593

must be some pele-zero cancellation in the corresponding vnﬁmv

(i.e., P(s) and 0(s) must have some common factors) while the

true, in general. For cxample, the 3-

is in cancrical form) has

(s + 3)(s + 1) s + 3 (s + 3)(s + 1) s + 1

and is therefore cdf-equivalent to the 2- TMHMM of Fig. & b.

cf Fig. 5 a is not reducible in the sense

(a) ; (v)

Fig. 5 - a) an irreducible 3-TMHMM;
b) a 2-TMHMM cdf-equivalent to the former.

4. COMPUTATION OF CANONICAL FORMS

We now consider the problem of computing the parame-
(4, Q.

We shall focus on the series form, sinceé the other two are

ters of a cancorical representation of a given n- THMHMM

easily obtained from the former by simple relations.

The computation of the B.'s appearing in (8) is

1
best done in the Laplace transform domain. To this purpose,

revrite (8) as:

n-1
= 2 B, F__ (s; A (11)
1=3 ~ 77
where
Ay Aoeeedy s+i_ )
F . (s5 A) = i e i _ n-2" _
o s(s+2,) e (s4d,)
(s)
= (12)
Q(s)

where N (s) is a polynomial of degree n-i-1 in s. By equating

(11) and (5) cne gets:
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k
which, after cguating separately the coefficlents of s

’
k = n-2, n-3, ..., 1, 0, becomes a cystem of n-1 linear equa
tiens in the mw.w which turns cut to be ir triangular form
with nonzerp diagonal coefficients, hence nonsingular and
casily solvable by Gaussian elimination.

It should be remarked that nonsingularity cf the
above defined system implies the uniqueness of the sclution
vector W = Mmsup mnlw ...mw ouq for given N(s) and Q(s); but,
since Q(s) is fixed by the eigenvalues of A, N(s) is itself
unique sc that we conclude that the series canonical form of
(A, Q) is unicue. This uniqueness property may be transferred
immediately to canonical form A, and also to form B provided
that there is no pole-zero cancellation as mentioned in

Remarks 3.1 and 3.2 (in that case we need some convention for uni
quely defining the undefined ﬁ»_m. m.m..w» = 0).

5. EXACT AND APPROXIMATE REPRESENTATION OF CDF'S BY TMHMM'S

We now consider the problem of characterizing the

class of cdf's generated by TMHMM's.

Definition 7. A real-valued function F(t) over [0,+es) is of
class zoAnu (Rational Laplace Transform cdf of order n) iff
it is a cdf and its Laplace transform is a rational function,

i.e. a ratio of two polynomials in s:

N(s)

mmﬁmv = L{F(t)}
Q(s)
where deg (Q) = n.
The N zeros of the denominator Q(s) are the poles

of mmﬁmv. Notice that for F(t) to be an honest cdf, mmﬁmv must |
have a single pole at s = O with unit residue, and the other
poles must have negative real part. Ve shall alsoc assume that
deg (N) < deg (Q)-2 in order toc have F(0) = O, i.e. no mass

at the origin.

Definition 8. A function F(t) is of class zoﬁnv iff it is of
class mnA:v and its n-1 non-zero poles are real (negative, by
the above remark).

By eq. (&) and Prop. 1 one immediately gets
Property 3. The cdf ofan n- MHMM is of class woﬂzv
Property 4. The cdf ofan n- TMHMM is of class zoﬁav

We notice that the so defined classes contain many

distributions often used in reliability analysis, e.g. the

Markov processes modelling 595

simple exponential which is chuv and the gamma distributions
with integral parameter @ which are :onmv.

It should be noticed that any F(t) € wnﬁnv is also
mnnxv ¥k > n, since one can always multiply both numerator
and denominator of MmAmu by a common factor of degree k=n>0

without affecting the cdf. The same holds for znnav.

Definition 9. qnﬁsv is the class of cdf's realizable by
n- TMHMM's. Obviously, aoA:Vnu znﬁsv.

We are row able to answer the guestion: what cdf's
are representable by arnn- TMHMM (i.e., what cdf's belong to
qonsvva By the results of sections 3 and 4, we have the

Property 5. anA:V is the subset of Znnsu whose elements admit

a series canonical reprecentation with uw 2 0.
This proposition is less trivial than it appears,
since we can give examples of cdf's which are znA:v but not

T (n).
c

Example 1.  Let .
e —
e sy
F(t) =1 -e (1 + |MI t

2y

then

um + s + 1

(13)

mmﬁmv =
s(s + 1)
hence F(t) € znﬁnv. Now, if there is a canonical 4- THMHMM

yielding F(t), it must have »u = »m = »w = 1 and

mHHH mNuIH mmnw

We see that Hmw. mm. Byr oge is not a probability
vector. But we have proved that the series canonical form of
ann- TMHMM is unique, so we conclude that there is no 4- TMHMM
yielding F(t), since any such TMHNM chould yield nornnegative
By's when reduced to canonical form. Hence F(t) & znﬁnv but
F(t) § T (4).

For this particular case, the prcblem may be circum
vented by raising the order of the model, i.c. by introducing
"dummy" poles in mmﬁmv. For example, if both numerator and de

nominator of (13) are multiplied by s+ 2, we may show that

F(t) e aoﬁmv by constructing the 5- TMHMM of Fig. 6 with
»p = 2 »m =iy = Ay=1
m» =1/2 mm = By = o] Bs = 1/2

which yields F(t) as its cdf.



596 ALDO CUMANI

2, =1/2 o;ud\m

Fig. 6 - The 5-TMHMM which realizes the cdf of Example 1.

Example 2. Let

: A 2
F{t) = 1 =r¢” (1 + t°) (14)
then
4
mmAmv e 8 #1
s(s + 1)3

hence again F(t) e zoaav. But we can show that F(t) & an:v
for any finite order n. Indeed, we have the following

mnommaam 6. Given the cdf of @ n- MHMM, the corresponding den
sity is nonzero for any finite t > O.

The proof is given in the Appendix. Now, the densi-
ty of (14) is

£(t) = e %1 - )2

and so f(t) = O for t = 1. Hence, there can be no n- TMHMM

with finite n yielding F(t) as its cdf, g.e.d.

The above examples should not induce, however, pes-
simistic conclusions about the usefulness of the Markov appro

ach. Indeed, we can show that

| Property 7. Any reasonably well - behaved cdf can be approxima

ted as close as desired by an n- TMHMM for sufficiently large n.
Let F(t) be a cdf such that F(0) = 0 and R(t)= 1- F(t)

the corresponding survival function; define

= _ k
Ry(t) = 3 R(k/a) o3t A0 (1)
. k=0 k!
37 ﬁ.\, then
@ BB lim Ry(t) = R(t)
i—
'3

uniformly in every finite t- interval [5]. Now define mﬂpAﬂv
as

n-1
| m:»Anv = 3 a e

-at (av)k
k

(16)
k=0 k!

where
a, = R(k/24)

then it is clear that v«»Aav =1 - ma»Anv is the cdf of the
series (n+l) - TMHMM of Fig. 7, provided that mu = m» 1= m».

N 597
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&1 Bn-2"8n-1 Bom™
” N U X U A m
Fig. 7 - Approximatiocn of a cdf by an n-TMHMM.
i=1, ... n-1, maumslpn furthermcre,
lim F_o(t) = ¥(¢)
n—c P
A—c
which implies that F(t) can be approximated as closely as
desired by F_.(t) in any finite t- interval by choosing suf=- e
ni —

ficiently large values of n andA.
It should be noticed that fer a cdf which is the
output of scme MHMM: (A, Q, C) the above result can be some-

what strengthened by using, instead of (15),

- k
Re(2) = § g e A (AT (17)
K
k=0 k!
with
a, = &%z 4 .b»Lx 9, T =1-¢,1=1,2, ...y
It can be shown that if A1 > auw_\_; |+ then n_.No and
i :

(17) is an exact represcntation of R(t) NLOn orly in the
limit A — o) [6].

It should be remarked that the above is not meant
to be an efficient way to approximate a given cdf by an n- TMHMM.
In a practical case, we would use a canconical model cf scme
given order n in an optimization procedure, such as the one rg
ported in [2], in order to get "optimal" values of the 2n -3

.- 1In most cases cf inte
-2

parameters »p o »:lu and mw sd m:
rest such a procedure is likely to produce a good approxima-
tion of F(t) even for small values of n, and we refer the

reader to the cited work for examples justifying this asser-

tion.

6. CONCLUDING REMARKS

From a practical point of view, the major result of
this work is the existence, uniqueness and simple form of the

canonical representation of TM

i's. The use of triangular mo
dels in a special - purpose optimizaticn program aimed at pro-
ducing the best markovian approximation of a given cdf has

been proposed in —&“ incorporation of a canonical structure
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in this program is expected tc yield a significant improvement
of its efficiency. Indeed, as long as the rumber of parameters
of the model exceeds the number of deprees of freedom of its
cutput, we expect the existence of many different sets of parameter
values yielding the same output, and this is likely to cause
problems such as slow convergence or even coscillations. For
example, one may easily give examples of n- TMHMM's with the
same cdf and the same eigenvalues, but differently ordered on
the diagonal of the A matrix; so, it is well possible that the
optimization procedure be trapped in an oscillation between
two such configurations without ever reaching the optimal sclu
tion. This problem, however, is easily avoided if the canoni-
cal ordering of the »»_m is incorporated as a constraint in
the program.

Our results do not answer, however, the more general
guestion of the existence of canonical forms for non- triangular
MHMM's. The problem with these latter is that they may have com
plex poles, so that we lose the possibility of imposing upon
them a strict ordering as in the real case. We should mention
that the use of complex probabilities and/or transition rates
has already been suggested in the literature [3], but in this
way the model does no mcre represent a real Markov process.

It should be remarked that, although the use of non-real mo-
dels is perfectly legitimate until their input- output beha-
viour does represent a real process, in some cases it may be
difficult to verify this last condition. For example, if an
n- TMHMM in canonical form A is used to compute a best Mar-
kovian approximation of a given distribution, the condition
of nonnegativity of the transition rates ensures, at least,
that the resulting approximation is itself a distribution,

while this 1S not guaranteed if the nonnegativity condition

is dropped.
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APPENDIX

A. Proof of Theorem 1.

o Vie mwmme\MMMWn that the thesis is trivially true
for n = 2, since a 2- TMHMM coincides with its unique elemen
tary series, so we proceed by induction. Let (A, Q) be an
n- TMHMM and let the thesis be true for arbitrary

(n-1) - TMHMM: (A', Q'). Partition A and Qas

Aoy @ Y3
i 2 =3
= ————beea z | cmm——————
/ A X m ' (1 - w,)Q'
XA 1

where one easily checks that X and Q' are (n- 1)-dimensional
probability vectors, so that (A', X) and (A, Q') are (n-1)-
TMHMM's. Now,

1
e _" 0
-1 s + Ay
(s1 =A) ~ = & -
P -1
L e ) )
s+ »p
where I' is the identity of order n- 1. Hence
-1 wiky (n-1,n=-1T i
Fs; @ = ™™ 1 -0 —— 9 Csirg T
s s + >w
A1

si A, X)+(1-w )F_(s:A",Q')=
! m+»pm,wA A% ¥1'%s

= zp>ﬁmv+Au|:puwﬁmv
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Now, by the induction hypothesis B(s) is a mixture
of ES's of A' (which by definition are also ES's of A); but
one easily sees that A(s) is itself a mixture of ES's of A (with
state 1 as the first state), since F_(s; A', X) is a mixture of

those ES's ¢f A' which are connccted to state 1 (i.e., those

which start from a state i such that Awu = »wanp # 0). Hence

if the thesis is true for n-1, it is true for n too, g.e€.d.
The second part of the thesis (weight of each ES)

can be easily proved by recursively applying the above formu

lae.

B. Proof of Lemma 1.
R st
Let ~H 2 Nm 20 2 A0 be the ordered set of the
eigenvalues of -/ and let E be an elementary serics of A .
Ve introduce a representation of E as the row vector E =
= ﬁmw e, .- mnnp_ where e, =1 if »w € E and e, = 0 other-
wise. For example, let N = 9 and E =< 1, Nu. Ao >3 then

E=[10011000])

Notice that the ordering of the A,'s in the path

corresponding to E is immaterial, since ﬁzm»oam of an elemen

tary series is invariant under permutation cf the transiticn

rates. Given this representaticn, define the following quan-

tities:

R(E) = index of the mWMWMHMWh«bo:Iwao entry cf E

Z(E) = number of zero entries between ey (inclusive) and er
(obviously Z(E) = 0 iff E is a basic series)

I(E) = index of the rightmost zero entry between ey and e
(if z(E) = 0, we define I(E) = 0)

A(E) = R(E) - I(E) 2 1

Now, let E be a non- basic series, hence Z(E) # O.

If I(E) = k, we apply identity (7) with a = } =}
’ pply ntity (7) with a Aper and b = 2,
to represent E as the mixture of two series, say wHAmv and
mmnmv where S, contains both 4, and 2 while S_ contains
1 k+1 2

only A

-

t is easy to see that for any E the fcllowing two
cases apply:
1) if A(E) = 1, then 2 ﬁmp:.”: =z _m&m: = 2(E) - 1
1I) if A(E) > 1, then imim:u Z(E) - 1 and immﬁm: = Z(E)
but Emm:n: = 4(E) -1
We can now prove that the following procedure

yields a representaticn of E as a finite mixture of basic

—-————
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series.
= 1
Start: ew «— 1; k « 1; Nx «— Z(E); mH «— E;
Loop: J — 1;
For i = 1 to ex do
Split: if Em_ﬁ =1
k+1 k k+1 k
\ P E E. )y erd
then begin H.”.w — mwﬁm»v. Eje1 — wwA Hv.
< k
else begin m”+p — mwﬁmuvﬂ Je— 3+ 1
K « ik
s split; end
m» — cmAm»g. go to sp
end;
Comment: at this point, the ex series mM have been transformed
¥ k+1 .
into mixtures of Ve = W ﬁmﬁmwv+ 1] series mu+ , which sa-
- i=1 =
tiery 2(E5*Y) = 2 -1 ¥3iso
J k
z Z < 7 t t K k+1; go to loop;
let NX&H — Nx 1; if wx+u # 0 then let ké— g P
else stop
end.

It should be clear that cach lcop: step of this
procedure involves a finite number of applications of (7) and
therefore produces a finite number c¢f terms in the expansion
of E as a mixture of series; alsc, at each step mx is reduced

by one, so that the process will ultimately stop after k= Z(E)
steps with mr+p = NANM+HV = 0 Vj, i.e. with a representation

of E as a mixturce of basic series, g.e.d.

C. Proof of Prcperty 6.

The proof is given by the following two lemmas.
Vi=1, 2, «eey Ny Ve>¢@.

Lemma C1. For an n- MHMM, 1uadv 20

The proof can be found in any textbook on Markov

Processes, e.g. [4].

Lemma C2. For an irreducible n- MHMM, v»Anv 40 Vi=1, 2,...,n,

Vi > 0.

Let by contradiction be some i and some aov 0 such

that
=0
w»nnov

Then

P.(t) = 2 e Ficlt

Pileg) = By, Ay Prlto)
vhere <» is the set of states: {k: >0}. Now either:
g) <» is empty. Then either

a.1) Q. = 0 but this contradicts irreducibility, cr

i
a.2) Q. > 0 but the

i

k=]
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JSV = Q. exp S.ZS >0 Vt

which contradicts vuﬁnov =0

b) V, is nonempty. Then either
b.1) mxAncv 20 Vk e V, and there is some k eV, such
that vr?“ouvo“
hence
.
v»?ovvo
but in that case there must be a left-neighborhood of tg in
ich
<
v»ﬁnu 0
which contradicts Lemma C1.
b.2) vxﬁﬂov =0 Vk e V . In this case we repeat the above
arguments for each k € <Hn since the number of states is
finite, we must ultimately reach a contradiction. Hence
vuﬁnv #0 ¥t >0, q.e.d.
Now, foran n- MHMM the density of the cdf is given by
d d
£(t) = — F(t) = L p (1) = MTR(1)
. dat at "
where M~ is the last row of A. But zq cannot be identically
zero, since otherwise the final state would nct be connected
to the rest of the system. Since all compcnents of P(t) by
lemma C2 are non-zero for t > 0, we conclude that f(t) # O

¥t > 0, q.e.d.
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