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Budapesti Műszaki Egyetem
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Chapter 1

Introduction

In the field of performance analysis of computer and communication systems, which is
somewhere in between application driven methodology and applied research, the most
important external motivations are industrial needs, feasibility, and computability.
During the last 10 years all of these external motivations changed a lot.

All important performance indexes of electronic computers (CPU speed, mem-
ory and disk access speed, memory and disk size) increased by several orders of
magnitude, and even more, personal computers, dedicated to single users, provides
this high performance. This changes made possible to solve previously inconceivable
problems. But, unfortunately, in performance analysis the complexity of several com-
putational problems increases exponentially (or faster) with several model features
like number of components, complexity of components, complexity of system behav-
iour, etc. Due to the intrinsic complexity of real systems behaviour the available
computational power is still a bottleneck of performance analysis. The applied nu-
merical methods have to be designed considering the available computational power.
The main challenge of performance modeling and analysis of real computer and
communication systems remained finding an optimal trade off between the accuracy
and the computability of the model. The increased computing power enlarged the
set of applicable numerical methods, but did not eliminate the computing capacity
constraints.

Stochastic models has always been applied for system performance analysis. For
the 80’s queueing network models and discrete and continuous time Markov chains
were widely applied together with some decision and reward processes models. For
special problems more complex processes, e.g., semi-Markov or Markov regenerative
processes, were applied. Naturally, the applicability of these models were always
determined by the available computing capacity which significantly improved by
time. There were theoretical results available for several other classes of stochastic
models as well, but they did not got widely applied due to complexity constraints.
A series of new trends become visible during the 90’s.

In the late 80’s the signs of revolution in telecommunication were not evident
yet. At that time the introduction of computers to network planning and dimen-
sioning was in progress. At the same time according to the common understanding
of electronic equipment’s behaviour the analysis of hardware reliability and perfor-
mance was a major research challenge. Significant changes were experienced in both
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fields. Since the early 90’s the sharp development of the telecommunication network
in Hungary and the introduction of new services initiated a very fertile research in
this field. Instead, the improvement of semiconductor technologies, which resulted
in significantly more reliable hardware, and the increasing software complexity of
electronic equipments turned away the attention from hardware reliability analysis.

One source of the new priorities roots in the evolution of packet switched telecom-
munication services. Measurement of real communication systems indicated strange
stochastic phenomenon. Distributions with heavy tail and point processes with
slowly decaying correlation structures were identified in packet switched commu-
nication networks. Stochastic models which previously were not applied in queueing
and performance analysis gain significant attention in these fields. Examples of such
models are fractal models and models based on large deviation theory. The set of
applied modeling approaches also changed due to the availability of new analysis
methods. The most significant in performance analysis is the development of matrix
geometric methods. These methods allows to describe complex stochastic models
in a compact way and provides effective numerical methods for their analysis. The
availability of matrix geometric methods made the state space based methods very
popular in practical applications.

In spite of the mentioned significant changes the main approach of applied per-
formance analysis remained the same:

• The modeler should understand the behaviour of the considered system from
performance point of view. Commonly, the performance issues of system be-
haviour are quite far from other engineering issues of the same system, hence
engineers familiar with the functional behaviour of a system are often unable
to draw right consequences on its performance. The technical details which are
crucial for functional correctness of a system might be irrelevant for its perfor-
mance analysis and vice-versa. It is also quite often the case that a modeler
should distinguish between important and the less important issues of system
behaviour, because it is impossible to capture the entire system behaviour.

• It is also an essential question in applied analysis which are the available data.
Completely different methods are applicable when the stochastic rules of system
behaviour are complete or only partially known. The later one is quite often
the case in practice.

• The modeler should also know the possible modeling approaches which can be
used to describe the considered system behaviour. It is not enough to know
these methods, but one should also know their limits of applicability and their
possible extensibility utilizing special model features.

• The computation of performance parameters is the execution of a computer
program. Most commonly this program is not a special one developed only
for the particular problem attacked, but it is a general purpose “tool”. The
key features of these tools are the applied model description language (e.g.,
queueing network model, stochastic Petri net, Markov chain, etc.) and the
built-in analysis procedure. The modeler should know the available tools, their
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functionality and limits. If not a general purpose analysis tool is applied the
development of a specific analysis program is based on available library func-
tions. A modeler should also know the best way to utilize the set of available
elements for the solution of the considered problem.
It is often hidden from the end-users of an analysis program, but the internal
algorithms used in a program has significant consequences, which makes the
application of a general purpose tool difficult in several cases. For example,
if the steady state analysis of a stochastic model is based on direct methods
like LU decomposition or Gauss elimination then the cardinality of the state
space can not be larger then 104, while iterative methods like successive over-
relaxation or Gauss-Seidel allows a cardinality of 107. The cardinality of a
stochastic model is not visible from high level model descriptions (e.g., sto-
chastic Petri net), hence the modeler should have a very clear idea what the
applied analysis tool does for him/her and how to interpret the ’answers’ (e.g.,
what to do in case of ’infinite’ response time).

In applied performance analysis the technical details of practical systems often
make very hard to apply the available theoretical results, but we should mention
the advantage of this fact as well. There are several very successful examples of
the symbiosis of technical development and theoretical research also in the field of
performance analysis of computer and communication systems. Modeling needs of
motivated by technical details of real systems often advanced the set of analysis
techniques. The set of results introduces in this dissertation contain examples of
both directions of the interaction. E.g., on the one side, the effort for the analysis of
Markov regenerative reward models is motivated by the need of performance analysis
of systems with non-exponential activities (Chapter 4), and on the other side, the
availability of analysis results for partial loss reward models allowed us to introduce
a new performance model of transaction processing systems (Chapter 7).

The practice of computer and communication engineering evolved very fast in
the last decade. This fast evolution resulted in a wide range of performance analysis
research problems. The considered research problems are also taken from a wide
range of application fields (e.g., software rejuvenation, performance of access meth-
ods in mobile telecommunication systems, resource sharing between different service
classes in communication systems, packet switches, multimedia servers, ...) using a
wide range of analysis tools (e.g., fluid models, decision processes, matrix geometric
methods, reward processes, ...). The classification of these diverse research activities
is based on a fuzzy methodological classification of research results. According to this
classification the three main directions of applied methodology were: non-Markovian
Petri net models, reward models and state space methods. To meet space limita-
tions this dissertation surveys only the last two fields. This choice is motivated by
the facts that Petri net models looses importance in applied performance analysis
recently and the main focus of [81] was on non-Markovian Petri net models.

The following technical chapters introduce a large number of different measures
and provide their analytical description. The applied notations is chosen to indicate
the relation of the measures studied in different chapters, but the large number of
studied measures do not make possible to apply a unified notation through the whole
document without introducing very special notations. E.g., we introduced different

3



notations for the distribution of the accumulated reward in different partial reward
models in Chapter 6 to emphasize the difference of the models, hence we can not use
a unified notation for the distribution of the accumulated reward. Anyway, we use a
unique notation for the basic quantities of the studied concepts as it is summarized
in Appendix A and we define the applied special notations chapter-by-chapter.
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Part I

Reward models

5



Chapter 2

Introduction to stochastic reward
processes

This chapter provides a short introduction to the later studied subjects and a sum-
mary of the ideas as well as the used notations. Before the concept of reward processes
we briefly discuss the considered stochastic processes and their properties based on
the pioneer work of Cinlar [24].

2.1 Some basic discrete state stochastic processes

In this work we pay special attention to the stochastic processes (Z(t)) defined over
a discrete state space (Ω), whose features can be characterized by the existence of
(random) time instants, at which the future of the stochastic process depends only on
its current state. Theoretically the time instants of this kind cover the past history
of the process, thus they are called regenerative time points.

Definition 2.1. Tn is called a regenerative time point1 (RTP) if

E {f(Z(Tn + t1), . . . , Z(Tn + tm), ) |Z(Tn), Z(u), 0 ≤ u < Tn}

= E {f(Z(Tn + t1), . . . , Z(Tn + tm), ) |Z(Tn)}

for any 0 ≤ t1 ≤ . . . ≤ tm, and bounded function defined on Ωn.

This property is referred to as strong Markov property of the process at Tn taking
m = 1 ([24]).

The sequence of the RTPs plays special role in the study of stochastic processes.

Definition 2.2. The sequence of the random variables {Xn, Tn; n ≥ 0} is said to be

1It is referred as regeneration time in [24] p. 298 for renewal processes.

6



a (time homogeneous) Markov renewal sequence2 provided that

Pr {Xn+1 = x, Tn+1 − Tn ≤ t |X0, . . . , Xn, T0, . . . , Tn}

= Pr {Xn+1 = x, Tn+1 − Tn ≤ t |Xn}

= Pr {X1 = x, T1 − T0 ≤ t |X0}
for all n ≥ 0, x ∈ Ω and t ≥ 0.

It follows that the series of states {Xn; n ≥ 0} forms a Markov chain ([24]). It is
commonly referred as embedded Markov chain (EMC).
In the following we restrict the considered Markov renewal sequences to the ones
whose RTPs compose a strictly monotone increasing series (T0 < T1 < T2 < . . .).
We generally suppose that the studied process starts at T0 = 0.

In the sequel, we assume the considered stochastic processes to be right continu-
ous, i.e., Z(t) = Z(t+), ∀t ≥ 0.

2.1.1 Semi-Markov process

The time continuous stochastic process defined as the continuous time extension of
a Markov renewal sequence is called semi-Markov process.

Definition 2.3. Z(t) is a (homogeneous) semi-Markov process (SMP) if a
{Xn, Tn; n ≥ 0} Markov renewal sequence exists and

Z(t) = Xn , if Tn ≤ t < Tn+1 .

There are some obvious consequences of this definition:

• Tn, n ≥ 0 are RTPs of the process,

• there is no state transition between two consecutive RTPs,

• there can be RTP without real state transition (this case is considered as a
virtual state transition from state i to state i [42]).

From the definition of the time homogeneous Markov renewal sequence one can
argue that the probability

Pr {X1 = j, T1 − T0 ≤ t |X0 = i} , i, j ∈ Ω

plays a central role in the description of the Markov renewal sequences and the
corresponding probability

Qij(t) = Pr {Z(T1) = j, T1 ≤ t |Z(0) = i} i, j ∈ Ω

in the description of the SMPs as well. The matrix Q(t) = {Qij(t)} is called the ker-
nel of the SMP and summarizes all the information on the process that is necessary

2This sequence of random variables is called Markov renewal process in [24], but it is referred
to as Markov renewal sequence in some later works ([21, 22]).
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for evaluating its probabilistic behaviour. However, the Q(t) kernel representation
of a SMP is not unique since there can be different kernels describing the same SMP,
a canonical (unique and “minimal”) representation can be obtained with 0 diagonal
elements in the kernel matrix [81].

The Markov chain {Xn; n ≥ 0} is called the embedded Markov chain (EMC)
of the SMP. According to this approach the time points Tn are called embedded
time points, since the embedded Markov chain is formed by sampling the SMP at
these time instants. The {Xn, Tn; n ≥ 0} Markov renewal sequence is also called the
embedded Markov renewal sequence.

The one step state transition matrix of the EMC (Π = {pij}) is derived from the
kernel as:

pij = Pr {Z(T1) = j |Z(0) = i} = lim
t→∞

Qij(t) . (2.1)

There are two possible interpretations of the evolution of a SMP:

• being in a given RTP, first, the next state is chosen from a discrete distribu-
tion (independent of the waiting time) and then the waiting time is sampled
considering the next state from a (generally) continuous distribution,

• being in a given RTP, first, the waiting time is sampled from a (generally)
continuous distribution (independent of the next state), then the next state is
chosen considering the waiting time.

The quantities associated with these interpretations are as follows. The (uncondi-
tional) distribution of the next state pij, which is sometimes referred as switching
probability, has been already introduced (2.1). The probability distribution of the
waiting time conditioned on the next state is written as

Hij(t) = Pr {T1 ≤ t |Z(T1) = j, Z(0) = i} =
Qij(t)

pij

,

the (unconditional) distribution of the waiting time is obtained as

Qi(t) = Pr {T1 ≤ t |Z(0) = i} =
∑
j∈Ω

Qij(t) ,

and finally the switching probability conditioned on the holding time is given by

pij(t) = Pr {Z(T1) = j |T1 = t, Z(0) = i} =

lim
∆→0

Pr {Z(T1) = j, t < T1 ≤ t + ∆ |Z(0) = i}
Pr {t < T1 ≤ t + ∆ |Z(0) = i} =

lim
∆→0

Qij(t + ∆)−Qij(t)

Qi(t + ∆)−Qi(t)
=

dQij(t)

dQi(t)
.

pij and Hij(t) are the functions for the description of the SMP according to the
first interpretation, while Qi(t) and pij(t) defines the distributions according to the
second one.
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Stationary analysis

The simplest stationary analysis of SMPs is based on the Markov chain embedded
into state transitions instances. The transition probabilities of the EMC are Π =
{pij}. The stationary distribution of the EMC is obtained from the linear system of

equations: P̂ = P̂Π,
∑

i P̂i = 1. The stationary distribution of the SMP is obtained
by weighting with the mean sojourn times of states τ̂i:

Pi =
P̂iτ̂i∑

j

P̂j τ̂j

(2.2)

where τ̂i =
∫∞

0
1−Qi(t)dt.

Transient analysis

The state transition matrix is denoted by V(t), whose elements are

Vij(t) = Pr {Z(t) = j |Z(0) = i} .

Theorem 2.4. The transition probability (Vij(t)) satisfies the following equation [42]:

Vij(t) = δij [1−Qi(t)] +
∑

k∈Ω

∫ t

h=0

Vkj(t− h) dQik(h) (2.3)

Proof. Based on the above defined properties of the SMP in the RTPs and by con-
ditioning on the time to the next RTP (T1 = h) we have:

Vij(t |T1 = h) =





δij if : h > t

∑

k∈Ω

dQik(h)

dQi(h)
· Vkj(t− h) if : h ≤ t

(2.4)

where δij is the Kronecker delta3. In (2.4) two mutually exclusive events are defined.
If there is no RTP up to t the value of the state transition probability can be 1 (if
i = j) or 0 (if i 6= j). If the first RTP occurs before t a state transition (real or
virtual) happens and the state transition probability can be evaluated independently
from that time.

Based on the distribution of T1, Qi(t), the unconditional state transition proba-
bilities are:

Vij(t) =

∫ ∞

h=t

δij dQi(h) +

∫ t

h=0

∑

k∈Ω

Vkj(t− h) dQik(h) (2.5)

3δij =
{

1 if : i = j
0 if : i 6= j

9



Equation 2.3 is obtained from Equation 2.5.

By solving this integral equation set we have the transient behaviour of a SMP
in time domain. The convolution in (2.3) suggests us to look for the solution also in
transform domain.

Let us denote the Laplace transform (LT) and the Laplace-Stieltjes transform
(LST) of F (t), t ≥ 0 as F ∗(s) and F∼(s) respectively, where:

F ∗(s) =

∫ ∞

0

e−st F (t) dt and F∼(s) =

∫ ∞

0

e−st dF (t) .

The introduction of the second one is useful for the cases in which FX(t) is the
cumulated distribution function of a positive random variable X, because

F∼
X (s) = E

{
e−sX

}
.

By transforming (2.3) into LST domain we have:

V ∼
ij (s) = δij [1−Q∼

i (s)] +
∑

k∈Ω

Q∼
ik(s) V ∼

kj (s) (2.6)

By rearranging (2.6) into matrix form we obtain:

V∼(s) = Q∼
D(s) + Q∼(s)V∼(s) (2.7)

where Q∼
D(s) is a diagonal matrix with elements {1 − Q∼

i (s)}. Finally the solution
of (2.7) can be easily derived as:

V∼(s) = [I−Q∼(s)]−1 Q∼
D(s) (2.8)

The [I −Q∼(s)]−1 matrix is called the Markov renewal kernel, and its elements
are called the Markov renewal functions in [24].

Note that the steady state results can be obtained from the transient ones taking
the t →∞ limit in the time domain description or the s → 0 limit in the transform
domain one.

SMP representation of Continuous Time Markov Chains

We can introduce Continuous Time Markov Chains (CTMC) as a special SMP, whose
every time instant t ≥ 0 is a RTP.

A homogeneous CTMC can be described by its (time independent) infinitesimal
generator matrix A, whose aij; i 6= j elements are the transition rates from state
i to state j (aij ≥ 0; i 6= j ) and aii = −∑

i∈Ω,i 6=j aij (aii ≤ 0) [42]. The follow-
ing (canonical) kernel provides the SMP description of a CTMC with infinitesimal
generator A:

Qij(t) =





aij

−aii

(1 − eaii t) if : i 6= j

0 if : i = j

(2.9)
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2.1.2 Markov regenerative process

Markov regenerative processes (MRP) form a more general class of stochastic
processes. Similar to SMPs, MRPs exhibit RTPs, but state transitions are allowed
between any two consecutive RTPs. It is the key property by which the class of
MRPs is more general than the class of SMPs.

Definition 2.5. Z(t) is a (homogeneous) Markov regenerative process if there
exists a Markov renewal sequence {Xn, Tn; n ≥ 0} that

Pr {Z(Tn + t1) = x1, . . . , Z(Tn + tm) = xm |Z(Tn), Z(u), 0 ≤ u < Tn} =

Pr {Z(Tn + t1) = x1, . . . , Z(Tn + tm) = xm |Z(Tn)}

for all m ≥ 1, 0 < t1 < . . . < tm and x1, . . . , xm ∈ Ω.

This definition can be expressed in words as, Z(t) is a MRP if there exists a Markov
renewal sequence {Xn, Tn; n ≥ 0} of random variables such that all the finite di-
mensional distributions of {Z(Tn + t); t ≥ 0} given {Z(u), 0 ≤ u < Tn, Xn = i} are
the same as those of {Z(t); t ≥ 0} given X0 = i.

Due to the homogenity of the process, Definition 2.5 states that a MRP process
viewed from two RTPs with the same states (for example Z(t− Tn) and Z(t− Tm)
if Xn = Xm) forms the probabilistic replica of each other. The Markov renewal se-
quence {Xn, Tn; n ≥ 0} is also referred to as the embedded Markov renewal sequence
of the MRP.

Define the state transition probabilities of the process before the next RTP

Gij(t) = Pr {Z(t) = j |T1 > t, Z(0) = i} ,

and the probabilities which describe the occurrence of the next RTP

Kij(t) = Pr {Z(T1) = j, T1 ≤ t |Z(0) = i} .

The matrix K(t) is the kernel of the embedded Markov regenerative sequence
({Xn, Tn; n ≥ 0}) and plays similar role as Q(t) for SMPs. The switching probability
conditioned on the time to the next RTP is:

pij(t) = Pr {Z(T1) = j |T1 = t, Z(0) = i} =
dKij(t)

dKi(t)
.

The evolution of MRPs can be divided into independent parts by the RTPs.

Definition 2.6. The stochastic process (denoted by Zi(t)) subordinated to a MRP
starting from state i in a RTP up to the next RTP is the restriction of the MRP Z(t)
for t ≤ T1 given Z(T0) = i; T0 = 0 :

Zi(t) = [Z(t) : 0 ≤ t ≤ T1, Z(0) = i]

referred to as the subordinated process starting from state i.
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Stationary analysis

Similar to the SMP case the stationary analysis of MRPs is based on the Markov
chain embedded into RTPs of the process. The stationary distribution of the EMC
is obtained from the linear system of equations: P̂ = P̂Π,

∑
i P̂i = 1. The stationary

distribution of the MRP is obtained by weighting with respect to the time spent
in different system states between consecutive RTPs. τ̌ij denotes the mean time
spent in state j during the subordinated process starting in state i. The stationary
probabilities are obtained as:

Pi =
∑

j

P̂j
τ̌ji∑
k τ̌jk

, (2.10)

where τ̌ij =
∫∞
0

Eij(t)dt.

Transient analysis

For notation convenience the following quantity is introduced ([24]):

Eij(t) = Gij(t) [1−Ki(t)] = Pr {Z(t) = j |T1 > t, Z(0) = i}Pr {T1 > t}

= Pr {Z(t) = j, T1 > t, |Z(0) = i} ,

Theorem 2.7. The state transition probability (Vij(t)) satisfies the following equa-
tion [24]:

Vij(t) = Eij(t) +
∑

k∈Ω

∫ t

h=0

Vkj(t− h) dKik(h) (2.11)

Proof. Let us define the state transition probabilities conditioning on T1 = h :

Vij(t |T1 = h) =





Gij(t) if : h > t

∑

k∈Ω

dKik(h)

dKi(h)
· Vkj(t− h) if : h ≤ t

(2.12)

In (2.12), similarly to (2.4) two mutually exclusive events are defined. If there is no
RTP up to t, Gij(t) is the probability of the state transition by its definition. If there
is at least one RTP before t the process jumps to the next regeneration state (which
can be i as well in general) according to the switching probabilities and due to the
property of the RTPs, the state transition probability is evaluated from that time.

By evaluating the unconditional state transition probability based on the distri-
bution of T1 (Ki(t)) (2.12) becomes:

Vij(t) =

∫ ∞

h=t

Gij(t) dKi(h) +

∫ t

h=0

∑

k∈Ω

Vkj(t− h) dKik(h)

= Gij(t) [1−Ki(t)] +
∑

k∈Ω

∫ t

h=0

Vkj(t− h) dKik(h)

(2.13)

Equation 2.13 yields Equation 2.11 by substituting Eij(t) for Gij(t) [1−Ki(t)] .
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The solution of (2.11) can be performed in the same manner as (2.3). The trans-
formation of (2.11) into LST domain results in:

V ∼
ij (s) = E∼

ij (s) +
∑

k∈Ω

K∼
ik(s) V ∼

kj (s) (2.14)

whose matrix form is:

V∼(s) = E∼(s) + K∼(s)V∼(s) (2.15)

and the matrix form solution can be written as:

V∼(s) = [I−K∼(s)]−1 E∼(s) (2.16)

Equations (2.11) and (2.16) are the commonly applied equations for the analysis
of MRPs, and matrices K(t) (called global kernel) and E(t) (called local kernel)
are the usual descriptors of a MRP. The K(t), E(t) representation of MRPs is much
weaker than the Q(t) representation of SMPs because the K(t), E(t) representation
does not defines all finite dimensional joint distribution of the MRP process.

Basically, Markov renewal theory allows as to partition the analysis of MRPs
into independent sub-problems. The evolution of a MRP is composed by the “local”
evolution inside subordinated processes (described by E(t)) and a “global” evolution
of the occurrence of the RTPs and the associated states (described by K(t)).

2.2 Stochastic Reward Models

Adding a continuous variable to discrete state system models enlarges the modeling
power of system description and allows to evaluate more performance parameters.
The adopted modeling framework consists in describing the behaviour of the system
configuration (system state) in time by means of a stochastic process, called the
structure-state process, and by associating a (non-negative) reward function to the
structure-state process which describes the “reward” accumulated by the system
during its evolution. The interpretation of “reward” might be taken from a wide
range of engineering problems, e.g.: amount of good produced by a machine, amount
of stress accumulated by a system, amount of data transmitted by a communication
system, revenue, etc.

In applied performance modeling the reward function is restricted to some special
simple functions. The amount of reward might increase due to “rate” and “impulse”
reward accumulation and it might decrease due to partial or complete “reward loss”
(Figure 2.1). Rate reward is continuously accumulated at rate ri (ri ≥ 0) during the
sojourn in state i (Figure 2.1.a) and %ij (%ij ≥ 0, possibly random) amount of impulse
reward is instantaneously gained at a state transition from state i to j (Figure 2.1.c).
Instantaneous partial or complete reward loss might also occur at state transitions.
Complete reward loss sets the amount of accumulated reward to 0 (Figure 2.1.b),
while a partial reward loss sets it value somewhere between the so far accumulated
value and 0 (Figure 2.1.d). The structure-state process together with the reward
function forms the Stochastic Reward Model (SRM).

Let the structure-state process Z(t) (t ≥ 0) be a (right continuous) stochastic
process defined over a discrete and finite state space Ω of cardinality n.
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Figure 2.2: The behaviour of the functional B(t) versus time.

Definition 2.8. The accumulated reward B(t) is a random variable which rep-
resents the accumulation of reward in time.

During the sojourn of Z(t) in state i between t and t + δ, B(t) increases by ri δ.
B(t) is a stochastic process that depends on Z(u) for 0 ≤ u ≤ t [24]. However, a
transition in Z(t) may induce a modification in the accumulation process depending
whether the transition entails a loss of accumulated reward , or no loss of accumulated
reward. A transition which does not entail any loss of reward already accumulated
by the system is called preemptive resume (Figure 2.1.a and c), and its effect on the
model is that the functional B(t) resumes the previous value in the new state. A
transition which entails the total loss of reward accumulated by the system is called
preemptive repeat (Figure 2.1.a), and its effect on the model is that the functional
B(t) is reset to 0 in the new state.

A state whose outgoing transitions are all of preemptive resume type is called
a preemptive resume (prs) state, while a state whose outgoing transitions are all of
preemptive repeat type is called a preemptive repeat (prt) state.

A possible realization of the accumulation process B(t) with only rate reward
and complete reward loss is shown in Figure 2.1.b.

The complementary problem concerning the reward accumulation of SRMs is the
amount of time for completing a given (possibly random) work requirement (i.e. time
to accumulate the required amount of reward).

Definition 2.9. The completion time C is a random variable representing the
time to accumulate a reward requirement equal to a random variable W :

C = min [t ≥ 0 : B(t) = W ] .

C is the time at which the work accumulated by the system reaches the value W
for the first time. With reference to Figure 2.2, the completion time is the time at
which B(t) hits the barrier W for the first time.
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We assume, in general, that W is a random variable with distribution W (w)
with support on (0, ∞). The degenerate case, in which W is deterministic and the
distribution W (w) becomes the unit step function U(w − wd), can be considered
as well. When W is a random variable and there is a complete reward loss at a
state transition (prt policy), two cases arise depending whether the repeated task
has the identical work requirement as the original task (preemptive repeat identical
(pri) - policy) (second transition on Figure 2.2), or a different work requirement is
sampled from the same distribution (preemptive repeat different (prd) - policy) (third
transition on Figure 2.2). In the latter case, each time when the functional B(t) goes
to zero, the barrier height W is resampled from the same distribution W (w), while
in the former case W maintains an identical value.
For a barrier height W = w, the completion time C(w) is defined as:

C(w) = min [t ≥ 0 : B(t) = w] . (2.17)

Let C(t, w) be the Cdf of the completion time when the barrier height is w:

C(t, w) = Pr {C(w) ≤ t} (2.18)

The completion time C of a SRM with prs and pri transitions is characterized by
the following distribution:

Ĉ(t) = Pr {C ≤ t} =

∫ ∞

0

C(t, w) dW (w) (2.19)

The distribution of the completion time C(t, w) incorporates the effect of random
variation of the reward rate, instantaneous reward accumulation and reward loss
during the evolution of the structure state process.

The following relationships between the different preemption policies can be easily
established. If the work requirement W is an exponential random variable, the two
policies prs and prd give rise to the same completion time (due to the memoryless
property of the exponential distribution, the residual task requirement under the prs
policy coincides with the resampled requirement under the prd policy). On the other
hand, if W is deterministic, the two policies pri and prd are coincident (resampling
a step function provides always the same constant value).

Moreover, assuming that the structure-states are all of prs type, so that no loss
of reward occurs, the distribution of the completion time is closely related to the
distribution of the accumulated reward by means of the following relation:

Pr {B(t) ≤ w} = Pr {C(w) ≥ t} (2.20)

2.3 Classification of the SRM problems

To characterize the SRM problems we introduce a structure of the considered para-
meters.

Stochastic process The stochastic behaviour of the structure-state process gains
a significant importance at the first sight. SRMs of simple (CTMC) or less
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complex (SMP) stochastic processes are considered since a long time [49, 50,
67]. The analysis of SRM with MRP structure-state process is an original result
in this work which was first reported in [78].

Reward accumulation The two considered ways of reward accumulation are rate
and impulse reward accumulation. The majority of SRMs applied in practice
contain only rate reward accumulation. SRMs with only impulse reward accu-
mulation can be used to “count” events in stochastic processes. A unit impulse
reward associated with a set of state transitions representing a particular event
of the system counts the occurrence of that event. This work focuses on SRMs
with rate reward accumulation. Research results about SRMs with rate and
impulse reward accumulation are provided in [68, 69].

This work is restricted to singe reward accumulation. A more general class
of SRMs is obtained when multiple type of rewards are accumulated by the
system [7].

Preemption policy (Reward loss) The effect of the state transitions, is also re-
ferred to as preemption policy. The preemption policy defines which portion
of the accumulated reward is lost at a state transition. Traditionally lossless,
prs, and total loss, prd and pri, policies were applied. The extension to par-
tial loss reward models is a new contribution which was originally presented
in [11]. The existence of the different policies in a single model increases its
modeling power, but it also increases the complexity of the model description
and analysis. This work is restricted to SRMs with unique preemption policy,
but a wide range of possible preemption policies are studied.

Evaluated measure The analysis of SRMs means indeed two analysis problems:
the evaluation of the distribution of the accumulated reward and of the com-
pletion time. Both problems are considered in this work. It turns out that
particular preemption policies result in qualitative differences in the accumu-
lated reward and the completion time measures (e.g., the distribution of accu-
mulated reward exhibit a closed form transform domain expression while the
distribution of the completion time does not).

Absorbing subset of states There are practically important modeling problems
in which the entrance of the structure state process in a special subset of states
stops the accumulation of further reward independent of the later life of the
model. For the purpose of the analysis a subset of this kind can be considered
as an absorbing one.

State dependent measures The analysis of complex discrete state models often
requires to evaluate state dependent measures, where the initial and final state
of the underlying process are given. This state dependent measures, which are
commonly presented in form of matrix function, provide the joint distribution of
the system state and the studied reward measure. Examples of state dependent
reward measures are:

• the probability of completion in a given state before time t,
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• the probability of being in a given state at time t suppose that C > t

The numerical analysis of state dependent reward measures is usually simi-
lar to the analysis of the equivalent global (state independent) measures, but
computationally it is far more expensive in case of large state spaces, since
matrices needs to be stored in memory instead of vectors and matrix-matrix
multiplications are executed instead of matrix-vector ones.
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Chapter 3

Semi-Markov reward models with
PH work requirement

Various numerical techniques have been investigated for the evaluation of reward
models defined over a CTMC, but the numerical analysis of SRMs with underlying
Semi-Markov Process (referred to as Semi-Markov Reward Process, SMRP) is still a
challenge. This chapter introduce an effective algorithm for the analysis of SMRPs
when the work requirement is a Phase type (PH) random variable. Bobbio and
Trivedi [17] studied this problem when the structure state process is a CTMC, but
the analysis of SMRPs with PH work requirement requires a completely different
approach.

3.1 Reward Semi-Markov Process

Let Ω be the set of structure states and Z(t) (t ≥ 0) be the semi-Markov process
defined over Ω. ri is the reward rate associated with state i ∈ Ω and the initial state
probability vector is P (0) (Pr{Z(0) = i} = Pi(0)).

Let Q(t) = [Qij(t)] be the kernel of the semi-Markov process Z(t). We denote by
H the time duration until the first embedded time point in the semi-Markov process
starting from state i at time 0 ( Z(0) = i ).

We introduce the following matrix functions to describe the distribution of the
completion time:

Fij(t, w) = Pr{Z(C(w)) = j , C(w) ≤ t |Z(0) = i}, (3.1)

Ĉij(t) = Pr{Z(C) = j , C ≤ t |Z(0) = i}, (3.2)

where C(w) (C) is the completion time r.v. of w unit of work (of the random work
requirement W with distribution GW (w) = Pr{W ≤ w}). Fij(t, w) (Ĉij(t)) is the
probability that the completion of w (W ) unit of work happens in state j before
time t, starting in state i at t = 0. The LST of Ĉij(t) is denoted by C∼

ij (s). The
distribution of the completion time is determined from Fij(t, w) by the mean of the
following equation:

C(t) =
∑
j∈Ω

∑
i∈Ω

Pi(0)Cij(t). =

∞∫

w=0

∑
j∈Ω

∑
i∈Ω

Pi(0)Fij(t, w) dGW (w) (3.3)
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The derivation of Fij(t, w) based on the kernel matrix Qij(t) can be inferred from
[50, 13]:

F∼∗
ij (s, v) = δij

ri [1 − Q∼
i (s + v ri) ]

s + v ri

+
∑

k∈Ω

Q∼
ik(s + v ri) F∼∗

kj (s, v). (3.4)

3.1.1 Evaluation of the completion time

The evaluation of the completion time requires the execution of the following steps:

• Derivation of the matrix function F∼∗
ij (s, v) in double transform domain ac-

cording to Equation (3.4).

• Evaluation of the LST transform F∼
ij (s, w) by symbolic inverse Laplace trans-

formation with respect to the work requirement variable v.

• Evaluation of the LST transform of the completion time C∼(s) by uncondi-
tioning the results of the previous step with respect to the distribution of the
work requirement GW (w) (see Equation (3.3)).

• Time domain solution obtained by a numerical inversion of C∼(s), for example
by resorting to the Jagerman’s method [44].

Due to the required symbolic and numerical steps, the outlined procedure is not ap-
plicable for SRMs with more than ∼10 states. When the work requirement (GW (w))
is a PH random variable, steps 2 and 3, can be evaluated by an effective computa-
tional method.

3.1.2 PH distributed work requirement

Let us define a Phase type (PH) distribution as the time to absorbtion in a CTMC
with N transient and one absorbing state. The probability distribution of a (PH)
r.v. has a rational Laplace transform, hence its probability density function can be
expressed as:

g(w) =
n∑

p=1

mp−1∑
r=0

cpr wr e−λpw, (3.5)

where n is the number of distinct poles (of the rational function in Laplace domain),
mp is the multiplicity of pole λp, and cpr is a constant coefficient. N =

∑n
p=1 mp.

When the work requirement is a PH random variable the following effective com-
putational procedure can be used to speed up the computation and to handle larger
models. The proposed procedure completes the inverse transformation with respect
to v and the integration with respect to g(w) in one step with low computational
cost.
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Theorem 3.1. The distribution of the completion time of a PH the work requirement
with probability density function g(w) (3.5), can be evaluated as follows:

C∼
ij (s) =

n∑
p=1

m−1∑
r=0

(−1)rcpr

drF∼∗
ij (s, v)

dvr

∣∣∣∣∣
v=λp

(3.6)

where the derivative of order r = 0 is the original function. This way for r = 0 the
F∼∗

ij (s, v) function is evaluated at v = λp.

Proof. When γ is a PH r.v. Equation (3.3) becomes:

C∼
ij (s) =

∞∫

w=0

F∼
ij (s, w) dG(w) =

∞∫

w=0

g(w) F∼
ij (s, w) dw =

n∑
p=1

m−1∑
r=0

cpr

∞∫

w=0

wre−λpw F∼
ij (s, w) dw =

n∑
p=1

m−1∑
r=0

(−1)rcpr

∞∫

w=0

dr

dλr
p

e−λpw F∼
ij (s, w) dw =

n∑
p=1

m−1∑
r=0

(−1)rcpr
dr

dλr
p

∞∫

w=0

e−λpw F∼
ij (s, w) dw =

n∑
p=1

m−1∑
r=0

(−1)rcpr

dr F∼∗
ij (s, λp)

dλr
p

(3.7)
from which the theorem (Equation (3.6)) follows.

This approach is very effective when the multiplicity of the poles is equal to 1,
since the inverse Laplace transformation and integration in (3.7) reduces to a simple
substitution; otherwise the symbolic derivation of F∼∗

ij (s, v) is required.

3.2 Numerical example: Series System with Re-

pair

Consider a series system of two machines, a and b, with constant failure rates λa

and λb, respectively. If any of the machines fails, both machines are switched off,
and the faulty machine is repaired with a generally distributed random repair time,
according to distribution functions Ga(t) or Gb(t). We assume that no machine can
fail while the system is down, and that the two machines are independent.

The system behaviour is described on Figure 3.1(a) by a Stochastic Petri Net.
Place p1 contains a token, when machine a is in up state. Transition t1 represents
the failure of machine a. When a failure happens, a token is placed to p3, and the
repair is immediately started. Transition t3 represents the repair of machine a. The
firing time of t1 is exponentially distributed with parameter λa, while the firing time
of t3 is generally distributed, according to Ga(t). The same description applies for
machine b, with the appropriate indices. The inhibitor arcs represent the restriction
that no machine can fail when the system is down, i.e., when there is a token in place
p3 or p4.
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Figure 3.1: Series System with Repair

The reachability tree and the reachability graph of this Petri net is provided on
Figure 3.1(b) and (c), respectively. Each marking is a 4-tuple counting the number
of tokens in places p1 to p4. Solid arcs represent transitions according to exponential
distribution, while dashed arcs represent transitions according to general distribu-
tions.

3.2.1 Evaluation of the Completion Time

Since the only up state of the system is when both p1 and p2 contain a token, the
reward rate vector is r = {1, 0, 0}. Let us suppose that the system starts from state 1
at time t = 0, i.e. P (0) = {1, 0, 0}. The Q∼(s) matrix can be written as

Q∼(s) =




0
λa

s + λa + λb

λb

s + λa + λb

G∼
a (s) 0 0

G∼
b (s) 0 0


 . (3.8)

Since the procedure starts in state 1, only the first column of matrix F∼∗(s, v)
plays role in the evaluation of the completion time. Furthermore, since the reward
vector in our example is r = {1, 0, 0}, F∼∗

11 (s, v) is the only entry of F∼∗(s, v) that
has an affect on C∼(s):

C∼(s) =

∞∫

w=0

F∼
11(s, w) dGg(w), (3.9)

where

F∼∗
11 (s, v) =

1

s + v + λa(1−G∼
a (s)) + λb(1−G∼

b (s))
. (3.10)

There are two ways to derive C∼(s):

• Symbolic inverse Laplace transformation of F∼∗
11 (s, v), and integration accord-

ing to Equation 3.9.

• Application of Theorem 3.1 where phase type approximation of the work re-
quirement is applied when it is not a PH random variable.
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Exact Erlang(2) Erlang(4) Erlang(8)
calc. Intensity diff. Intensity diff. Intensity diff.

0% 1% 10% 0% 1% 10% 0% 1% 10%

m1 33 33 33 33 33 33 33 33 33 33
m2 1239 1784 1784 1785 1511 1511 1515 1405 1375 1382
m3 51537 130836 130839 131123 86694 86700 87247 72234 68003 68996

Table 3.1: First three moments of the distributions derived in different ways

In the latter case, the multiple poles of the PH random variable causes an other
computationally intensive step, i.e. the symbolic evaluation of the first or higher
order derivatives of C∼∗

ij (s, v) according to v. An alternative solution to avoid this
time consuming method is to approximate the random work requirement with a PH
random variable, whose poles are distinct.

In the following numerical example we introduce all of these cases.

3.2.2 Numerical Results

To indicate the limits of this modeling approach we analyze the case of constant work
requirement and deterministic repair times. The model parameters are as follows:
the failure rates are λa = λb = 1, the deterministic repair times are µa = µb = 5, and
the deterministic work requirement is W = 3.

The best kth order PH approximation of the deterministic work requirement is
the Erlang(k) structure, where k is the number of phases. However, this model
results in equal poles for the approximate PH distribution, i.e., n = k and m = 1 in
Theorem 3.1, so the evaluation of the order n derivative is necessary. The calculation
can be simplified if we enforce the poles to be different in the approximating structure.
The PH approximation of the deterministic work requirement with different poles
was obtained by slightly modifying the intensities of the Erlang(k) structure and by
maintaining the mean value.

The constant work requirement was approximated by phase type distributions of
order 2, 4 and 8. The figures below show the distribution of the completion time
derived by the exact calculation method (introduced in Section 3.1.1), by approxi-
mating the work requirement with Erlang(k) distributions and with modified Erlang
distributions, where the intensities were separated by 1% and 10%, in percent of the
original Erlang(k) intensity.

Figures 3.3, 3.4 and 3.5 show, as it is expected, that the higher is the order of the
PH approximation, the more accurate is the approximation of the completion time
distribution. More interesting conclusion is that the separation of the poles of the
approximating PH distribution made no significant effect on the resulting curves, i.e.,
the proposed effective numerical algorithm practically does not decrease the accuracy
compared to the Erlang(k) approximation.

The approximation with 10% separated intensities (poles) has better numerical
properties than the corresponding ones with 1% separated intensities.

The Laplace-Stieltjes transform can be used to get the moments of the completion
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time distributions. This way the numerical problems caused by the Jagerman method
are avoided. The first three moments of the resulting probability density functions are
included in Table 3.1. The first moments are the same for all the distributions, while
the higher is the degree of the PH approximation, the closer are the higher moments of
the distributions. The separation of the poles does not result in significant difference
of the higher order moments.
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Chapter 4

Performance Analysis of Markov
Regenerative Reward Models

The modeling framework applied in the analysis of complex computer/communica-
tion systems depends on the behaviour of the analyzed system and the aim of the
analysis. The most frequently applied stochastic modeling technique is the Markov-
ian approach, which is based on the memoryless (Markov) property of the system
behaviour. Nevertheless, this property and its consequence, the exponentially dis-
tributed event times have been recognized as one of the main restrictions in the
application of Markovian models [29]. An alternative non-Markovian modeling ap-
proach which allows to relax this restriction is based on Markov renewal theory [24].
This way the application of MRPs received an increasing attention in stochastic mod-
eling of computer and communication systems [57, 30]. The automated generation
of such models by non-Markovian Stochastic Petri Nets [22, 12, 32] increase the ap-
plicability of this modeling framework. A more detailed insight of stochastic models
can be obtained by associating a reward variable to the analyzed stochastic process

The former studied stochastic reward models are based on underlying Continu-
ous Time Markov Chains (CTMC) or Semi-Markov Processes (SMP), and various
techniques have been published for the evaluation of the accumulated reward, the
completion time and other related reward measures of these models [60, 49, 50].

The reward accumulation of MRPs (referred to as Markov regenerative reward
models MRRM) was first considered in [57]. [57] provided the analysis of a limited
set of reward measures: the mean accumulated reward up to time t, the mean in-
stantaneous reward and its limiting behaviour. These are the reward measures which
can be evaluated based on the transient behaviour of the underlying MRP. The main
limitation of these works comes from the fact that they are based on the widely used
kernels representation of MRPs.

The global (K(t)) and the local (E(t)) kernels of MRPs do not define the stochas-
tic process properly in the sense that they do not contain enough information for the
analysis of standard reward measures like the distribution of accumulated reward up
to time t. The global and local kernel representation of MRPs provide

• a proper description of the embedded Markov renewal sequence and

• the state transition probabilities of the subordinated process between the re-
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generative epochs.

Reward measures which require a more detailed knowledge on the process, such
as the higher moments of the accumulated reward or the completion time, can not
be evaluated based on the global and the local kernels of MRPs.

The majority of the former literature on MRPs follows the approach summarized
in [29]:

”.. solving problems using Markov renewal theory is a two step process:

• First, we need to construct both kernel matrices K(t) and E(t).

• We then solve one set of Volterra integral equations for the conditional transi-
tion probabilities or for some measures of interest.”

The first step, of course, should be based on the “complete” knowledge of the
evolution of the process and it results in a dense description which can be used for
the transient and steady state analysis, but which does not contain the “complete”
description of the process any more. This way we loose information about the process
at the first step of the analysis. The approach adopted in this chapter is similar, but
instead of the local and the global kernels we introduce a proper pair of “kernels”
(referred to as reward kernels), that contain all the required information for the
purposes of the analysis of reward measures.

4.1 Analysis of MRRMs

A reward rate (ri) is assigned to each state and an impulse reward (%ij) to each pair
of states of an MRP (Z(t) ∈ Ω). The reward accumulated up to time t is defined as

B(t) =

∫ t

τ=0

rZ(τ)dτ +
∑

i

∑
j

Nij(t) %ij ,

where Nij(t) is the number of state transitions from state i to state j up to time t1.
To utilize the Markov regenerative property of the analyzed reward measures we

define the following random variables:

Rij(t) = {B(t) | Z(t) = j, Z(0) = i},
Gij(t) = {B(t) | Z(t) = j, Z(0) = i, T1 > t},
Sij(t) = {B(t) | Z(t) = j, Z(0) = i, T1 = t}.

• Rij(t) is the accumulated reward given that the process started in state i and
it stays in state j at time t.

• Gij(t) is the accumulated reward supposed that the process started in state i,
it stays in state j at time t and t is inside the first regeneration period.

1The framework presented in Section 4.1 and 4.2 is general enough to evaluate models with rate
and impulse rewards, but it can not capture the effect of reward loss. The subordinated processes
analyzed in Section 4.3 accumulate only rate reward without reward loss.
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• Sij(t) is the accumulated reward supposed that the process started in state i,
it stays in state j at time t and t is the first regeneration instance.

Furthermore we define the local and the global reward kernels, respectively:

Gij(t, w) = Pr{B(t) ≤ w, Z(t) = j, T1 > t | Z(0) = i},
Sij(t, w) = Pr{B(T1) ≤ w, Z(T1) = j, T1 ≤ t | Z(0) = i},

and the state dependent distribution of the accumulated reward:

Rij(t, w) = Pr{B(t) ≤ w, Z(t) = j | Z(0) = i} .

The matrices composed by these elements are denoted as R(t, w) = [Rij(t, w)],
G(t, w) = [Gij(t, w)] and S(t, w) = [Sij(t, w)]. The following theorem provides the
fundamental relation of these quantities.

Theorem 4.1. The distribution of the accumulated reward of an MRP is character-
ized by the following double LST domain equation:

R∼∼(s, v) = [I− S∼∼(s, v)]−1 G∼∼(s, v) (4.1)

Proof. Conditioning on the occurrence of the first regeneration instance (T1) and
unconditioning based on its distribution (Ki(t) =

∑
j∈Ω Kij(t)) we have2:

Rij(t) = Eij(t) Gij(t) +
∑

k

∫ t

τ=0

Sik(τ) +Rkj(t− τ) dKik(τ),

from which

Rij(t, w) = Gij(t, w) +
∑

k

∫ t

τ=0

∫ w

α=0

Rkj(t− τ, w − α) dS1ik(τ, α) dKik(τ),

where S1ij(t, w) = Pr{B(T1) ≤ w | Z(T1) = j, T1 = t, Z(0) = i}.
An LST with respect to w, denoting the transform variable by v, results in:

R∼
ij(t, v) = G∼

ij(t, v) +
∑

k

∫ t

τ=0

R∼
kj(t− τ, v) S1∼ik(τ, v) dKik(τ) =

G∼
ij(t, v) +

∑

k

∫ t

τ=0

R∼
kj(t− τ, v) dS∼ik(τ, v).

A second LST with respect to t, denoting the transform variable by s, results in

R∼∼
ij (s, v) = G∼∼

ij (s, v) +
∑

k

S∼∼ik (s, v) R∼∼
kj (s, v). (4.2)

In matrix form R∼∼(s, v) = G∼∼(s, v) + S∼∼(s, v) R∼∼(s, v)

2The proof is based on Markov Renewal Theory, i.e., it is similar to the one applied for reward
analysis of CTMCs and SMPs (see for example [60, 49, 50]), but in this case the stochastic process
can experience state transitions up to T1 which makes our analysis problem rather complex.

28



4.2 Evaluation of reward measures based on

R∼∼(s, v)

4.2.1 Accumulated reward

The distribution of the accumulated reward is given by:

B(t, w) = Pr{B(t) ≤ w} =
∑
i∈Ω

∑
i∈Ω

Pi(0)Rij(t, w) = P (0) R(t, w) h

= LST−1
s→t LST−1

v→w P (0) R∼∼(s, v) h

(4.3)

where P (0) = {Pi(0)} is the row vector of the initial state probabilities and h is the
column vector with all the entries equal to 1.

For the numerical evaluation of the distribution of the accumulated reward based
on (4.3) two inverse transformations are necessary according to the time (s → t)
and the reward variables (v → w). As it can be seen in the subsequent numerical
example a symbolic inverse transformation can be very hard even for a simple model.

Instead, the evaluation of the moments of the accumulated reward at time t is
based on a single inverse transformation according to the time variable (s → t) by
applying the following equation:

E
[
B(t)k

]
= LST−1

s→t

{
(−1)k ∂k

∂ vk
P T (0) R∼∼(s, v) h

∣∣∣∣
v→0

}
(4.4)

A symbolic evaluation of the k-th derivative of P T (0) R∼∼(s, v) h and a numerical
inverse transformation of the result can be performed in a reasonable respond time.

4.2.2 Completion time

The completion time, C = min[t ≥ 0 : B(t) = W ], is the time at which the work
accumulated by the system reaches the random value W for the first time. Let
W (w) = Pr{W ≤ w} be the distribution of the random work requirement and
C(t, w) be the cdf of the completion time when the reward requirement is W = w:
C(t, w) = Pr {C ≤ t | W = w}. The distribution of the completion time (C) of
the random reward requirement W is characterized by the following distribution:

Ĉ(t) = Pr {C ≤ t} =

∫ ∞

0

C(t, w) dW (w) (4.5)

In case of prs (no reward loss) reward accumulation the distribution of the com-
pletion time is closely related to the distribution of the accumulated reward by the
following relation:

B(t, w) = Pr {B(t) ≤ w} = Pr {C(w) ≥ t} = 1− C(t, w) (4.6)

from which

C∼∼(s, v) = 1−B∼∼(s, v) = 1− P T (0) R∼∼(s, v) h (4.7)
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The kth moments of the completion time of the reward requirement w can be eval-
uated as follows:

E
[
C(w)k

]
= LST−1

v→w

{
(−1)k+1 ∂k

∂ sk
P T (0) R∼∼(s, v) h

∣∣∣∣
s→0

}
(4.8)

When the reward requirement is a phase type (PH) random variable the moments of
the completion time can be evaluated by applying the results of the previous chapter.
The following simple example demonstrates the simplicity of the computation. When
the reward requirement W is an exponentially distributed r.v. with parameter µ the
moments of the completion time are given as follows:

E
[
Ck

]
= µ (−1)k+1 ∂k

∂ sk
P T (0) R∼∼(s, µ) h

∣∣∣∣
s→0

. (4.9)

4.3 Analysis of subordinated processes

MRRMs can be analyzed based on Theorem 4.1, when the reward kernels are known.
This section provides results for S∼∼(s, v) and G∼∼(s, v) in case of some simple
subordinated processes with loss-less rate reward accumulation.

4.3.1 Semi-Markov subordinated process with random delay

Consider a subordinated SMP with state space Ω, kernel Q(t) and reward rates
ri, i ∈ Ω. The regenerative period is concluded by the expiration of the random
delay θ which is distributed according to T (τ) = Pr{θ ≤ τ} (independent of the
subordinated process). At the end of the regeneration period a state transition from
state i to state j can take place with probability ∆ij. ∆ = {∆ij} is called the
branching probability matrix.

To analyze an MRRM with this kind of subordinated processes one has to evaluate
S∼∼(s, v) and G∼∼(s, v). Since they depend on θ we introduce

Gij(t, w, τ) = Pr{B(t) ≤ w, Z(t) = j, T1 > t | Z(0) = i, θ = τ}, (4.10)

Sij(t, w, τ) = Pr{B(T1) ≤ w, Z(T1) = j, T1 ≤ t | Z(0) = i, θ = τ}, (4.11)

from which S∼∼ij (s, v) and G∼∼
ij (s, v) can be obtained as:

Gij(t, w) =

∫ ∞

τ=0

Gij(t, w, τ) dT (τ), Sij(t, w) =

∫ ∞

τ=0

Sij(t, w, τ) dT (τ).

Theorem 4.2. The distribution of the accumulated reward of a complete regenerative
period, Sij(t, w, τ), satisfies the following transform domain equation:

S∼∗∗ij (s, v, χ) =

∆ij
1−Q∼

i (s + riv + χ)

v(s + riv + χ)
+

∑

k∈Ω

Q∼
ik(s + riv + χ) S∼∗∗kj (s, v, χ) (4.12)
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Proof. Conditioning on the sojourn time h in state i we have:

Sij(t, w, τ | h) =



0 if riτ > w and h ≥ τ
∆ij U(t− τ) if riτ ≤ w and h ≥ τ
0 if rih > w and h < τ∑

k∈Ω

dQik(h)

dQi(h)
Skj(t− h,w − rih, τ − h) if rih ≤ w and h < τ

(4.13)

where U(.) denotes the unit step function.
In Equation (4.13) the condition h ≥ τ means that there is no state transition

before τ (the actual value of the random delay). In this case the relation of the
accumulated reward riτ and the reward bound w determine the probability defined
in (4.11). When the accumulated reward exceeds the reward bound, i.e., riτ > w,
Sij(t, w, τ) equals to 0. Otherwise it depends on state j and time t. Sij(t, w, τ) equals
to the probability that the next regeneration period start from state j, i.e., ∆ij, if
t > τ and it is 0 for t < τ .

When a state transition takes place before τ (h < τ) the following cases have
to be considered. If the accumulated reward up to the state transition exceeds the
reward bound (rih > w) then Sij(t, w, τ) equals to 0, otherwise a state transition
from state i to state k takes place at time h with probability dQik(h)/dQi(h), and a
similar analysis problem arises from that point on.

Unconditioning according to the distribution of the sojourn time (Qi(t) =∑
j Qij(t)) yields:

Sij(t, w, τ) = ∆ij [1−Qi(τ)] U(t− τ) U(w − riτ)

+
∑

k∈Ω

∫ τ

h=0

Skj(t− h,w − rih, τ − h) U(w − riτ) dQik(h) (4.14)

An LST with respect to t, denoting the transform variable by s, results in:

S∼ij (s, w, τ) = ∆ij [1−Qi(τ)] e−sτ U(w − riτ)

+
∑

k∈Ω

∫ τ

h=0

e−sh S∼kj(s, w − rih, τ − h) U(w − riτ) dQik(h) (4.15)

An LT with respect to w, denoting the transform variable by v, results in:

S∼∗ij (s, v, τ) = ∆ij [1−Qi(τ)] 1
v

e−(s+riv)τ

+
∑

k∈Ω

∫ τ

h=0

e−(s+riv)h S∼∗kj (s, v, τ − h) dQik(h) (4.16)

And finally another LT with respect to τ , denoting the transform variable by χ
provides the theorem.

Theorem 4.3. The distribution of the accumulated reward inside a regenerative
period, Gij(t, w, τ), satisfies the following transform domain equation:

G∼∗∗
ij (s, v, χ) = δij

s[1−Q∼
i (s + riv + χ)]

vχ(s + riv + χ)
+

∑
k∈Ω Q∼

ik(s + riv + χ) G∼∗∗
kj (s, v, χ)

(4.17)

where δij is the Kronecker delta.
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Proof. Conditioning on the sojourn time h in state i we have:

Gij(t, w, τ | h) =



δij[U(t)− U(t− w/ri)] if riτ > w and h ≥ τ
δij[U(t)− U(t− τ)] if riτ ≤ w and h ≥ τ
δij[U(t)− U(t− w/ri)] if rih > w and h < τ
δij[U(t)− U(t− h)]+∑

k∈Ω

dQik(h)

dQi(h)
Gkj(t− h,w − rih, τ − h) if rih ≤ w and h < τ

(4.18)

Similar to Equation (4.13) in Equation (4.18) the condition h ≥ τ means that there
is no state transition before τ . In these cases the probability defined in (4.10) equals
to 1 if t < τ and the accumulated reward is less than the reward bound, i.e., rit < w
and it equals to 0 otherwise.

When we have a state transition before τ and the accumulated reward exceeds
the reward bound before (rih > w) Gij(t, w, τ) equals to 1 up to time t = w/ri and it
equals to 0 after that. When we have a state transition before τ but the accumulated
reward does not exceed the reward bound before (rih < w) Gij(t, w, τ) equals to 1
up to the state transition t = h and a similar analysis problem arises from that point
on.

To simplify the notation we introduce ρ = min(τ, w/ri). Unconditioning yields:

Gij(t, w, τ) = δij [1−Qi(ρ)] [U(t)− U(t− ρ)]

+

∫ ρ

h=0

δij [U(t)− U(t− h)] dQi(h)

+
∑

k∈Ω

∫ ρ

h=0

Gkj(t− h,w − rih, τ − h) dQik(h)

(4.19)

An LST with respect to t, denoting the transform variable by s, results in:

G∼
ij(s, w, τ) = δij[1− e−sρ + e−sρ Qi(ρ)−

∫ ρ

h=0

e−sh dQi(h)]

+
∑

k∈Ω

∫ ρ

h=0

e−sh G∼
kj(s, w − rih, τ − h) dQik(h)

(4.20)

An LT with respect to w, denoting the transform variable by v, and taking care of
the dependence of ρ on w and τ , results in:

G∼∗
ij (s, v, τ) = δij

[
s

v(s + riv)
(1− e−(s+riv)τ ) +

1

v
e−(s+riv)τ Qi(τ)

+

∫ riτ

w=0

e−(s/ri+v)w Qi(w/ri) dw − 1

v

∫ τ

h=0

e−(s+riv)h dQi(h)

]

+
∑

k∈Ω

∫ τ

h=0

e−(s+riv)h G∼∗
kj (s, v, τ − h) dQik(h)

(4.21)

And finally an other LT with respect to τ , denoting the transform variable by χ
provides the theorem.
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To evaluate the accumulated reward of an MRRM based on Equation (4.1) an
inverse Laplace transformation of S∼∗∗ij (s, v, χ) and G∼∗∗

ij (s, v, χ) is necessary with
respect to χ.

The execution of the inverse transformation depends on the particular SMP de-
scribed by Qij(t). Below we consider the special case when the subordinated process
is a CTMC.

4.3.2 CTMC subordinated process with random delay

Suppose the subordinated process is a CTMC with infinitesimal generator A = {aij}
and the diagonal matrix of the reward rates is denoted by R̂ = 〈ri〉 the reward
measures are characterized by the following theorems.

Theorem 4.4. The distribution of the accumulated reward of a complete regenerative
period can be evaluated as follows:

S∼∼(s, v) =

∫ ∞

τ=0

e−τ(sI+v bR−A) ∆ dT (τ) (4.22)

Proof. Substituting Q∼
i (s + riv + χ) by

−aii

−aii + s + riv + χ
, Q∼

ik(s + riv + χ) by

aik

−aii + s + riv + χ
if k 6= i and Q∼

ii(s + riv + χ) by 0 in Equation (4.12) results

in:

S∼∗∗ij (s, v, χ) = ∆ij
1

v(−aii + s + riv + χ)

+
∑

k∈R,k 6=i

aik

−aii + s + riv + χ
S∼∗∗kj (s, v, χ)

(4.23)

Which can be organized into matrix form as:

S∼∗∗(s, v, χ) =
1

v

(
(s + χ)I + vR̂−A)

)−1

∆ (4.24)

From which an inverse Laplace transformation with respect to χ, a multiplication
with v (to reach the LST with respect to v) and the integral according to the distri-
bution of θ provides the theorem.

Theorem 4.5. The accumulated reward inside of a regenerative period can be eval-
uated as follows:

G∼∼(s, v) =

∫ ∞

τ=0

s
(
sI + vR̂−A)

)−1 [
I− e−τ(sI+v bR−A)

]
dT (τ) (4.25)

Proof. The same substitution of the kernel elements in Equation (4.17), and the
same series of steps provide the theorem.
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4.3.3 Semi-Markov subordinated process with random delay
and concluding state transitions

Consider a subordinated SMP over Ω with kernel Q(t). The regenerative period
starts in Ψ ⊂ Ω and is concluded by the expiration of the random delay θ which
is distributed according to T (τ) (independent of the subordinated process) or a
preceding state transition to Ψc = Ω−Ψ.

Theorem 4.6. The distribution of the accumulated reward of a complete regenerative
period, Sij(t, w, τ) satisfies the following transform domain equation:

S∼∗∗ij (s, v, χ) = ∆ij
1−Q∼

i (s + riv + χ)

v(s + riv + χ)

+
∑

k∈Ψ

Q∼
ik(s + riv + χ) S∼∗∗kj (s, v, χ) + Ij∈Ψc

1

vχ
Q∼

ij(s + χ)
(4.26)

where Ij∈Ψc is the indicator that state j is in Ψc.

Proof. Conditioning on the sojourn time h in state i we have:

Sij(t, w, τ | h) =



0 if riτ > w and h ≥ τ
∆ij U(t− τ) if riτ ≤ w and h ≥ τ
0 if rih > w and h < τ

Ij∈Ψc

dQij(h)

dQi(h)
U(t− h)+

∑

k∈Ψ

dQik(h)

dQi(h)
Skj(t− h,w − rih, τ − h) if rih ≤ w and h < τ

(4.27)

The effect of a concluding state transition is captured by the last condition, where
different cases arise for state transitions out of Ψ and inside Ψ.

The same series of steps as in Theorem 4.2 results in the theorem.

Theorem 4.7. The distribution of the accumulated reward inside a regenerative
period, Gij(t, w, τ) satisfies the following transform domain equation:

G∼∗∗
ij (s, v, χ) = δij

s[1−Q∼
i (s + riv + χ)]

vχ(s + riv + χ)

+
∑

k∈Ψ

Q∼
ik(s + riv + χ) G∼∗∗

kj (s, v, χ)
(4.28)

Proof. Conditioning on the sojourn time h in state i we have:

Gij(t, w, τ | h) =



δij[U(t)− U(t− w/ri)] if riτ > w and h ≥ τ
δij[U(t)− U(t− τ)] if riτ ≤ w and h ≥ τ
δij[U(t)− U(t− w/ri)] if rih > w and h < τ
δij[U(t)− U(t− h)]+∑

k∈Ψ

dQik(h)

dQi(h)
Gkj(t− h,w − rih, τ − h) if rih ≤ w and h < τ

(4.29)

Note that state transitions only inside Ψ are summed up in the last case. The same
series of steps as in Theorem 4.3 result in the theorem.
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4.3.4 CTMC subordinated process with random delay and
concluding state transitions

Consider a subordinated CTMC with infinitesimal generator A. The regenerative
period starts in Ψ ⊂ Ω and is concluded by the expiration of the random delay θ which
is distributed according to T (τ) or a preceding state transition to Ψc = Ω−Ψ, so A

can be partitioned as A =

[
A11 A12

A21 A22

]
, where A11 describes the transitions inside

Ψ, A12 contains the intensity of the transitions from Ψ to Ψc, A21 the transitions
from Ψc to Ψ, and A22 the transitions inside Ψc, however A21 and A22 are irrelevant
since the subordinated process is concluded by the state transition out of Ψ.

Theorem 4.8. The distribution of the accumulated reward of a complete regenerative
period, Sij(t, w, τ) satisfies the following transform domain equation:

S∼∼(s, v) =

∞∫

τ=0

e−τ(sIΨ+v bRΨ−A11) [IΨ 0] ∆

+ (sIΨ + vR̂Ψ −A11)
−1(IΨ − e−τ(sIΨ+v bRΨ−A11))A12 [0 IΨc ] dT (τ)

(4.30)

where IΨ and IΨc are identity matrices of dimension #Ψ and #Ψc, respectively, 0 is
the matrix of zeroes of the proper size and R̂Ψ = 〈ri〉, i ∈ Ψ is the diagonal matrix
of the reward rates associated with the states in Ψ.

Proof. Substituting the entries of the kernel in Equation (4.26) following the way
described in Theorem 4.4 yields an equation, from which an inverse Laplace trans-
formation with respect to χ, a multiplication with v (to reach the LST with respect
to v) and the integral according to the distribution of θ provides the theorem.

Theorem 4.9. The distribution of the accumulated reward inside a regenerative
period, Gij(t, w, τ) satisfies the following transform domain equation:

G∼∼(s, v) =
[
(sIΨ + vR̂Ψ −A11)

−1 (IΨ − e−τ(sIΨ+v bRΨ−A11)) 0
]
. (4.31)

Proof. Starting from Equation (4.28) and repeating the algebraic transformations
used to prove Theorem 4.8 yield the theorem.

This kind of subordinated processes arises in various practical cases when Markov-
ian system evolution goes on during a general activity (with any generally distributed
delay) and the activity can be concluded by its completion or by a particular event of
the Markovian system (e.g., a transition to a set of states). Non-markovian stochas-
tic Petri nets with non-overlapping activity cycle results in this kind of subordinated
processes as well [15].

4.3.5 Subordinated process without internal state transition

An MRP often has a simple subordinated process without internal state transition.
This special case is considered below.
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Theorem 4.10. When there is no state transition during the subordinated process
and the distribution of the time to the next regeneration epoch is T (τ), S∼∗ij (s, v) and
G∼∗

ij (s, v) satisfy the following equations:

S∼∗ij (s, v) =

∫ ∞

τ=0

∆ij
1

v
e−τ(s+riv) dT (τ) , (4.32)

G∼∗
ij (s, v) =

∫ ∞

τ=0

δij
s

v(s + riv)

[
1− e−τ(s+riv)

]
dT (τ) . (4.33)

Proof. Substituting Q∼
i (s+riv+χ) and Q∼

ik(s+riv+χ) by 0, in Equation (4.12) and
(4.17), inverse Laplace transforming the results with respect to χ, and integrating
according to the distribution of θ gives the theorem.

Two often applied special cases are the exponentially distributed and the deter-
ministic delay of the subordinated process. In the first case when θ has an exponential
distribution with parameter λ:

S∼∼ij (s, v) = ∆ij
λ

λ + s + riv
, G∼∼

ij (s, v) = δij
s

λ + s + riv
; (4.34)

in the second case when θ is deterministic, i.e., θ = τ :

S∼∼ij (s, v) = ∆ije
−τ(s+riv) ,

G∼∼
ij (s, v) = δij

s

s + riv

[
1− e−τ(s+riv)

]
.

(4.35)

The multiplication of Equation (4.32) and Equation (4.33) by v results in the Laplace-
Stieltjes transform from the Laplace transform.

4.4 Numerical Example

As a simple example to illustrate the analysis steps of the proposed method we con-
sider an M/D/1/2/2 queueing system. This is a finite queueing system with at most
two customers in it and with a FIFO service mechanism. The steady state behaviour
of this system was studied in [2], while the transient analysis was accomplished in
[21].

The Petri net description of the system, is reported in Figure 4.1. Place p1

contains the “thinking” customers, i.e., the customers waiting to submit a job, and
transition t1 represents the submission of a job. Tokens in place p2 represent the jobs
queueing for service. A token in p3 means that the server is busy while a token in
p4 means that the server is idle. Transition t2 represents the service of a job; when
the job is completed the customer returns to its thinking state. Transition t3 is an
immediate transition modeling the start of service, i.e., the transfer of the job from
the queue to the server, this transfer becomes possible when the service unit gets
free.

The firing time of t1 is exponentially distributed with rate m1 · λ being m1 is the
number of tokens in p1 and λ = 0.5 job/hour. t2 is a DET transition modeling a
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Figure 4.1: a) PN modeling of a M/D/1/2/2; b) corresponding reduced reachability
graph.

constant service time of duration d = 1.0 hour. We augment this description by the
reward rates, r1 = 0, r2 = 1, r3 = 0.8, representing the idle server, the busy server
and the busy server with some penalty charged because a job is waiting for service,
respectively.

The reduced state space of the system eliminating the vanishing markings arising
from the immediate transition, t3, is composed of three states, called s1, s2 and s3

(Figure 4.1b).
There are three regenerative transitions (state transitions result in a regeneration

epoch): s1 → s2, s2 → s1, s3 → s2. Hence s3 can never be a regeneration state when
the process is started from state s1 or s2. Zi(t) denotes the subordinated process
started in state i. To determine the S∼∼(s, v) and G∼∼(s, v) matrices we analyze
the subordinated processes one by one. Each subordinated process determines one
row of the S∼∼(s, v), G∼∼(s, v) matrices.

1. Z1(t): The is no internal state transitions in the subordinated process starting
from state s1, since the transition to state s2 terminates the process. The dis-
tribution of the delay in s1 is exponentially distributed, hence Equation (4.34)
is directly applicable:

S∼∼11 (s, v) = 0, S∼∼12 (s, v) =
λ

λ + s + vr1

, S∼∼13 (s, v) = 0,

G∼∼
11 (s, v) =

s

λ + s + vr1

, G∼∼
12 (s, v) = 0, G∼∼

13 (s, v) = 0.

2. Z2(t): The subordinated process starting from state s2 is a one-step CTMC,
i.e., the only possible state transition in the subordinated process is a transition
from state s2 to state s3. The time of the subordinated process is deterministic
(τ). Thus we can apply Theorem (4.4) and Theorem (4.5) to determine the
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second row of the reward kernel matrices. The R̂, A and ∆ matrices of the
subordinated process are:

R̂ =

[
r1 0 0
0 r2 0
0 0 r3

]
A =

[
0 0 0
0 −λ λ
0 0 0

]
∆ =

[
0 0 0
1 0 0
0 1 0

]
(4.36)

Using these matrices, Equation (4.22) and (4.25) results in:

S∼∼21 (s, v) = e−τ(λ+s+r2v),

S∼∼22 (s, v) =
λ

(r2 − r3)v + λ
(e−τ(s+r3v) − e−τ(λ+s+r2v)),

S∼∼23 (s, v) = 0,

G∼∼
21 (s, v) = 0,

G∼∼
22 (s, v) =

s

λ + s + vr2

(1− e−τ(λ+s+r2v)),

G∼∼
23 (s, v) =

λs

(s + r3v)
+

λse−τ(λ+s+r2v)

(λ + s + r3v)(λ + (r2 − r3)v)

− λse−τ(s+r3v)

(s + r3v)(λ + (r2 − r3)v)
.

3. Z3(t): Finally, when the process starts from state s3, the subordinated process
does not contain internal state transitions, since the only possible state tran-
sition to state s2 terminates the subordinated process. The distribution of the
delay is deterministic. Based on Equation (4.35) the third row of the reward
kernel matrices are:

S∼∼31 (s, v) = 0, S∼∼32 (s, v) = e−τ(s+vr2), S∼∼33 (s, v) = 0,

G∼∼
31 (s, v) = 0, G∼∼

32 (s, v) = 0, G∼∼
33 (s, v) =

s

s + r3v
(1− e−τ(s+vr3)),

since in this case the only relevant non-zero entry of ∆ is ∆23 = 1.

Equation (4.1) provides the R∼∼(s, v) matrix of the accumulated reward form
the reward kernel matrices:

R∼∼(s, v) =
1

c




R∼∼
11 (s, v) R∼∼

12 (s, v) R∼∼
13 (s, v)

R∼∼
21 (s, v) R∼∼

22 (s, v) R∼∼
23 (s, v)

R∼∼
31 (s, v) R∼∼

32 (s, v) R∼∼
33 (s, v)


 ,

where

c = 1− λ

λ + s + r1v
e−τ(λ+s+r2v)

− λ

λ + (r2 − r3)v

(
e−τ(s+r3v) − e−τ(λ+s+r2v)

)
,
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R∼∼
11 (s, v) =

s

λ + s + vr1

(
1− λ

(r2 − r3)v + λ

(
e−τ(s+r3v) − e−τ(λ+s+r2v)

))
,

R∼∼
12 (s, v) =

s

λ + s + vr2

λ

λ + s + vr1

(1− e−τ(λ+s+r2v)) ,

R∼∼
13 (s, v) =

λ

λ + s + vr1

(
λs

(s + r3v)
+

λse−τ(λ+s+r2v)

(λ + s + r3v)(λ + (r2 − r3)v)

− λse−τ(s+r3v)

(s + r3v)(λ + (r2 − r3)v)

)
,

R∼∼
21 (s, v) =

s

λ + s + vr1

e−τ(λ+s+r2v) ,

R∼∼
22 (s, v) =

s

λ + s + vr2

(1− e−τ(λ+s+r2v)) ,

R∼∼
23 (s, v) =

λs

(s + r3v)
+

λse−τ(λ+s+r2v)

(λ + s + r3v)(λ + (r2 − r3)v)

− λse−τ(s+r3v)

(s + r3v)(λ + (r2 − r3)v)
,

R∼∼
31 (s, v) =

s

λ + s + vr1

e−τ(λ+s+r2v)e−τ(s+vr2) ,

R∼∼
32 (s, v) =

s

λ + s + vr2

(1− e−τ(λ+s+r2v))e−τ(s+vr2) ,

R∼∼
33 (s, v) = c

s

s + r3v

(
1− e−τ(s+vr3)

)
+

λse−τ(λ+s+r2v)

(λ + s + r3v)(λ + (r2 − r3)v)

+
λs

(s + r3v)
− λse−τ(s+r3v)

(s + r3v)(λ + (r2 − r3)v)
e−τ(s+vr2) .

To obtain the distribution in original (time and reward) domain, multi-dimensional
inverse transformation is necessary [23]. However, the moments of the corresponding
distribution can be calculated based on Equation (4.4) or Equation (4.8) using the
transform domain expression and a one-dimensional numerical inverse transformation
method.

In Figures 4.2, 4.3, 4.4, 4.5 the numerical results are depicted for the mean and
the standard deviation of the accumulated reward and the completion time, respec-
tively, when the system was started in state s1. We emphasize that any moments can
be calculated using the proposed analytical method, however we chose to depict the
most frequently used quantities, the mean and the standard deviation. The results
were obtained by a numerical inverse transformation method written in Mathematica
by resorting to the Jagerman method [44]. Some numerical uncertainties were expe-
rienced in the values close to zero especially when calculating the standard deviation
of the completion time (Figure 4.5). The mean completion time tends to 2 as the
work requirement goes to 0 (Figure 4.4), since the mean holding time in state s1 is
1/λ = 2, and the reward accumulation starts in state s2.
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Chapter 5

Numerical analysis of large MRMs

Various numerical techniques were proposed for the evaluation of the accumulated
reward and completion time measures of MRMs. Some of these methods calculate the
distribution of reward measures some other evaluate the moments of those measures.
The distribution, in double transform domain, can be obtained by a symbolic matrix
inversion. If the size of the state space allows to obtain the solution of the symbolic
matrix inversion then multi-dimensional numerical inverse transform methods [23]
can provide time domain results, but due to the computational complexity of the
symbolic inversion of matrices and the multi-dimensional numerical inverse transfor-
mation, this approach is not applicable for models with more than ∼10 states.

In time domain, reward measures can be described either by a set of Volterra in-
tegral equations, or by a set of partial differential equations. The numerical methods
compute the distribution in time domain are usually based on the evaluation of a dou-
ble summation, where both summations go to infinity. The discrete summations are
obtained by adopting the randomization technique [76] (or Jensen’s method). The
randomization technique usually provides nice numerical properties and an overall
error bound for finite truncation of infinite sums. The numerical methods based on
this approach [26, 28, 62] differ in the complexity and memory requirement of one
iteration step. The methods in [28, 62] are with polynomial complexity with respect
to the size of the state space.

The numerical analysis of the distribution of reward measures is, in general,
more complex than the computation of the moments of those measures. The mean
accumulated reward can be obtained by the transient analysis of the underlying
CTMC. A numerical convolution approach is proposed in [43] to evaluated the (n+1)-
th moment of accumulated reward based on its n-th moment. A similar approach is
followed in [79] to calculate the moments of the completion time measures, but the
high computational complexity of the numerical convolution does not allow to apply
this approach for the analysis of MRM with large (> 100) state spaces.

To the best of our knowledge the applicability of numerical methods for the
reward analysis of MRMs is restricted to with MRMs with less than 104 states, while
there are effective numerical methods to compute the steady state, the transient and
the cumulative transient measures of CTMCs with 106–107 states [76, 70].

In this chapter, we provide a method based on the transform domain description
of MRMs which allows the reward analysis of large models. Indeed, the proposed
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method evaluates each required moments of reward measures on the same computa-
tional cost as the transient analysis of the underlying CMTC, hence, it outperforms
all the above mentioned general methods, regarding the size of the models for which
the numerical analysis is feasible.

In spite of the above statements on general methods MRMs with special features
allow special, effective numerical approaches. In the case when the underlying CTMC
has an absorbing state, in which no useful work is performed, it is easy to evaluate
the limiting distribution of performability [5]. The numerical method in [34] also
makes use of a special structure of the underlying CTMC.

Other direct methods make use of a spectral or partial fraction decomposition,
which is relatively easy for acyclic CTMCs, since the eigenvalues of the generator
matrix are available in its diagonal [75]. The subclass of MRMs where the user has
an associated Phase-type distributed random work requirement was studied in [17].
In this case the completion time is Phase type distributed, i.e., an “extended” CTMC
characterizes the distribution of the completion time.

5.1 Markov Reward Models

In this section we provide the definitions and the well known results about MRMs
with rate reward accumulation, but following a simpler way of reasoning than the
one in the original papers.

Let {Z(t), t ≥ 0} be a CTMC over the finite state space Ω = {1, 2, . . . ,M}
with generator A = [aij] and reward matrix R = diag〈ri〉. The distribution of the
accumulated reward and the completion time are: Bi(t, w) = Pr{B(t) ≤ w|Z(0) = i}
and Ci(t, w) = Pr{C(w) ≤ t|Z(0) = i}.
Theorem 5.1. The column vector of the distribution of the accumulated reward
(B(t, w) = [Bi(t, w)]) is defined as follows:

B∼(t, v) = e(A−vR)t · h (5.1)

where ∼ denotes the Laplace-Stieltjes transform with respect to w(→ v), and h is the
column vector with all the entries equal to 1.

Proof: Consider an exponentially distributed work requirement (W) with parameter
m. On the one hand, the completion time is characterized by the following distrib-
ution function

Ci(t) =

∫ ∞

0

Ci(t, w) dG(w) =

∫ ∞

0

(
1−Bi(t, w)

)
dG(w) (5.2)

= m

∫ ∞

0

(
1−Bi(t, x)

)
e−mx dx = 1−B∼

i (t, v)
∣∣∣
v=m

which, in vector form, is

C(t) = h−B∼(t, v)
∣∣∣
v=m

. (5.3)

The second equality in (5.2) is due to (2.20).
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On the other hand, Ci(t) is phase type distributed and its distribution can be
obtained by the representation of the phase type distribution (the original CTMC
plus an absorbing state to which transition from state i ∈ Ω is at rate m ri) [17]:

C(t) = h− e(A−mR)t · h . (5.4)

And since (5.1) is analytical for <(v) ≥ 0 the theorem is given. 2

A further Laplace-Stieltjes transform of (5.1) with respect to t results:

B∼∼(s, v) = s(sI + vR−A)−1 · h . (5.5)

In order to simplify the transform domain expressions, in the rest of the paper, we
apply the most convenient version of them using the F∼(a) = aF ∗(a) rule1. Detailed
derivations in [43] resulted in the same expression for distribution of the accumulated
reward based on different approaches. From (2.20), (5.5), using A · h = 0, we have:

C∼∼(s, v) = h−B∼∼(s, v)

= [I− s(sI + vR−A)−1] · h
= [(sI + vR−A)−1 · (sI + vR−A)− s(sI + vR−A)−1] · h
= (sI + vR−A)−1 · (vR−A) · h
= v(sI + vR−A)−1 ·R · h ,

(5.6)

which was obtained with a different way of reasoning in [49]. Suppose R−1 exists,
i.e., ri > 0, ∀i ∈ Ω, (5.6) can be inverse transformed with respect to the reward
variable as follows:

C∼∗(s, v) = (sI + vR−A)−1 · (R−1)−1 · h
= (sR−1 + vI−R−1A)−1 · h ,

(5.7)

from which
C∼(s, w) = e(R−1A−sR−1)w · h . (5.8)

Note that, we did not restrict the class of MRMs till the first row of (5.7), hence
the results are valid for any reducible and irreducible underlying CTMC and any
non-negative reward rates. In (5.7) – (5.8), the only restriction is that R must be
invertable, i.e., strictly positive reward rates are only allowed.

5.2 Moments of the accumulated reward

Let m
(n)
i (t) = E{Bi(t)

n} be the n-th moment of the reward accumulated in [0, t).

The column vector m(n)(t) = [m
(n)
i (t)] can be evaluated based on B∼(t, v) as

m(n)(t) = (−1)n ∂nB∼(t, v)

∂vn

∣∣∣∣
v=0

. (5.9)

1E.g., B∗∼(s, v) = (sI + vR−A)−1 · h and B∼∗(s, v) =
s

v
(sI + vR−A)−1 · h
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The following theorem provides a computationally effective, recursive method for the
numerical analysis of the moments of accumulated reward.

Theorem 5.2. The n-th moment (n ≥ 1) of the accumulated reward is

m(n)(t) = (−1)n

∞∑
i=0

ti

i!
N(n)(i) · h (5.10)

where N(n)(i) is defined as

N(n)(i) =





I , if i = n = 0 ,
0 , if i = 0, n ≥ 1 ,
Ai , if i ≥ 1, n = 0 ,
A ·N(n)(i− 1)− n R ·N(n−1)(i− 1) , if i ≥ 1, n ≥ 1 .

(5.11)

To prove the theorem we need the following results.
Lemma 1 If F(t) and G(t) are real-valued, n times derivable matrix functions and
F′′(t) = 0, then

(F(t) ·G(t))(n) = F(t) ·G(n)(t) + n F′(t) ·G(n−1)(t), n ≥ 1 . (5.12)

Proof of Lemma 1
1. For n = 1

(F(t) ·G(t))′ = F(t) ·G′(t) + F′(t) ·G(t) (5.13)

holds.
2. Assuming (5.12) holds for n = k, it follows

(F(t) ·G(t))(k+1) = F(t) ·G(k+1)(t) + (k + 1) F′(t) ·G(k)(t) (5.14)

where the assumption for n = k and F′′(t) = 0 is used. 2

Lemma 2 If i, n ≥ 1 then

∂n

∂vn
(A− vR)i

∣∣∣∣
v=0

=

A · ∂n

∂vn
(A− vR)i−1

∣∣∣∣
v=0

− n R · ∂n−1

∂vn−1
(A− vR)i−1

∣∣∣∣
v=0

(5.15)

Proof of Lemma 2 Let F(v) = (A− vR) and G(v) = (A− vR)i−1. From Lemma 1

∂n

∂vn
(A− vR)i =

(A− vR) · ∂n

∂vn
(A− vR)i−1 − n R · ∂n−1

∂vn−1
(A− vR)i−1

(5.16)

which implies the Lemma. 2

Proof of Theorem 5.2 From (5.9) and (5.1)

m(n)(t) = (−1)n ∂ne(A−vR)t

∂vn

∣∣∣∣
v=0

· h

= (−1)n ∂n

∂vn

∞∑
i=0

ti

i!
(A− vR)i

∣∣∣∣
v=0

· h

= (−1)n

∞∑
i=0

ti

i!

∂n

∂vn
(A− vR)i

∣∣∣∣
v=0

· h .

(5.17)
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Let

N(n)(i) =
∂n

∂vn
(A− vR)i

∣∣∣∣
v=0

, for ∀n, i ≥ 1. (5.18)

From Lemma 2 it follows

N(n)(i) = A ·N(n)(i− 1)− n R ·N(n−1)(i− 1), (5.19)

with the initial conditions N(0)(0) = I, N(0)(i) = Ai and N(n)(0) = 0. By this
recursion N(n)(i) = 0, if i < n . This completes the proof of Theorem 5.2. 2

The iterative procedure to evaluate N(n)(i) has the following properties:

• it is not possible to evaluate the nth moment itself, but to obtain the nth
moment all the previous moments (or at least the associated N(n)(i) terms)
must be computed;

• matrix-matrix multiplications are computed in each iteration steps;

• numerical problems can arise due to the repeated multiplication with A, which
contains both positive and negative elements, hence Theorem 5.2 is not directly
applicable for numerical analysis.

5.3 Moments of the completion time

Let s
(n)
i (w) = E{Ci(w)n} be the n-th moment of the time to accumulate w amount of

reward. The column vector s(n)(w) = [s
(n)
i (w)] can be evaluated based on C∼(s, w)

as

s(n)(w) = (−1)n ∂nC∼(s, w)

∂sn

∣∣∣∣
s=0

. (5.20)

Theorem 5.3. The n-th moment of completion time, s(n)(w), satisfies the following
equation

s(n)(w) = (−1)n

∞∑
i=n

wi

i!
M(n)(i) · h (5.21)

where M(n)(i) is defined as

M(n)(i) =





I, i = n = 0 ,
0, i = 0, n ≥ 1 ,
(R−1 ·A)i, i ≥ 1, n = 0 ,
R−1

(
A ·M(n)(i− 1)− n M(n−1)(i− 1)

)
, i, n ≥ 1 .

(5.22)

Proof of Theorem 5.3 Using

s(n)(w) = (−1)n ∂n

∂sn
e(R−1·A−sR−1)w

∣∣∣∣
s=0

· h (5.23)

the proof follows the same pattern as the proof of Theorem 5.2. 2

The numerical method based on Theorem 5.3 has the same properties as the one
based on Theorem 5.2. In contrast with Theorem 5.2, the application of Theorem
5.3 is restricted to MRMs with strictly positive reward rates, while, as in Theorem
5.2, we do not have restriction on the underlying CTMC.
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5.3.1 System with zero reward rates

Theorem 5.3 can not be applied for computing the moments of completion time when
some of the reward rates are zero. In this section we give a method to handle this
case.

Let us partition the state space, Ω, into two disjoint sets Ω+ and Ω0. Ω+ (Ω0)
contains the states with associated positive (0) reward rate, i.e., ri > 0;∀i ∈ Ω+ and
ri = 0; ∀i ∈ Ω0. The accumulated reward does not increase during the sojourn in
Ω0. If Ω0 has got an absorbing subset then the distribution of the completion time
is defective, i.e., there is a positive probability that Ci(w) = ∞. In the subsequent
analysis we do not allow this case.

Without loss of generality, we number the states in Ω such that i < j, for ∀i ∈ Ω+

and ∀j ∈ Ω0. By this partitioning of the state space the reward rate and the generator
matrix have the following sub-block structure:

R =

(
R1 0
0 0

)
, A =

(
A1 A2

A3 A4

)
. (5.24)

Note that A4 is invertable as a consequence of the assumption that Ω0 has no ab-
sorbing subset. The partitioned form of the performance vectors are:

C∼∼(s, v) =

(
C∼∼

+ (s, v)
C∼∼

0 (s, v)

)
, s(n)(w) =

(
s
(n)
+ (w)

s
(n)
0 (w)

)
. (5.25)

Theorem 5.4. The n-th moment of completion time, s(n)(w), can be computed as
follows:

s
(n)
+ (w) = (−1)n

∞∑
i=0

wi

i!
L(n)(i) · h (5.26)

s
(n)
0 (w) = (−1)n

∞∑
i=0

wi

i!
H(n)(i) · h (5.27)

where

L(n)(i) =





0 , i = 0, n > 0 ,

(R−1
1 ·A1 −R−1

1 ·A2 ·A−1
4 ·A3)

i , i ≥ 0, n = 0 ,

−R−1
1 ·A2 ·A−2

4 ·A3 −R−1
1 , i = 1, n = 1 ,

(−1)n+1 n! R−1
1 ·A2 ·A−n−1

4 ·A3 , i = 1, n ≥ 2 ,

n∑

l=0

(
n
l

)
L(l)(1) · L(n−l)(i− 1) , i ≥ 2, n ≥ 1 ,

(5.28)
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H(n)(i) =





(−1)nA
−(n+1)
4 ·A3 , i = 0, n ≥ 0 ,

A3 ·A−1
4

(
R−1

1

(
A1 −A2 ·A−1

4 ·A3

))i
, i ≥ 0, n = 0 ,

n∑

l=0

(
n
l

)
H(l)(i− 1) ·G(n−l) , i ≥ 1, n ≥ 1

(5.29)

G(n) =





R−1
1 · (A1 −A2 ·A−1

4 ·A3) , n = 0 ,

R1 ·A2 ·A−2
4 ·A3 −R1 , n = 1

(−1)n+1 n! R1 ·A2 ·A−n−1
4 ·A3 , n ≥ 2

(5.30)

Proof of Theorem 5.4 Substituting the vectors and matrices in (5.6) with their
partitioned form and using the following form of matrix inverse

(A B
C D

)−1

=
(

(A− BD−1C)−1 −(A− BD−1C)−1BD−1

−D−1C(A− BD−1C)−1 D−1 +D−1C(A− BD−1C)−1BD−1

)

with

A = sI1 + vR1 −A1 , B = −A2 ,

C = −A3 , D = sI4 −A4

for C∼∼
+ (s, v) we have:

C∼∼
+ (s, v) = v[sI1 + vR1 −A1 −A2 · (sI4 −A4)

−1 ·A3]
−1 ·R1 · h . (5.31)

Since R1
−1 exists by its definition the inverse Laplace transform of (5.31) with respect

to v → w gives

C∼
+(s, w) = eα(s)w · h =

∞∑
i=0

α(s)i

i!
wi · h (5.32)

where
α(s) = R−1

1 ·A1 + R−1
1 ·A2 · (sI4 −A4)

−1 ·A3 − sR−1
1 . (5.33)

The n-th moment of completion time is

s
(n)
+ (w) = (−1)n ∂n

∂sn
C∼

+(s, w)

∣∣∣∣
s=0

= (−1)n

∞∑
i=0

wi

i!

∂n

∂sn
α(s)i

∣∣∣∣
s=0

· h (5.34)

where the n-th deviate of α(s)i can be evaluated using the Leibniz rule

(α(s) ·α(s)i−1)(n) =
n∑

l=0

(
n

l

)
α(s)(l) ·

(
α (s)i−1

)(n−l)

. (5.35)

Now L(n)(i) =
∂n

∂sn
α(s)i

∣∣∣
s=0

, completes the proof for s
(n)
+ (w).
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The same partitioning of (5.6) gives

C∼
0 (s, w)

= (sI4 + A4)
−1 ·A3 · C+(s, w)

=
∞∑
i=0

wi

i!
(sI4 + A4)

−1 ·A3 ·α(s)i · h

=
∞∑
i=0

wi

i!
A3 ·A4

−1
(
R1

−1
(
A1 − sI1 + A2 (sI1 −A4)

−1 A3 − sI4

))i · h

(5.36)

and applying the Leibniz-rule as before:

s
(n)
0 (x) = (−1)n · ∂n

∂sn
C∼

0 (s, x)

∣∣∣∣
s=0

= (−1)n

∞∑
i=0

wi

i!
H(n)(i) · h (5.37)

gives the theorem. 2

5.4 Numerical methods based on randomization

In the previous sections iterative procedures were provided to compute the moments
of reward measures, but due to the properties of digital computers using floating point
numbers a direct application of those methods would result in numerical problems
such as instabilities, “ringing” (negative probabilities), etc. The main reason of these
problems is that matrices with positive and negative elements (like A) are multiplied
several times. To avoid these problems a modified procedure is proposed. Let

D =
A

q
+ I , S =

R

qd
(5.38)

where q = maxi,j∈Ω (|aij|) and d = maxi∈Ω(ri)/q. By this definition D is a stochastic
matrix (0 ≤ dij ≤ 1,∀i, j ∈ Ω and

∑
j∈Ω dij = 1,∀i ∈ Ω) and S is a diagonal matrix

such that 0 ≤ sii ≤ 1,∀i ∈ Ω. The dimension of d is unit of reward. d can be
considered as a scaling factor of the accumulated reward. Using these matrices

B∼(t, v) = e(A−vR)t · h = e(D−vdS)qt · he−qt . (5.39)

Theorem 5.5. The moments of accumulated reward can be computed using only
matrix-vector multiplications and saving only vectors of size #Ω in each step of the
iteration as

m(n)(t) = n! dn

∞∑
i=0

U (n)(i)
(qt)i

i!
e−qt (5.40)

where

U (n)(i) =





0 , if i = 0, n ≥ 1 ,
h , if i ≥ 0, n = 0 ,

D · U (n)(i− 1) + S · U (n−1)(i− 1) , if i ≥ 1, n ≥ 1 .
(5.41)
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U (n)(i) i=0 i=1 i=2 i=3

n=0 h h h h
n=1 0 Sh DSh + Sh DDSh + DSh + Sh
n=2 0 0 SSh DSSh + SDSh + SSh
n=3 0 0 0 SSSh

Table 1.

Proof of Theorem 5.5 Starting from (5.39) the proof of Theorem 5.5 follows the same
pattern as the proof of Theorem 5.2. 2

To demonstrate the iterative procedure of computing U (n)(i) the first elements of

U (n)(i) evaluated based on (5.41) are provided in Table 1.
Suppose one is interested in the first 3 moments of the accumulated reward. To

perform the computation 3 vectors of size #Ω needs to store U (n)(i), n = 1, 2, 3.
In each iteration step i = 1, 2, 3, . . . matrix-vector multiplications and vector sum-
mations has to be performed according to (5.41) using the vectors of the previous
iteration step and the constant matrices D and S. Figure 5.1 shows the dependency
structure of the computation. One can recognize that only the (i− 1)-th column (it-
eration) of U is used for calculating the i-th column of U . Note that S is a diagonal
matrix and D is as sparse as A is. Further 3 vectors of the same size need to store

i=0 i=1 i=2 i=3 i=4

n=0

n=1

n=2

n=3

U(n)(i)

multiplying with  D

multiplying with  S

h hhhh

Figure 5.1: The dependency structure of the iteration steps

the “actual value” of m(n)(t), n = 1, 2, 3 according to (5.40).
The following theorem provides a global error bound of the procedure.

Theorem 5.6. The n-th moment of accumulated reward can be calculated as a
finite sum such that the maximum allowed error is ε

m(n)(t) = n! dn

G−1∑
i=0

U (n)(i)
(qt)i

i!
e−qt + ξ(G) (5.42)

where

G = min
g∈N

(
(qt) n! dn

∞∑
i=g−1

(qt)i

i!
e−qt ≤ ε

)
(5.43)
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and the 0 ≤ ξ(G) ≤ h ε inequality holds for all the elements of the vectors.

Proof of Theorem 5.6 By the definition of S and D

0 ≤ S · h ≤ h and 0 ≤ D · S · h ≤ h (5.44)

hold piece-wise (as all the subsequent vector inequalities), hence U (n)(i) is bounded
by

0 ≤ U (n)(i) ≤ i h. (5.45)

The error ξ(g) incurred when eliminating the tale of the infinite sum is also bounded
by

ξ(g) = n! dn

∞∑
i=g

U (n)(i)
(qt)i

i!
e−qt ≤ n! dn

∞∑
i=g

h i
(qt)i

i!
e−qt

≤ (qt) n! dn

∞∑
i=g−1

h
(qt)i

i!
e−qt (5.46)

which gives the theorem. 2

The error bound provided by the theorem is the tail of a Poisson distribution
with mean qt multiplied by a constant (qt) n! dn. A Poisson distribution has a low
squared coefficient of variation (qt)−1, which decreases as qt increases, and its tail
has an exponential decay. Hence, when qt is large (> 100) G is mainly determined
by qt and it has only a logarithmic dependence on the constant (qt) n! dn and the
precision requirement ε. In general, if qt > 100 then G and qt are of the same order
of magnitude (G > qt). A high level description of the proposed method can be
found in Section 5.6.

The same approach can be applied for the analysis of completion time, when all
the reward rates are positive, i.e., R−1 exists. Let

B =
R−1 ·A

z
+ I , T =

R−1

zf
(5.47)

where z = maxi,j∈Ω (|aij/ri|) and f = maxi∈Ω(1/ri)/z. By this definition B is a
stochastic matrix (0 ≤ bi,j ≤ 1,∀i, j ∈ Ω and

∑
j∈Ω bi,j = 1,∀i ∈ Ω) and T is a

diagonal matrix such that 0 ≤ ti,i ≤ 1,∀i ∈ Ω. f is a number with no dimension.

C∼(s, w) = e(R−1A−sR−1)w · h = e(B−sfT)zw · h e−zw . (5.48)

Theorem 5.7. The moments of the completion time can be computed using only
matrix-vector multiplications and saving only vectors of size #Ω as follows:

s(n)(w) = n! fn

∞∑
i=0

V (n)(i)
(zw)i

i!
e−zw (5.49)

where

V (n)(i) =





0 if i = 0, n ≥ 1 ,
h if i ≥ 0, n = 0 ,

B · V (n)(i− 1) + T · V (n−1)(i− 1) if i ≥ 1, n ≥ 1 .
(5.50)
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Proof of Theorem 5.7 Theorem 5.7 is obtained from (5.48) applying similar steps as
in the proof of Theorem 5.4. 2

Theorem 5.8. The n-th moment of completion time can be calculated as a finite
sum and an error part, where the maximum allowed error is ε

s(n)(w) = n! fn

G−1∑
i=0

V (n)(i)
(zw)i

i!
e−zw + ξ(G) (5.51)

where G = min
g∈N

(
(zw) n! fn

∞∑
i=g−1

(zw)i

i!
e−zw ≤ ε

)
(5.52)

and 0 ≤ ξ(G) ≤ h ε . (5.53)

Proof of Theorem 5.8 The proof of Theorem 5.8 follows the same pattern as the
proof of Theorem 5.6. 2.

The numerical analysis of the completion time of large models when states with
zero reward rate are present in the system is more complicated. A numerical proce-
dure similar to the one in Theorem 5.8 can be obtained as well, but its applicability
is strongly limited by the cardinality of Ω0. The A4 matrix of cardinality #Ω0 has
to be inverted in this case. In general, the complexity of inverting a matrix of cardi-
nality 104 has higher computational complexity and memory requirement than the
proposed numerical method with 106 states.

5.5 Numerical examples

Example 1
Consider a CTMC with n = 1, 000, 000 states. The non-zero state transition rates
are:

aij =





5 , if j = i + 1 ,
2.5 , if j = i + 10, 000 ,
2.5 , if j = i− 1 .

(5.54)

The diagonal matrix of the reward rates, R, has the following structure:

ri,i =

{
0 if i < 800, 000 ,
1 if i ≥ 800, 000 .

(5.55)

Figure 5.2. shows the structure of the underlying CTMC, where u = 10, 000.

1 2 3 u+1 u+2 n

2.5

2.5

5

Figure 5.2: The underlying CTMC of Example 1.
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Mean value t = 0.02s t = 0.1s t = 0.2s t = 1s t = 2s

Z(0) = 750, 000 8.06 · 10−12 9.81 · 10−8 5.11 · 10−6 0.022 0.33
Z(0) = 790, 000 0.00047 0.010 0.037 0.58 1.54
Z(0) = 800, 000 0.019 0.093 0.18 0.94 1.94

Table 2.

Variance t = 0.02s t = 0.1s t = 0.2s t = 1s t = 2s

Z(0) = 750, 000 4.61 · 10−14 2.73 · 10−9 5.03 · 10−7 7.73 · 10−3 0.17
Z(0) = 790, 000 6.07 · 10−6 5.85 · 10−4 3.62 · 10−3 0.096 0.16
Z(0) = 800, 000 5.79 · 10−6 4.13 · 10−4 1.92 · 10−3 0.018 0.022

Table 3.

Table 2 and 3 contain the mean and the variance of the accumulated reward with
different initial state. The accumulated reward represents the total time the system
spent in states 800, 000, . . . , 1, 000, 000.

Example 2
In the second example, the performance parameters of a Carnegie-Mellon multi-
processor system are evaluated by the proposed method. The system is similar to
the one presented in [75]. The system consists of N processors, M memories, and an
interconnection network (composed by switches) that allows any processor to access
any memory (Figure 5.3). The failure rates are 0.1, 0.05, 0.01 and 0.003 failures per
hour for the processors, memories, switches, and general failure, respectively.

Viewing the interconnecting network as S switches and modeling the system at
the processor-memory-switch level, the system performance depends on the minimum
of the number of operating processors, memories, and switches. Each state is thus
specified by a triple (i, j, k) indicating the number of operating processors, memories,
and switches, respectively. We augment the states with the nonoperational state F .
Events that decrease the number of operational units are the failures and events
that increase the number of operational elements are the repairs. We assume that
failures do not occur when the system is not operational. When a component fails,
a recovery action must be taken (e.g., shutting down the a failed processor, etc.), or
the whole system will fail and enter state F .

Two kinds of repair actions are possible, global repair which restores the system
to state (N,M, S) with rate µ = 0.01 per hour from state F , and local repair, which
can be thought of as a repair person beginning to fix a component of the system
as soon as a component failure occurs. We assume that there is only one repair
person for each component type. Let the local repair rates be 2.0, 2.0 and 0.1 for
the processors, memories and the switch, respectively.

The system starts from the perfect state (N, M, S). The studied system has 32
processors, 64 memories, and 16 switches, thus the state space consists of 36,466
states (247,634 transitions). The performance of the system is proportional to the
number of cooperating processors and memories, whose cooperation is provided by
one switch. The reward rate is defined as the minimum of the operational processors,
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memory

1

2

M
processor N

processor 1

processor 2
network

memory

memory

Figure 5.3: Example system structure

t E(B(t)) E(B(t)2) E(B(t)3) E(B(t)4) E(B(t)5) E(B(t)6)

1 15.89 253.0 4030 6.41 · 104 1.02 · 106 1.63 · 107

2 31.60 1001 3.14 · 104 1.00 · 106 3.19 · 107 1.01 · 109

5 77.70 6072 4.75 · 105 3.72 · 107 2.92 · 109 2.30 · 1011

10 151.5 2.32 · 104 3.57 · 106 5.51 · 108 8.52 · 1010 1.31 · 1013

20 289.5 8.57 · 104 2.55 · 107 7.67 · 109 2.30 · 1012 6.96 · 1014

50 648.0 4.42 · 105 3.08 · 108 2.16 · 1011 1.53 · 1014 1.09 · 1017

Table 4.

memories, and switches. The minimal operational configuration is supposed to have
one processor, one memory and one interconnection switch.

The first 6 moments of the accumulated reward were calculated using Theorem 5.5
in two different cases. In the first case global repair was not possible, hence F was
an absorbing state of the system. In the second case global repair was allowed at
rate 0.01. Table 4 and 5 contain the results obtained at time t = 1, 2, 5, 10, 20, 50 for
the case without and with global repair, respectively.

The mean and the variance of the accumulated reward of the two cases are com-
pared in Figures 5.4, and 5.5, respectively. The dashed lines refer to the case when
global repair is not possible. As it was expected, the mean accumulated reward of

t E(B(t)) E(B(t)2) E(B(t)3) E(B(t)4) E(B(t)5) E(B(t)6)

1 15.89 253.0 4030 6.42 · 104 1.02 · 106 1.63 · 107

2 31.60 1001 3.14 · 104 1.00 · 106 3.19 · 107 1.01 · 109

5 77.70 6073 4.75 · 105 3.72 · 107 2.92 · 109 2.30 · 1011

10 151.6 2.32 · 104 3.57 · 106 5.51 · 108 8.52 · 1010 1.31 · 1013

20 290.1 8.59 · 104 2.56 · 107 7.68 · 109 2.31 · 1012 6.97 · 1014

50 655.6 4.48 · 105 3.11 · 108 2.19 · 1011 1.55 · 1014 1.10 · 1017

Table 5.
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the case without global repair is less. The variance curves are misleading for the first
sight. The second moment of the case without global repair is still less, but the re-
lation of the variance parameters depend on the difference of the first two moments,
and that is why the variance of the case without global repair is higher.
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Figure 5.4: Mean accumulated reward
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Figure 5.5: Variance of the accumulated reward

5.6 Implementation of the numerical method

A formal description of the program that calculates the moments of accumulated
reward according to Theorem 4 is provided. The memory requirement and number
of required operations are calculated in advance.
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Input M cardinality of the state space
A generator matrix of underlying CTMC
R diagonal matrix of the reward rates
P initial probability vector
t time of accumulation
n order of moment
G number of iterations
z number of non-zero elements in A

Output m The n-th moment of accumulated reward
mem memory requirement
mul required floating point multiplication
add required floating point addition

1 memD = z · Size(double) storing elements of D
memD = memD + (z + M) · Size(int)
memS = M · Size(double) storing S
memP = M · Size(double) storing P
memN = M · (n + 1) · Size(double) temporary vectors
mem = memD + memS + memP + memN

2 add = o (G · (2 · n · z + (n + 1) ·M)) compute numerical complexity
mul = o (G · (2 · n · z + M))

3 U (0) = h; U (i) = 0 , i : 1 . . . n; compute the n-th moment
For i := 1 To G Do

Begin
For j := n DownTo 0 Do

U (j) := S · U (j−1) + D · U (j);
m := m + U (j) · Poisson(i; qt);

End;
m := m · n! · dn
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Chapter 6

Partial Loss in Reward Models

Previously applied reward models assumed no reward loss or a complete loss of
accumulated reward at state transitions. In this chapter we introduce a new model,
the intermediate case when only a portion of the accumulated reward is lost at a state
transition of the considered system. Two different partial loss models are considered
in the sequel. In the partial loss of incremental reward case only a portion of the
reward accumulated during the sojourn in the last visited state is lost, while in the
partial loss of total reward case a portion of the total accumulated reward is lost at
a state transition.

The subsequent analysis of these reward models indicate a very important feature
of partial loss models: there is dominant qualitative difference between the accumu-
lated reward and the completion time measures. E.g., in some cases the accumulated
reward has a closed form description in transform domain, while the completion time
has not. The source of this difference is very natural. Due to the fact that the tra-
jectory of the accumulated reward is non-monotone in partial loss models the fact
that that accumulated reward is less than an arbitrary limit w at time t does not
necessarily imply that the completion time is greater than t.

6.1 Partial incremental work loss in an SMP en-

vironment

Let {Z(t), t ≥ 0} be a semi-Markov process (SMP) on state space Ω = {1, 2, ..., N}
with kernel Q(·) = [Qij(·)]. We assume that Q(t) is the canonical kernel of Z(t), i.e.,
Qii = 0,∀i. Suppose that whenever the SMP is in state i, reward is accumulated
at rate ri. When the SMP undergoes a transition from state i, a fraction 1 −Ai of
the reward obtained during the last sojourn in state i is lost and a fraction Ai of
the reward obtained during the last sojourn remains. Ai is a r.v. over (0, 1) with
distribution Li(α) = Pr(Ai ≤ α). B(t) denotes the amount of accumulated reward
at time t. Let Tn be the time of the nth state transition in the SMP. The dynamics
of the right continuous accumulated reward process {B(t), t ≥ 0} defined as follows
(Figure 6.1):

dB(t)

dt
= rZ(t) for Tn < t < Tn+1 (6.1)
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αj[B(T−
3 )−B(T2)]

t
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B(T2)
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rkαk

riαi

rjαj
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Z(t)

B(t)

i

j

k

Figure 6.1: Reward accumulation in partial incremental loss model

B(Tn) = B(Tn−1) +AZ(T−n )[B(T−
n )−B(Tn−1)] (6.2)

6.1.1 Limiting distribution of B(t)

By (6.2) B(Tn) is an non-decreasing series.
Suppose Z(t) is an ergodic process with steady state distribution π = {πi}. Both

limn→∞B(Tn) and limt→∞B(t) go to infinity if there is at least one state i ∈ Ω such
that πiriE[Ai] > 0.

6.1.2 Accumulated reward up to time t

Define
Pi(t, w) = Pr(B(t) ≤ w | Z(0) = i).

The distribution of the accumulated reward is provided in the following theorems.

Theorem 6.1. In double transform domain the distribution of accumulated reward
with deterministic loss portion (i.e., Ai = αi) satisfies:

P ∗∼
i (s, v) =

1−Q∼
i (s + vri)

s + vri

+
∑

k∈Ω

Q∼
ik(s + vriαi) · P ∗∼

k (s, v) (6.3)

Proof. Conditioning on H, the sojourn time in state i, we have:

Pi(t, w|H = τ) =





Uw(w − rit) if : τ > t

∑

k∈Ω

dQik(τ)

dQi(τ)
· Pk(t− τ, w − αiτri) if : τ < t

(6.4)
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Taking the Laplace-Stieltjes transform with respect to w (→ v)

P∼
i (t, v|H = τ) =





e−vrit if : τ > t

∑

k∈Ω

dQik(τ)

dQi(τ)
· e−vriαiτ · P∼

k (t− τ, v) if : τ < t
(6.5)

Unconditioning with respect to H (by Qi(t)),

P∼
i (t, v) = e−vrit(1−Qi(t)) +

∑

k∈Ω

∫ t

τ=0

e−vriαiτ · P∼
k (t− τ, v) dQik(τ) (6.6)

Taking the Laplace transform with respect to t (→ s) results:

P ∗∼
i (s, v) =

∫ ∞

t=0

e−stP∼
i (t, v)dt =

∫ ∞

t=0

e−ste−vrit(1−Qi(t)) dt +
∑

k∈Ω

∫ ∞

t=0

e−st

∫ t

τ=0

e−vriαiτ P∼
k (t− τ, v) dQik(τ) dt =

1

s + vri

−Q∗
i (s + vri) +

∑

k∈Ω

∫ ∞

τ=0

e−sτe−vriαiτ

∫ ∞

t=τ

e−s(t−τ) P∼
k (t− τ, v) dt dQik(τ) =

1

s + vri

− Q∼
i (s + vri)

s + vri

+
∑

k∈Ω

∫ ∞

τ=0

e−(s+vriαi)τ dQik(τ) P ∗∼
k (s, v) =

1−Q∼
i (s + vri)

s + vri

+
∑

k∈Ω

Q∼
ik(s + vriαi) P ∗∼

k (s, v)

(6.7)

Theorem 6.2. With random loss potion, Ai, the following double transform domain
equation holds for Pi(t, w):

P ∗∼
i (s, v) =

1−Q∼
i (s + vri)

s + vri

+
∑

k∈Ω

∫ ∞

τ=0

esτL∼i (vriτ) dQik(τ) · P ∗∼
k (s, v) (6.8)

where Qi(t) =
∑

j∈R Qij(t).

Proof. Conditioning on H, the sojourn time in state i, we have:

Pi(t, w|H = τ) =





Uw(w − rit) if : τ > t

∑

k∈Ω

dQik(τ)

dQi(τ)
·

∫ 1

α=0

Pk(t− τ, w − ατri)dLi(α) if : τ < t

(6.9)
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Taking the Laplace-Stieltjes transform with respect to w (→ v)

P∼
i (t, v|H = τ) =





e−vrit if : τ > t

∑

k∈Ω

dQik(τ)

dQi(τ)
· L∼i (vriτ) · P∼

k (t− τ, v) if : τ < t

(6.10)
Unconditioning with respect to H (by Qi(t)),

P∼
i (t, v) = e−vrit(1−Qi(t)) +

∑

k∈Ω

∫ t

τ=0

L∼i (vriτ) · P∼
k (t− τ, v) dQik(τ) . (6.11)

Taking the Laplace transform with respect to t (→ s) results in the theorem.

Corollary 6.3. In a CTMC environment with generator A = [aij] (ai = −aii)

P ∗∼
i (s, v) =

1

s + vri + ai

+
∑

k∈Ω,k 6=i

aik

s + vriαi + ai

· P ∗∼
k (s, v) , (6.12)

whose solution, in matrix form, is:

P ∗∼(s, v) = (sI + vRα − A)−1D1(s, v) , (6.13)

where the diagonal matrices are defined as

Rα = diag <riαi > and D1(s, v) = diag

〈
s + vriαi + ai

s + vri + ai

〉
.

6.1.3 Extreme loss ratio

From the model behaviour it is intuitively clear that the partial loss reward models
become equivalent with the corresponding loss-less (prs) models when all the loss
variable are set to 1, i.e., Ai = αi = 1, ∀i and they become equivalent with the
corresponding total loss (prd) models when all the loss variable are set to 0, i.e.,
Ai = αi = 0, ∀i. The results provided in this chapter verifies this equivalence for
extreme loss ratio.

For example, with αi = 1,∀i Equation (6.13) becomes

P ∗∼(s, v) = (sI + vR−B)−1 (6.14)

and with αi = 0,∀i it is

P ∗∼(s, v) = (sI −B)−1diag

〈
s + ai

s + vri + ai

〉
(6.15)

Equation (6.14) is one of the first result on MRMs [59], while Equation (6.15) says
that the reward accumulation process till the last state transition does not result in
any reward ((sI − B)−1) and all the reward is accumulated in the last visited state
(say state i) at rate ri during the sojurn in that state s+ai

s+vri+ai
[16].
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6.1.4 Completion time

Let us define the completion time (r.v.) and its conditional distribution as follow

C(w) = min[t : B(t) ≥ w]

and

Ci(t, w) = Pr(C(w) ≤ t|Z(0) = i).

Unfortunately the completion time can not be expressed with such closed form
transform domain expression as the accumulated reward.

Theorem 6.4. The distribution of completion time with deterministic loss portion
(i.e., Ai = αi) satisfies:

C∼∗
i (s, v) =

ri [1 − Q∼
i (s + v ri) ]

s + v ri

+
∑

k∈Ω

Q∼
ik(s + v ri αi) C∼∗

k (s, v)−

∑

k∈Ω

∫ ∞

h=0

e−she−hvriαi

∫ hri

w=hriαi

e−v(w−hriαi) C∼
k (s, w − hriαi) dw dQik(h)

(6.16)

Proof. Conditioning on the sojourn time in state i (H), we have:

Ci(t, w|H = h) =





U

(
t − w

ri

)
if : h ri ≥ w

∑

k∈Ω

dQik(h)

dQi(h)
· Ck(t− h,w − hriαi) if : h ri < w

(6.17)

Taking the Laplace-Stieltjes transform with respect to t results:

C∼
i (s, w|H = h) =





e
−s w

ri if : h ri ≥ w

∑

k∈Ω

dQik(h)

dQi(h)
· e−sh · C∼

k (s, w − hriαi) if : h ri < w

(6.18)

Unconditioning with respect to H, yields

C∼
i (s, w) =

∫ ∞

h= w
ri

e
−s w

ri dQi(h) +
∑

k∈Ω

∫ w
ri

h=0

e−sh C∼
k (s, w − hriαi) dQik(h) =

e
−s w

ri

[
1−Qi

(
w

ri

)]
+

∑

k∈Ω

∫ w
ri

h=0

e−sh C∼
k (s, w − hriαi) dQik(h)

(6.19)
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Now we try to take the Laplace transform with respect to w:

C∼∗
i (s, v) =

∫ ∞

w=0

e−wv C∼
i (s, w) dw =

∫ ∞

w=0

e−wv e
−s w

ri

[
1−Qi

(
w

ri

)]
dw+

∑

k∈Ω

∫ ∞

w=0

e−wv

∫ w
ri

h=0

e−sh C∼
k (s, w − hriαi) dQik(h) dw =

ri [1 − Q∼
i (s + v ri) ]

s + v ri

+

∑

k∈Ω

∫ ∞

h=0

e−she−hvriαi

∫ ∞

w=hri

e−v(w−hriαi) C∼
k (s, w − hriαi) dw dQik(h)

(6.20)

Unfortunately the inner integral with respect to w is not a complete Laplace trans-
form, because

C∼∗
i (s, v) =

ri [1 − Q∼
i (s + v ri) ]

s + v ri

+

∑

k∈Ω

∫ ∞

h=0

e−she−hvriαi

∫ ∞

w=hriαi

e−v(w−hriαi) C∼
k (s, w − hriαi) dw dQik(h)−

∑

k∈Ω

∫ ∞

h=0

e−she−hvriαi

∫ hri

w=hriαi

e−v(w−hriαi) C∼
k (s, w − hriαi) dw dQik(h)

(6.21)

6.2 Partial loss on the total accumulated reward

The same ergodic semi-Markov environment is considered with a different accumula-
tion process. Whenever the SMP is in state i reward is accumulated at rate ri. When
the SMP undergoes a transition out from state i the fraction (1 − Ai) of the total
accumulated reward is lost and the fraction Ai of the total reward is resumed in the
new state. In the sequel we assume that Ai = αi (0 ≤ αi ≤ 1) is deterministic1. The
dynamics of the right continuous reward process {B(t), t ≥ 0} is defined as follows
(Figure 6.2):

dB(t)

dt
= rZ(t) for Tn ≤ t < Tn+1 (6.22)

B(Tn) = AZ(T−n )B(T−
n ) (6.23)

1The case when Ai is a r.v. over (0, 1) with distribution Li(.) can be considered following the
same approach, but it results in very cumbersome expressions.
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Figure 6.2: Reward accumulation in partial total loss model

6.2.1 Limiting distribution of B(t)

In contrast with the partial incremental loss case, B(Tn) does not increase to infinity
(if a state i ∈ Ω exists such that αi < 1). The average reward accumulated during a
sojourn in a state is finite and independent of B(t), while the amount of reward lost
at a state transition is proportional to B(t). A larger B(t) results in a larger reward
loss which indicates that B(t) has a finite limiting behaviour.

We shall derive the limiting joint distribution of the {(B(t), Z(t)), t ≥ 0} process,
but we first look at the {(B(Tn), Z(Tn)), n ≥ 0} process. Define

f̂i(n,w) dw=Pr{B(Tn) ∈ (w, w + dw), Z(Tn) = i},
fi(w) = lim

n→∞
f̂i(n,w),

f ∗i (v) = lim
n→∞

E(e−vB(Tn), Z(Tn) = i) =

∫ ∞

w=0

e−vwfi(w) dw.

Theorem 6.5. The Laplace transform of the limiting joint distribution of the
{(B(Tn), Z(Tn))} process is given by:

f ∗j (v) =
∑
i∈Ω

αif
∗
i (vαi)Q

∼
ij(vriαi). (6.24)

Proof. Suppose a transition to state j occurs after a sojourn time τ in state i, then

fj(w|i, τ) = fi(
w

αi

− riτ).

Unconditioning with respect to the preceding state and the sojourn time gives

fj(w) =
∑
i∈Ω

∫ w
riαi

τ=0

fi(
w

αi

− riτ) dQij(τ),

finally the Laplace transformation with respect to w(→ v) results in the theorem.
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Now we define the Laplace transform of the limiting joint distribution of the
{B(t), Z(t)} process as:

ĝi(t, w)dw = Pr{B(t) ∈ (w, w + dw), Z(t) = i},

gi(w) = lim
t→∞

ĝi(t, w),

g∗i (v) = lim
t→∞

E(e−vB(t), Z(t) = i) =

∫ ∞

w=0

e−vwgi(w) dw.

and let γi =
∫∞

0
t dQi(t), be the mean sojourn time in state i.

Theorem 6.6. The stationary distribution of the accumulated reward is

g∗i (v) = f ∗i (v)
1−Q∼

i (vri)

vriγi

. (6.25)

Proof. Suppose the SMP is in steady state at time 0; then the age of the current
sojourn is given by the equilibrium distribution of Qi(t) if the current state is i.
Hence B(0) equals the accumulated reward at the last state transition plus the reward
accumulated since that.

Corollary 4: In the special case when Z(t) is a CTMC with generator A = [aij] and
ai = −aii

f ∗j (v) =
∑

i∈Ω,i6=j

αiaij

vriαi + ai

f ∗i (vαi) , (6.26)

g∗i (v) =
1

γi(ai + vri)
f ∗i (v) . (6.27)

6.2.2 Accumulated reward up to time t

To apply a regenerative approach similar to the one used in Theorem 6.1, a more
complicated description has to be used. Indeed, in this case, it is not enough to
consider the difference between the present (B(t)) and the target value (w) of the
reward accumulation process, but we need carry both of these values. Let us define:

Vi(t, w, η) = Pr(B(t) ≤ w | Z(0) = i, B(0) = η)

The regenerative description of the process evolution is the following:

Vi(t, w, η|H = τ) =





Uw(w − η − rit) if : τ > t

∑

k∈Ω

dQik(τ)

dQi(τ)
· Vk(t− τ, w, (η + τri)αi) if : τ < t

(6.28)

64



Unfortunately Eq. (6.28) does not exhibit any closed form transform domain ex-
pression, hence a different analysis approach is adopted with CTMC background
process.

Underlying CTMC: Let Z(t) be a CTMC with generator A = [aij]. Assuming
B(0) = 0 we define:

Si(t, w) = Pr(B(t) ≤ w | Z(t) = i).

Note that the condition applies for time t.

Theorem 6.7. Si(t, w) satisfies the following double transform domain equation:

S∗∗i (s, v) =
1

v(s + riv + ai)
+

∑

k∈Ω,k 6=i

αkaik S∗∗k (s, αkv) (6.29)

Proof. The forward argument describing the evolution of the process is:

Si(t + dt, w) = (1− aidt)Si(t, w − ridt) +
∑

k∈Ω,k 6=i

aik dt Sk(t,
w

αk

+O(dt)) + σ(dt),

where O(dt) is such that limdt→0O(dt) = 0 and σ(dt) is such that limdt→0 σ(dt)/dt =
0. Taking the limit dt → 0, provides:

∂Si(t, w)

∂t
+ ri

∂Si(t, w)

∂w
= −aiSi(t, w) +

∑

k∈Ω,k 6=i

aik Sk(t,
w

αk

) (6.30)

Taking the Laplace transform with respect to t (→ s)

sS∗i (s, w)− Si(0, w) + ri
∂S∗i (s, w)

∂w
= −aiS

∗
i (s, w) +

∑

k∈Ω,k 6=i

aik S∗k(s,
w

αk

)

(6.31)
where Si(0, w) = 1. Taking the Laplace transform with respect to w (→ v)

sS∗∗i (s, v) − 1

v
+ rivS∗∗i (s, v) − S∗i (s, 0) =

− aiS
∗∗
i (s, v) +

∑

k∈Ω,k 6=i

aikαk S∗∗k (s, αkv)
(6.32)

where S∗i (s, 0) = 0, from which the theorem comes.

6.2.3 Completion time

Define

Fi(t, w, x) = Pr(C(w) ≤ t | Z(0) = i, B(0) = x) .
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Considering an SMP environment the regenerative approach provides

Fi(t, w, η|H = τ) =



Ut(t− w−x
ri

) if : τ > w−x
ri

∑

k∈Ω

dQik(τ)

dQi(τ)
· Fk(t− τ, w, (η + τri)αi) if : τ < w−x

ri

(6.33)

Similar to eq. (6.28), Eq. (6.33) does not exhibit any closed form expression in
transform domain.

Underlying CTMC:

Theorem 6.8. When Z(t) is a CTMC with generator A = [aij], Fi(t, w, x) satisfies
the backward differential equation:

if x < w :

∂Fi(t, w, x)

∂t
+ ri

∂Fi(t, w, x)

∂x
= −aiFi(t, w, x) +

∑

k∈Ω,k 6=i

aik Fk(t, w, αix)

if x ≥ w :

Fi(t, w, x) = 1

(6.34)

Proof. The backward argument describing the evolution of the process is:

Fi(t, w, x) = (1− aidt)Fi(t− dt, w, x− ridt)+
∑

k∈Ω,k 6=i

aik dt Fk(t− dt, w, αix +O(dt)) + σ(dt) , (6.35)

which proves the theorem.

Equation (6.34) can be expresses in transform domain as follows:

if x < w :

ri
∂F ∗

i (s, w, x)

∂x
= −(s + ai)F

∗
i (s, w, x) +

∑

k∈Ω,k 6=i

aik F ∗
k (s, w, αix)

if x ≥ w :

F ∗
i (s, w, x) =

1

s

(6.36)

and

F ∗∗
i (s, w, v) =

ri

s + riv + ai

F ∗
i (s, w, 0) +

∑

k∈Ω,k 6=i

aik

αi(s + riv + ai)
F ∗∗

k (s, w,
v

αi

) .

(6.37)
Unfortunately (6.37) can not be used for numerical analysis since F ∗

i (s, w, 0) is not
known.
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The above set of results based on Markov renewal theory can easily be specialized
for underlying renewal process and the set of results based on differential equation
description can easily be specialized for underlying Poisson process. A telecommuni-
cation application of a particular partial reward loss model with underlying Poisson
process is presented in [52], where the variation of TCP windows size is modeled and
analyzed with the use of a partial loss reward model.

6.3 Numerical analysis techniques

Different numerical techniques can be applied to evaluate reward measures of par-
tial loss reward models. The applicable numerical solution depend on the available
analytical description of the considered measure.

Eq. (6.13) can be directly evaluated applying a numerical inverse transform
method.

Expressions like (6.26) can be evaluated numerically using the following iterative
procedure:

f
∗(0)
i (v) = 1, ∀i ∈ Ω

and
f
∗(n+1)
j (v) =

∑

i∈Ω,i6=j

αiaij

vriαi + ai

f
∗(n)
i (vαi) .

Alternatively, the same iterative approach can be applied for the “time domain”
version of (6.26):

fj(w) =
∑

i∈Ω,i6=j

aij

ri αi

∫ w

τ=0

e
− ai

ri αi
(w−τ)

fi(
τ

αi

)dτ. (6.38)

In this case, a convolution integral has to be evaluated numerically at each iteration
step.

The moments of reward measures can be obtained based on double transform
expressions like Eq. (6.29). E.g., the mean of the accumulated reward at time t,
defined as Ei = E(B(t)|Z(0) = i), can be obtained by a symbolic inverse transform
with respect to s, a symbolic derivation with respect to v, evaluating the limit v → 0
and solving the obtained linear system. That is

S∼i (t, v) = e−(riv+ai)t +
∑

k∈Ω,k 6=i

αkaik S∼k (t, αkv)

Ei(t) = ri t e−ait +
∑

k∈Ω,k 6=i

α2
kaik Ek(t)

Equations like (6.30) and (6.34) can be evaluated using numerical differential
equation solvers.
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Chapter 7

Numerical analysis of partial loss
reward models and its application

The aim of this chapter is to present numerical methods to evaluate a particular class
of partial loss models and to demonstrate the applicability of partial loss models
in the analysis of computer systems executing long running batch programs with
checkpointing.

As it is readable from the previous chapters, the analysis of partial reward loss
models is more complex than the analysis of prs reward models. Both numerical
analysis methods presented in this chapter use the analysis of prs reward models as
an elementary step of the procedure. To keep the overall computational cost as low
as possible we calculate only the moments of the accumulated reward and apply the
effective method presented in Chapter 5 for the embedded calculation of prs models.

7.1 Numerical analysis of partial incremental loss

models

The state dependent distribution of the accumulated reward is defined as

Bij(t, w) = Pr(B(t) ≤ w, Z(t) = j | Z(0) = i)

and B(t, w) = {Bij(t, w)}.
The distribution of the accumulated reward is provided in the previous chapter:

B∗∼(s, v) = (sI + vRα − A)−1D(s, v) (7.1)

where I is the identity matrix and the diagonal matrices Rα and D(s, v) are defined

as Rα = diag〈riαi〉 and D(s, v) = diag

〈
s + vriαi + ai

s + vri + ai

〉
.

The partial loss models are the transition between the prs (no reward loss) and
the prt (complete reward loss) reward models. The numerical methods that are
commonly used for the analysis of the prs and the prt reward models utilize the
special features of those models and cannot be applied directly for the analysis of
partial loss models.
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The behavior of the partial incremental loss model can be interpreted as follows.
The reward accumulation between 0 and t∗ is according to a traditional prs model
with reduced reward rates (αiri), and from time t∗ the prs reward accumulation
goes on with the original reward rates (ri), where t∗ (0 ≤ t∗ < t) is the instant
of the last state transition before t. If there is no state transition till time t, then
t∗ = 0. Unfortunately, t∗ is a complex quantity (since it depends on the evolution
of the CTMC over the whole (0, t) interval) and it is hard to evaluate the partial
loss models with effective numerical methods. The transform domain expression in
eq. (7.1) reflects this model interpretation. Matrix (sI + vRα − A)−1 describes the
distribution of the reward accumulated by a prs Markov reward model with generator
A and reward rates αiri and the D(s, v) diagonal matrix captures the effect of the
“different” reward accumulations during the (t∗, t) interval.

As a consequence of this complex behavior the mean accumulated reward at time
t cannot be evaluated based on the cumulative transient probabilities of the CTMC,
as it was possible for the prs reward models.

To obtain a numerical procedure to evaluate the accumulated reward at time t,
we inverse Laplace transform (7.1) with respect to the time variable (s → t). First
we introduce

F (s, v) = diag

〈
vri(1− αi)

s + vri + ai

〉
,

and substitute D(s, v) with I − F (s, v) in (7.1). The inverse Laplace transform of
F (s, v) with respect to the time variable is

F (t, v) = diag
〈
vri(1− αi)e

−(vri+ai)t
〉

.

Using these matrices we can perform a symbolic inverse Laplace transformation of
(7.1) which results in:

B∼(t, v) = e(−vRα+A)t −
∫ t

τ=0

e(−vRα+A)τF (t− τ, v)dτ (7.2)

The moments of the accumulated reward is obtained from (7.2) as

E(Bn(t)) = P (0) (−1)n dn

dvn
B∼(t, v)

∣∣∣∣
v=0

h ,

where P (0) is the initial probability vector and h is the column vector of ones. The
nth derivative of B∼(t, v) at v = 0 can be calculated as

dn

dvn
B∼(t, v)

∣∣∣∣
v=0

=
dn

dvn
e(−vRα+A)t

∣∣∣∣
v=0

−
∫ t

τ=0

n∑

`=0

(
n
`

)
d`

dv`
e(−vRα+A)τ

∣∣∣∣
v=0

dn−`

dvn−`
F (t− τ, v)

∣∣∣∣
v=0

dτ

(7.3)

where the 0th derivative is the function itself. Since F (τ, v) is a diagonal matrix the
`th derivative of F (τ, v) at v = 0 can be calculated in a computationally cheap way
as

d`

dv`
F (τ, v)

∣∣∣∣
v=0

= diag
〈
ri(1− αi) `(−riτ)`−1 e−aiτ

〉
.
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Two computationally expensive steps have to be performed to evaluate the nth deriv-
ative of P∼(t, v) at v = 0 based on (7.3). The first one is the calculation of the first
n derivatives of e(−vRα+A)τ at v = 0 and at some time points τ ∈ (0, t], and the
second one is the numerical integration with respect to τ . The numerical integration
is not expensive itself, but it requires the calculation of the first step several times.
The numerical method presented in [80] is an effective way of calculating the first
n derivatives of e(−vRα+A)τ at v = 0, hence we use it for the calculation of the first
step.

The complexity of the proposed numerical procedure is much higher than the
analysis of the same Markov reward model without reward loss for two reasons. The
first one is the mentioned numerical integration, and the second one is related to
the complexity of the elementary steps of the computation of dn/dvn e(−vRα+A)t.
Basically, the first term in (7.3) provides the moments of the Markov reward model
of the same CTMC with reduced reward rates (αiri) and without reward loss. For the
calculation of the moments it is enough to calculate only the row sum of the first term,
e(−vRα+A)t, since it is multiplied by h from the right. It is much faster to calculate the
row sum of e(−vRα+A)t instead of the calculation of the whole matrix, because the row
sum can be obtained by vector-matrix multiplications, while the calculation of the
whole matrix requires matrix-matrix multiplications in each elementary step of the
computation [80]. Unfortunately, the second term in (7.3) requires the calculation of
the whole matrix (using matrix-matrix multiplications), because of the multiplication
by the diagonal matrix F (t − τ, v) from the right. This is why we defined and
calculated P (t, w) as a matrix all along the above derivations.

Finally, we note that the product of two double transform functions in (7.1) results
in double convolutions in the original (t, w) domain. In our approach one convolution
is avoided due to the calculation of the moments of the accumulated reward. Since
the calculation of the distribution of a prs Markov reward model is very expensive
itself (it is much more expensive than to calculate its moments), a direct method to
calculate the distribution of the accumulated reward by double numerical convolution
becomes infeasible even for small models (∼10 states). Instead, the numerical method
for the analysis of the moments of the accumulated reward is applicable for models
of ∼100 states.

7.2 Stationary analysis of accumulated reward

The previous sections provide a numerical method to calculate the moments of the
accumulated reward of partial incremental loss models. Using that method the eval-
uation of partial loss reward models is computationally much more expensive than
the calculation of the prs reward models of the same size.

In this section we provide an effective computational approach that makes possi-
ble to evaluate much larger partial incremental loss models (∼106 states). This nu-
merical approach allows the analysis of a special class of partial loss models where the
background process is in stationary state. Note that the reward accumulation of par-
tial incremental loss models with stationary background process has non-stationary
increment on the (0, t) interval (e.g., E(B(t)) 6= 2E(B(t/2))), because the reward
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accumulated in the last state may have different effects on the overall accumulated
reward.

The main idea of the proposed method is to define an equivalent prs reward
model, whose accumulated reward equals the reward accumulated by the original
partial loss reward model, and to evaluate the accumulated reward of the equivalent
model.

The reward accumulation process of a partial loss reward model can be divided
into two main parts as it is mentioned above. During the (0, t∗) interval the system
accumulates reward at reduced reward rates (αiri) (without reward loss), and during
the (t∗, t) interval it accumulates at the original reward rate (ri). If t∗ (and Z(t∗))
was known it would be straightforward to calculate the accumulated reward, but t∗

depends in a complex way on the CTMC behavior over the whole (0, t) interval. t∗

is not a stopping time.
To overcome this difficulty one can interpret the reward accumulation from time t

towards time 0. In this case t∗ is simply the time instant of the first state transition
in the reverse CTMC, and the reverse reward model is such that it accumulates
reward at the original rate (ri) in its first state and it accumulates reward at the
reduced rate (αiri) after leaving the first state. To apply this approach we need the
generator of the reverse CTMC.

The probability that the process is in state i at time t and in state j (j 6= i) at
t + ∆, i.e., Pr(Z(t) = i, Z(t + ∆) = j), can be calculated as:

Pr(Z(t) = i) Pr(Z(t + ∆) = j | Z(t) = i) =

Pr(Z(t + ∆) = j) Pr(Z(t) = i | Z(t + ∆) = j).

Dividing both sides by ∆ and letting ∆ → 0 we have

Pr(Z(t) = i) aij = Pr(Z(t) = j) ←−aji(t) ,

where ←−aji(t) is the (j, i) element of the generator of the reverse CTMC. One can see
that the generator of the reverse CTMC depends on the transient probabilities of the
original CTMC, hence it is time inhomogeneous, in general. In the stationary case
the state probabilities are constant and the generator of the reverse CTMC becomes
time homogeneous:

←−aji =
γi

γj

aij, (7.4)

where γi is the stationary probability of state i in the original (as well as the reverse)
CTMC. The stationary probabilities can be obtained solving

∑
i∈Ω γiaij = 0 for

∀j ∈ Ω with the normalizing condition
∑

i∈Ω γi = 1. The diagonal elements of the
generator of the stationary reverse CTMC are the same as the original diagonal
elements (since the reverse process spends the same time in each state as the original

one). It is easy to check that matrix
←−
A = {←−aij} defined by (7.4) is a proper generator

matrix.
In case the original partial loss model starts from the stationary state, we can

define an equivalent prs Markov reward model that accumulates the same amount of
reward during the (0, t) interval as our original partial loss model using the reverse
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interpretation of the reward accumulation. The original partial loss model is defined
by (γ,A, R, Rα) (the initial probability vector – which is the stationary distribution
of the CTMC, the generator matrix, the diagonal matrix of the reward rates, the
diagonal matrix of the reduced reward rates). Based on this description we define
an equivalent prs Markov reward model with state space of 2 ·#Ω states by initial
probability vector P ′(0), generator matrix A′, and reward rate matrix R′ as follows:

P ′(0) = {γ, 0}, A′ =
AD

←−
A−AD

0
←−
A

, R′ =
R 0

0 Rα

, (7.5)

AD = diag〈aii〉 is the diagonal matrix composed of the diagonal elements of A. Each
state of the original CTMC is represented by two states in the equivalent prs Markov
reward model. States 1 to #Ω represent the reward accumulation with the original
reward rate (ri). The equivalent model starts from this set of states according to the
stationary distribution γ. States #Ω+1 to 2 ·#Ω represent the reward accumulation
after the first state transition with the reduced reward rates. The structure of the A′

matrix is such that the equivalent process moves from the first set of states (states 1
to #Ω) to the second one (states #Ω + 1 to 2 ·#Ω) at the first state transition and
remains there. The distribution of the reward accumulated during the (0, t) interval
by a prs Markov reward model with initial probability vector P ′(0), generator matrix
A′, and reward rate matrix R′ is (see e.g., [80])

P ′(0)(sI ′ + vR′ − A′)−1h′ (7.6)

where the cardinality of the identity matrix I ′ and summing vector h′ is 2 ·#Ω.
The formal relation of the original partial loss model and the reverse prs Markov

reward model is presented in the following theorem.

Theorem 7.1. The distribution of reward accumulated by the prs Markov reward
model (P ′(0), A′, R′) is identical with the distribution of reward accumulated by the
partial incremental loss Markov reward model (γ,A, R, Rα), that is (from eq. (7.1)
and (7.6)):

γ(sI + vRα − A)−1D(s, v)h = P ′(0)(sI ′ + vR′ − A′)−1h′ (7.7)

Proof. The left hand side of eq. (7.7) can be rewritten as

γ(sI + vRα−A)−1D(s, v)h = γ(sI + vRα−A)−1(sI + vRα−AD) (sI + vR−AD)−1h
(7.8)

For the evaluation of the right hand side of eq. (7.7), we use the partitioned form
of matrices I ′, R′, A′. That is

(sI ′ + vR′ − A′) =
sI + vR− AD −←−A +AD

0 sI + vRα −←−A
, (7.9)
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and

(sI ′ + vR′ − A′)−1 =

(sI + vR− AD)−1 (sI + vR− AD)−1(
←−
A−AD)(sI + vRα −←−A )−1

0 (sI + vRα −←−A )−1

.

(7.10)
Using the special structure of the initial vector P ′(0) we have:

P ′(0)(sI ′ + vR′ − A′)−1h′ =

γ(sI + vR− AD)−1
[
I + (

←−
A − AD)(sI + vRα −←−A )−1

]
h =

γ(sI + vR− AD)−1

[
(sI + vRα −←−A )(sI + vRα −←−A )−1 + (

←−
A − AD)(sI + vRα −←−A )−1

]
h =

γ(sI + vR− AD)−1(sI + vRα − AD) (sI + vRα −←−A )−1h =
(7.11)

Let Γ be the diagonal matrix of the stationary probabilities, i.e., Γ = diag〈γi〉. Using

this diagonal matrix γ = hT Γ and from eq. (7.4)
←−
A = Γ−1AT Γ, where hT is the row

vector of ones. In the following steps the diagonal matrices Γ, Rα, (sI + vR − AD)
and (sI + vRα − AD) are commuted if necessary:

hT Γ (sI + vR− AD)−1(sI + vRα − AD) (sI + vRα − Γ−1AT Γ)−1h =

hT

[(
(sI + vRα − Γ−1AT Γ)−1

)T (
Γ (sI + vR− AD)−1(sI + vRα − AD)

)T
]T

h = . . .

The external transpose vanishes due to the multiplication by hT from left and h from
right and the second internal transpose also vanishes because it contains a diagonal
matrix. In the first internal transpose we interchange the order of transpose and
inversion:

hT
(
(sI + vRα − Γ−1AT Γ)T

)−1

Γ (sI + vR− AD)−1(sI + vRα − AD) h =

hT
(
sI + vRα − Γ AΓ−1

)−1(
Γ−1

)−1

(sI + vR− AD)−1(sI + vRα − AD) h =

hT
(
sΓ−1 + vΓ−1Rα − AΓ−1

)−1

(sI + vR− AD)−1(sI + vRα − AD) h =

hT Γ (sI + vRα − A)−1(sI + vRα − AD) (sI + vR− AD)−1 h
(7.12)

The theorem is given by the equivalence of (7.8) and (7.12).

The equivalent reward model is a prs Markov reward model. Its analysis can
be performed with effective numerical methods available in the literature. E.g., the
distribution of the accumulated reward can be calculated using [62, 27, 28] and its
moments using [80].
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It is easy to evaluate the limiting behavior of a partial loss model with stationary
background CTMC. We use the following notation. B(t) is the reward accumulated
by a stationary partial incremental loss model defined by (A,R, Rα). B′(t) and B”(t)
are the rewards accumulated by stationary prs reward models defined by (A,R) and
(A,Rα), respectively. The stationary distribution of the CTMC with generator A is
γ. For short time intervals the loss at the first transition does not play role, hence

lim
t→0

B(t)/t ≡ lim
t→0

B′(t)/t,

and for very long intervals the reward accumulated from the last state transition to
the end of the interval is negligible with respect to the total accumulated reward

lim
t→∞

B(t)/t ≡ lim
t→∞

B”(t)/t

E.g., the limiting behavior of the mean accumulated reward can be calculated as

lim
t→0

E(B(t))

t
= lim

t→0

E(B′(t))
t

=
∑
i∈S

γiri ,

lim
t→∞

E(B(t))

t
= lim

t→∞
E(B”(t))

t
=

∑
i∈S

γiαiri .
(7.13)

7.3 Performance analysis of computer systems

with checkpointing

Checkpointing is a widely applied technique to improve the performance of computing
servers executing long running batch programs in the presence of failures [20, 19, 31,
51]. Long running batch programs need to be re-executed in case of a system failure.
To reduce the extra re-execution work of the system the actual state of the program
is saved occasionally during the operational time of the system. This saved program
state is used when a failure occurs. After a failure and the subsequent repair the saved
program state is reloaded and the program is re-executed from its saved state. The
operation of saving the current state of the program is referred to as checkpointing
and the reload of the saved program state is called rollback.

It is a common feature of all checkpointing models that a portion of work executed
since the last system failure is lost at the next system failure, hence the amount of
executed work can be analyzed using partial loss models. To find the relation between
the applied checkpointing policy and the parameters of the partial loss reward model
depends on the particular system behaviour. Here, we follow a system level approach,
which means that the parameters of the partial loss model of the analyzed computing
server are assumed to be known. However, some considerations on the behavior of
the analyzed system are provided below.

It is important to note that our analysis approach contains a simplifying assump-
tion. The portion of work lost at a system failure is a random quantity. The analysis
of partial loss reward models with random loss ratio is studied in [11], but unfortu-
nately, there is no effective numerical method available for their analysis. This is the
reason for using (state dependent) deterministic loss ratio in our model.
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The overall performance analysis of computing systems with checkpointing is
composed of two major steps:

I. Generation of partial loss Markov reward model based on the system behavior:

• characterize the state space of the model based on the system load and
the failure process.

• evaluate the failure rate and computing power assigned to the jobs under
execution in each system state ri.

• calculate the (optimal) checkpointing rate in each system state.

• calculate the state dependent loss ratio (the portion of work that needs
to be re-executed), based on the failure rate and the checkpointing rate.

II. Solution of the obtained partial loss Markov reward model.

In the following numerical example we utilize the result of step I. and perform step
II.

Consider a computing server executing long running batch programs. Jobs of
two classes arrive to the server. Class 1 (class 2) jobs arrive according to a Poisson
process with rate λ1 (λ2). Each of these jobs requires an exponentially distributed
execution time with parameter µ1 (µ2) with the full computing capacity of the server.
The server has finite capacity (NMAX) and the number of class 1 (class 2) jobs cannot
exceed N1 (N2), i.e., n1 ≤ N1, n2 ≤ N2, n1+n2 ≤ NMAX , where n1 (n2) is the number
of class 1 (class 2) jobs in the system. The failure rate is load dependent: ν(n1, n2) =
ωa + ωb(n1 + n2), where ωa and ωb are the parameters of the load independent and
load dependent parts of the failure rate, respectively. The repair time, including
the rollback time, is exponentially distributed as well. We use state independent
repair rate β. (Note that the applied modeling approach can handle state dependent
repair rates with the same computational complexity.) Job arrival is also allowed
during repair. The computing performance of the server slightly decreases with the
number of jobs under execution (e.g., due to the swapping of jobs). ra (0 ≤ ra ≤ 1,
ra ∼ 1) is the portion of the computing power that is utilized for job execution when
there is only one job in the server. Suppose the presence of class 1 jobs increases
the checkpointing rate, the portion of useful work maintained at a system failure
increases with the number of class 1 jobs. αa and αb are used to represent the load
independent and load dependent part of the useful work ratio, respectively.

Having these Markovian assumptions one can easily model a wide range of service
discipline schemes. We consider weighted processor sharing with state dependent
weights. Our service discipline assigns a predefined portion of the computing power,
φ1 (0 < φ1 < 1) and φ2 = 1− φ1, to jobs of class 1 and class 2, respectively. Jobs of
the same class are executed at the same speed. If there are only jobs of one class in
the system, the whole computing capacity will be utilized by that class. As a special
case of this service discipline we obtain the preemptive priority service discipline
when φ2 tends to 0 or 1. In the case when φ2 → 0 class 1 jobs are executed with the
whole computing power of the server as long as there are class 1 jobs in the system.

Based on this system behavior the performance of the considered computing sys-
tem is analyzed using the partial loss Markov reward model defined in Table 7.1. The
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State space description
n1 : 0 To N1 #class 1 jobs
n2 : 0 To N2 #class 2 jobs
{Good , To fail , Repair} operational condition
n1 + n2 ≤ NMAX

Underlying CTMC
(n1, n2, Good) → (n1 + 1, n2, Good) = p λ1 class 1 job arrival
(n1, n2, Good) → (n1 + 1, n2, T o fail) = q λ1

(n1, n2, Repair) → (n1 + 1, n2, Repair) = λ1

(n1, n2, Good) → (n1, n2 + 1, Good) = p λ2 class 2 job arrival
(n1, n2, Good) → (n1, n2 + 1, T o fail) = q λ2

(n1, n2, Repair) → (n1, n2 + 1, Repair) = λ2

(n1, n2, Good) → (n1 − 1, n2, Good) = p
φ1n1

φ1n1 + φ2n2

µ1 class 1 job departure

(n1, n2, Good) → (n1 − 1, n2, T o fail) = q
φ1n1

φ1n1 + φ2n2

µ1

(n1, n2, Good) → (n1, n2 − 1, Good) = p
φ2n2

φ1n1 + φ2n2

µ2 class 2 job departure

(n1, n2, Good) → (n1, n2 − 1, T o fail) = q
φ2n2

φ1n1 + φ2n2

µ2

(n1, n2, T o fail) → (n1, n2, Repair) = ωa + ωb(n1 + n2) failure
(n1, n2, Repair) → (n1, n2, Good) = p β repair
(n1, n2, Repair) → (n1, n2, T o fail) = q β

Reward and loss structure
r(n1, n2, Good) = rn1+n2

a if: n1 + n2 > 0 reward rate
r(0, 0, Good) = 0
r(n1, n2, T o fail) = rn1+n2

a if: n1 + n2 > 0
r(0, 0, T o fail) = 0
r(n1, n2, Repair) = 0
α(n1, n2, Good) = 1 useful work ratio

α(n1, n2, T o fail) = αa + αb
n1

n1 + n2

if: n1 + n2 > 0

α(0, 0, T o fail) = 0
α(n1, n2, Repair) = 0

Table 7.1: The partial loss Markov reward model of the computing system
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state space of the CTMC is characterized by the number of class 1 and class 2 jobs in
the system and the operational condition of the system. The operational condition
can be one of the following three: Good, To fail and Repair. We need to distinguish
between the operational states that are followed by another operational state (Good)
and the operational states that are followed by a failure (To fail), because there is
no work loss at the departure from a Good state while there is some work loss at the
departure from a To fail state. The probability of moving to the Good and To fail
condition (i.e., p and q, respectively) are calculated based on the number of jobs in
the destination state. For 0 < n1 + n2 < NMAX & n1 < N1 & n2 < N2:

q = 1− p =
ωa + ωb(n1 + n2)

λ1 + λ2 +
φ1n1µ1

φ1n1 + φ2n2

+
φ2n2µ2

φ1n1 + φ2n2

+ ωa + ωb(n1 + n2)

,

for n1 = n2 = 0:

q = 1− p =
ωa

λ1 + λ2 + ωa

,

for n1 + n2 = NMAX or n1 < N1 & n2 < N2:

q = 1− p =
ωa + ωb(n1 + n2)

φ1n1µ1

φ1n1 + φ2n2

+
φ2n2µ2

φ1n1 + φ2n2

+ ωa + ωb(n1 + n2)

,

for n1 + n2 < NMAX and n1 = N1 & n2 < N2:

q = 1− p =
ωa + ωb(n1 + n2)

λ2 +
φ1n1µ1

φ1n1 + φ2n2

+
φ2n2µ2

φ1n1 + φ2n2

+ ωa + ωb(n1 + n2)

,

and for n1 + n2 < NMAX and n1 < N1 & n2 = N2:

q = 1− p =
ωa + ωb(n1 + n2)

λ1 +
φ1n1µ1

φ1n1 + φ2n2

+
φ2n2µ2

φ1n1 + φ2n2

+ ωa + ωb(n1 + n2)

.

The following set of system parameters were used for the numerical evaluation:

• state space: N1 = 3, N2 = 4, NMAX = 6;

• job arrival and computing requirement [1/hours]: λ1 = 0.4, λ2 = 0.4, µ1 =
2, µ2 = 1;

• resource sharing between class 1 and class 2 jobs: φ1 = 2/3, φ2 = 1/3;

• failure and repair parameters [1/hours]: ωa = 0.3, ωb = 0.03, β = 2;

• overhead parameter: ra = 0.98;

• work loss parameters: αa = 0.6, αb = 0.05.

77



The system performance was evaluated with two initial probability distributions
(Figure 7.1 and 7.2). In the first case the system starts from stationary state, and
in the second case the system starts from state (0, 0,Good) with probability 1. The
case when the system starts from state (0, 0,Good) was evaluated by the method
presented in Section 7.1 and the case of stationary background CTMC was evaluated
with both methods (Section 7.1 and 7.2). The accuracy of the prs reward analysis
method, which is applied in both cases, was 10−6. The numerical integration of
the first method was computed over 100 equidistant points. The numerical results
obtained for the stationary case were practically identical, hence there are only two
curves depicted in Figure 7.1 and 7.2.

Based on the stationary analysis of the prs Markov reward model with re-
duced reward rates, (A,Rα), (7.13); we have limt→∞ E(B(t))/t = 0.4718, and
limt→∞ V ar(B(t))/t = 0.0548. Each pair of mean and variance curves in Figure
7.1 and 7.2 tends to the respective limit. The mean curve associated with the sta-
tionary background process starts from the stationary accumulation rate of the prs
Markov reward model with original reward rates, (A,R), (7.13).

The detailed analysis of a slightly larger partial loss Markov reward model of
the same example with stationary initial distribution and with N1 = 10, N2 =
20, NMAX = ∞, λ1 = 0.5, λ2 = 0.5 results in the curves in Figure 7.3 and 7.4.
It can be seen that the transition from the initial to the final E(B(t))/t value takes
place between 0.1 and 10 hours, and the V ar(B(t))/t curve has a peak in this range.
That is the range where the effect of the reward loss at the first state transition turns
up. The peak of the V ar(B(t))/t curve is sharper for the small system.

0

0.2

0.4

0.6

0.8

0.01 0.1 1 10 100 1000
t

E(B(t))/t Stationary (0,0,Good)

Figure 7.1: Mean of computing system performance (57 state model)
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Figure 7.2: Variance of computing system performance (57 state model)
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Figure 7.3: Mean of computing system performance (1386 state model)
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Figure 7.4: Variance of computing system performance (1386 state model)
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Part II

State space techniques

80



Chapter 8

Introduction to state space
techniques

State based techniques are developed for extending the applicability of discrete state
Markovian methods. For a long period of time the only computable stochastic
processes were Markov processes. This fact quite often influenced the system mod-
eling efforts. The random event time of real systems were assumed to be expo-
nentially distributed to obtain a computable stochastic model. A large variety of
model description languages and associated analysis tools were developed to assist
this “Markovian” modeling and associated analysis effort. Typical examples are gen-
eralized stochastic Perti nets [1], stochastic activity network [74], queueing network
based descriptions [6, 73], reliability block diagram [73], fault tree [73], task graph
[73], stochastic process algebra [41], etc.

The need to extend the applicability of Markovian methods for more complex
systems is also old. At the beginning simple structures of, so called, exponential
phases were used to represent distributions with low (“series” sequence of identical
exponential phases) or high coefficient of variation (“parallel” exponential phases),
e.g., in [47], but the lack of effective numerical techniques for the analysis of Markov
chains with regular structure prevented the wide use of this approach. In the 70’s,
this approach was commonly considered to be useless in practice [47].

With this respect the development of matrix geometric methods resulted in a
major break through [65]. These methods provide simple numerical procedures for
the analysis of infinite or very large finite Markov chains with regular block struc-
ture, such as the quasi-birth-death, the M/G/1 type and the G/M/1 type structure.
Basically matrix geometric methods make possible the analyzes of queueing sys-
tems with “Markovian” input and/or service process. The availability of matrix
geometric methods speed up the research for approximate “Markovian” description
of non-Markovian stochastic systems. The common root of all Markovian modeling
approach is to create a Markov chain over a possible artificial and expanded state
space whose state represents all relevant information about the future evolution of the
process. This Markov chain is often referred to as background process or modulating
process.

Two main Markovian approximation problems were studied intensively: Markov-
ian approximation of non-negative distributions and Markovian approximation of
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point processes. The class of distributions created by Markovian models is referred
to as phase type distributions, and the most flexible class of point processes created
by Markovian models is referred to batch Markovian arrival process (BMAP).

Due to the fact that the performance models of real systems (like computer
systems, and call level behaviour of communication systems) were almost always
continuous time models, continuous time Markovian models were applied in practice
till the 90’s. The introduction of fix size packet or cell based communication systems
(like ATM) arose the need for discrete time Markovian models.

The need for discrete time Markovian models also arose in other research fields.
Continuous time phase type distributions and associated state space expansion tech-
niques were used for approximate analysis of non-Markovian systems since a long
time. The applicability of continuous time phase type (CPH) distributions is limited
when stochastic timing with very low coefficient of variation or deterministic timing
has to be captured, because the coefficient of variation of the CPH class is lower
bounded. The fact that the deterministic distribution is a member of the class of
discrete time phase type (DPH) distributions suggested that discrete time Markovian
approximation might be more adequate in some of these cases. The next sections
present important contributions along this research line.

It was known that the coefficient of variation of a DPH distribution can be as
low as 0, but the dependence of the minimal coefficient of variation on the other
parameters of the DPH distribution, which characterize the practical applicability
of these distributions, was not studied before. The lower bound of the coefficient of
variation of DPH distributions is provided in the next section and the consequences
of this lower bound on the applicability of approximate discrete time Markovian
model for the analysis of continuous time non-Markovian processes is presented in
Section 10. The constraints of the PH structure of order 2 on the higher moments is
studied in Section 11

Finally, Section 12 presents a Markovian solution to overcome a very old lim-
itation of queueing network models. Queueing network models gain popularity in
performance analysis of real computer and communication systems due to the effec-
tive exact and approximate analysis techniques (based on product form assumption)
available for the evaluation of these models. In traditional queueing network mod-
els the inter-node traffic is described with a single traffic intensity parameter (which
might be state dependent). This poor traffic description does not allow to capture any
detailed inter-node traffic parameter, e.g., the correlation structure of the inter-node
traffic, which can be a source of significant error. The use of Markovian inter-node
traffic description allows to capture more complex traffic parameters as well. Staring
from this main idea the proposed solution combines a wide range of Markovian meth-
ods to build a complex analyzes approach out of pieces like phase type fitting, ma-
trix geometric approach, MAP based traffic description and MAP/PH/1(/K) queue
analysis.
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Chapter 9

The minimal coefficient of
variation of discrete phase type
distributions

Discrete Phase Type (DPH) distributions have been known since 1975 [64], but
they have received less attention than Continuous Phase Type (CPH) distributions
because continuous time models were more popular in stochastic modeling. Recent
attention toward discrete time stochastic models initiated new research on DPH
distributions. This chapter provides the lower bound of the coefficient of variation of
discrete phase type distributions that is a discrete time counterpart of the essential
result by Aldous and Shepp [3].

9.1 Model description and notations

Let X = {Xk, k = 0, 1, . . .} be a time-homogeneous discrete-time Markov chain
(DTMC) over Ω = {0, 1, . . . , N}, with N transients states, {1, . . . , N}, and an ab-
sorbing one, 0. The state transition probability matrix of X is Π = {πij}. The
unconditional and the conditional time to absorption is denoted as

τ = min{k : Xk = 0}
and

τi = min{k : Xk = 0 | X0 = i}.
Let µ = E[τ ] and G(i) = E[τi]. Without loss of generality we assume that (the states
are numbered such that)

0 = G(0) < 1 ≤ G(1) ≤ G(2) ≤ . . . ≤ G(N). (9.1)

G(i) satisfies

G(i) = 1 +
∑
j∈Ω

πijG(j) . (9.2)

The initial distribution of X is given by p = {pi} where pi = Pr(X0 = i). τ is a
DPH distribution of order N with mean

µ =
∑
i∈Ω

piG(i). (9.3)
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Further more, bxc and 〈x〉 denote the integer and fraction part of x, respectively,
i.e., x = bxc+ 〈x〉, such that bxc is an integer and 0 ≤ 〈x〉 < 1.

9.2 Problem formulation

A significant difference between the minimal coefficient of variation of the DPH and
the CPH class can be observed in the following example.

The simplest DPH distribution, the DPH of order 1, i.e., the geometric distribution
with pmf Pr(τ = k) = (1− π10)

k−1π10 has the following properties:

µ = G(1) = E[τ1] = 1/π10,

and
cv2(τ1) = 1− π10 = 1− 1/G(1) = 1− 1/µ.

That is, in contrast with the CPH class, the minimal coefficient of variation of
DPH distributions is a function of its mean. Hence in the DPH case the following
constrained minimizations have to be solved:

min
p,Π

{cv2(τ) | E[τ ]} and min
Π
{cv2(τi) | E[τi]}

where τ , τi (i ∈ Ω) and Π are related through (9.2) and (9.3). Note also that the
states are numbered according to (9.1) which plays an important role in the initial
state dependent cases.

9.3 The minimal coefficient of variation of DPH

distributions

Theorem 9.1. The squared coefficient of variation of τ , cv2(τ), satisfies the inequal-
ity:

cv2(τ) ≥





〈µ〉(1− 〈µ〉)
µ2

if µ < N ,

1

N
− 1

µ
if µ ≥ N .

(9.4)

• a DPH distribution which satisfies the equality if µ ≤ N is the following:
the nonzero initial probabilities are pN−bµc = 〈µ〉, pN−bµc+1 = 1 − 〈µ〉 and the
transition probabilities are Pr(X1 = i− 1|X0 = i) = 1,∀i ∈ Ω (Fig. 9.1),

• the only DPH distribution which satisfies the equality if µ > N is the following:
the nonzero initial probability is pN = 1 and the transition probabilities are
Pr(X1 = i− 1|X0 = i) = N/µ, Pr(X1 = i|X0 = i) = 1−N/µ, ∀i ∈ Ω (discrete
Erlang(N) distribution) (Fig. 9.2).

84



1 1

0

1

0〈µ〉

1

1−〈µ〉

1

Figure 9.1: A DPH structure with minimal coefficient of variation, when µ ≤ N .
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Figure 9.2: The only DPH structure with minimal coefficient of variation, when
µ > N .

To prove the theorem we need the following lemmas.

Lemma 9.2. The minimal coefficient of variation of τi does not increase when n
extra states, i∗1, i

∗
2, . . . , i

∗
n, with arbitrary mean time to absorption, G(i∗1), . . . , G(i∗n) ≥

1, is added to the DPH structure.

Proof of Lemma 9.2:
We prove the lemma by providing a DPH structure of N + n phases that has the

same coefficient of variation as the minimal coefficient of variation of τi without the
extra states (Figure 9.3):

• the state transition probabilities between the original states are the same as in
the DPH that provides the minimal coefficient of variation of τi without the
extra states

• from each extra state the non-zero transition probabilities are πi∗j ,0 = 1/G(i∗j)
and πi∗j ,i∗j = 1− 1/G(i∗j)

Lemma 9.3. The minimal squared coefficient of variation of τi is as follows:

cv2(τi) ≥





〈G(i)〉(1− 〈G(i)〉)
G2(i)

if G(i) < i ,

1

i
− 1

G(i)
if G(i) ≥ i .

(9.5)

Note that Lemma 9.3 is valid for all i ∈ Ω where the states are numbered accord-
ing to (9.1).

Proof of Lemma 9.3:
The proof of Lemma 9.3 is composed by giving two lower bounds on the vari-

ance. According to our interpretation the first one is closely related to the degree
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structure with minimal cv

structure with minimal cv

for τi

for τi

1/G(i∗1) 1/G(i∗2)

1− 1/G(i∗2)
1− 1/G(i∗1)

Figure 9.3: Adding extra states to the minimal structure

of the considered DPH distribution while the second one is related to the structural
properties of the DPH class. We refer to the bounds based on this classification. (A
short explanation of these properties is provided after the proof.) The lower bound
of Lemma 9.3, Eq. (9.5), is obtained as the larger of the two bounds.

Bound of variance related to the degree of DPH distributions
A lower bound of the variance of the DPH distributions can be obtained by

applying the elegant martingale approach proposed by Aldous and Shepp [3]. The
discrete time stochastic process Y = {Yk, k = 0, 1, . . .} is defined as

Yk = G(Xk) + min(k, τi)−G(X0) (9.6)

assuming X0 = i.
Y is a martingale since,

• if k ≥ τi then Yk+1 = Yk = τi −G(i) is constant; and

• if k < τi then

E[(Yk+1|Xk)] = E[(G(Xk+1)|Xk)] + min(k + 1, τi)−G(i) =

∑
j∈Ω

πXk,jG(j) + min(k + 1, τi)−G(i) =

G(Xk)− 1 + (k + 1)−G(i) = G(Xk) + k −G(i) ,

where (9.2) has been applied in the second line.
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By the definition of Y , since G(Xτi
) = 0, we have

Yτi
= τi −G(i) (9.7)

and
E

[
Y 2

τi

]
= var(τi) . (9.8)

For k ≤ τi, using martingale properties, we have:

Y 2
k =

k∑
i=1

(Y 2
i − Y 2

i−1) =
k∑

i=1

(Yi − Yi−1)
2 =

k∑
i=1

(G(Xi)−G(Xi−1) + 1)2 =

k∑
i=1

(G(Xi)−G(Xi−1))
2 + 2

k∑
i=1

(G(Xi)−G(Xi−1)) + k

We define Sk =
k∑

s=1

(G(Xs)−G(Xs−1))
2, which gives

Y 2
k = Sk + 2(G(Xk)−G(i)) + k .

Note that G(Xs)−G(Xs−1) takes non-zero values only at state transitions.
For k = τi

Y 2
τi

= Sτi
+ 2(G(Xτi

)−G(i)) + τi = Sτi
− 2G(i) + τi ,

and

Sτi
=

∑

s:Xs 6=Xs−1

(G(Xs)−G(Xs−1))
2 ≥

i∑
j=1

(G(j)−G(j − 1))2

≥ 1

i

(
i∑

j=1

G(j)−G(j − 1)

)2

=
1

i
G2(i) .

The first inequality says that the sequential path (i, i − 1, . . . , 1, 0) results in the
minimal squared differences and the second is Schwarz’s inequality. Hence,

E
[
Y 2

τi

]
= var(τi) = E[Sτi

]− 2G(i) + E[τi] = E[Sτi
]−G(i) ≥ 1

i
G2(i)−G(i) , (9.9)

results in a lower bound on the variance, that is:

cv2(τi) ≥ 1

i
− 1

G(i)
. (9.10)

Bound of variance provided by the structure of DPH distributions
An other lower bound on the variance of τi is obtained below by considering the

structural properties of the DPH class and Lemma 9.2.
To simplify the notation we define

D(i) = E[Sτi
] = E

[
τi∑

s=1

(G(Xs)−G(Xs−1))
2

]
.
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From Eq. (9.9) it follows that var(τi) = D(i)−G(i), (which implies, D(i) ≥ G(i),∀i ∈
Ω). D(i) satisfies

D(i) =
∑
j∈Ω

πij

[
D(j) + (G(i)−G(j))2

]
. (9.11)

where
∑
j∈Ω

πij(G(i)−G(j))2 ≥
(∑

j∈Ω

πij(G(i)−G(j))

)2

=

(
G(i)−

∑
j∈Ω

πijG(j)

)2

= 1 .

(9.12)

Eq. (9.12) comes from Jensen’s inequality and from (9.2). The equality

∑
j∈Ω

πij(G(i)−G(j))2 = 1

holds when ∃j∗ such that G(j∗) = G(i)−1 and πij∗ = 1; i.e., equality can be attained
only for G(i) ≥ 2.

From (9.2) and (9.11) we have

var(τi) = D(i)−G(i)

=
∑
j∈Ω

πij(G(i)−G(j))2 − 1 +
∑
j∈Ω

πij(D(j)−G(j))

≥
∑
j∈Ω

πij(G(i)−G(j))2 − 1 =
∑
j∈Ω

πijG(j)2 − (G(i)− 1)2

≥
∑
j∈Ω

πijG(j)− (G(i)− 1)2 = (G(i)− 1)− (G(i)− 1)2 ,

(9.13)

since G(j)2 ≥ G(j); ∀j ∈ Ω. For 1 ≤ G(i) < 2 (i.e., G(i) − 1 = 〈G(i)〉) Eq. (9.13)
means that

D(i)−G(i) ≥ 〈G(i)〉 − 〈G(i)〉2 . (9.14)

To show that (9.14) holds also for those states whose mean time to absorption is
greater than 2 (G(i) > 2) we assume that there exists state i such that n ≤ G(i) <
n + 1 and D(i) − G(i) < 〈G(i)〉 − 〈G(i)〉2. Knowing that state insertions do not
increase the minimal variance of τi according to Lemma 9.2 we insert new states
i∗1, i

∗
2, . . . , i

∗
n−1 to the Markov chain in the following way:

πi,i∗1 = 1, πi∗j ,i∗j+1
= 1, j = 1, 2, . . . , n− 2 ,

and the outgoing transition probabilities from i∗n−1 can be anything that fit with Eq.
(9.2) (for the expanded Markov chain). Note that we maintain the numbering of
the original states in the expanded Markov chain. This insertion of states results
that G(i∗j) = G(i) − j (i.e., 〈G(i)〉 = 〈G(i∗j)〉) and D(i∗j) = D(i) − j for ∀j ∈
{1, 2, . . . , n− 1}, and hence

D(i∗n−1)−G(i∗n−1) < 〈G(i)〉 − 〈G(i)〉2 . (9.15)
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Eq. (9.15) is in conflict with Eq. (9.14) since 1 ≤ G(i∗n−1) < 2, which means that
for any i

var(τi) = D(i)−G(i) ≥ 〈G(i)〉 − 〈G(i)〉2
and

cv2(τi) ≥ 〈G(i)〉 (1− 〈G(i)〉)
G2(i)

. (9.16)

The two DPH distributions below exhibit the lower bound provided by the DPH
structure, and the first one demonstrates the structure of the state insertion described
in the proof above.

0

1

1

1 11

0

1−R(G(i))

0

R(G(i))

1 1

0

1

1

1

00

1−R(G(i))
R(G(i))

Comparing the bounds in (9.10) and (9.16) it can be seen that (9.10) is mean-
ingless (i.e., negative) when G(i) < i and the structural bound (9.16) dominates. In
contrast, for G(i) > i the structural bound is less and (9.10) dominates. For G(i) = i
both bounds equal to 0. 2

Lemma 9.3 has the following consequences:

• The minimal coefficient of variation of τi is obtained by a DPH with only
downward transitions, i.e., πij > 0, iff i ≥ j. Hence the minimal DPH is
acyclic.

• As a result of the previous point the minimal coefficient of variation of τi

is independent of n (the degree of τ), and it is equivalent with the minimal
coefficient of variation that can be obtained by i phases. Hence (9.10) provides
a relation of the degree (i), the mean (G(i)) and the minimal coefficient of
variation of τi.

• The lower bound in (9.16) is independent of the degree of τi (which is i). This
bound comes from the structural properties of the DPH distributions.

Proof of Theorem 9.1:
On the one hand, from Lemma 9.3, we have

cv2(τ) =

∑
i∈Ω

pi

(
cv2(τi) ·G2(i) + G2(i)

)
− µ2

µ2
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≥

∑
i∈Ω

pi

(
G2(i)

i
−G(i) + G2(i)

)
− µ2

µ2

where the inequality comes from (9.10). We further have:

cv2(τ) ≥

∑
i∈Ω

pi

((
1

i
+ 1

)
G2(i)−G(i)

)
− µ2

µ2

≥

∑
i∈Ω

(
1

N
+ 1

)
piG

2(i)−
∑
i∈Ω

piG(i)− µ2

µ2

≥

(
1

N
+ 1

)
µ2 − µ− µ2

µ2
=

1

N
− 1

µ

(9.17)

where
∑
i∈Ω

piG
2(i) ≥ µ2 by Jensen’s inequality.

On the other hand, using (9.16), we have

cv2(τ) =

∑
i∈Ω

pi

(
cv2(τi) ·G2(i) + G2(i)

)
− µ2

µ2

≥

∑
i∈Ω

pi

(
〈G(i)〉 (1− 〈G(i)〉) + G2(i)

)
− µ2

µ2

Considering the sum in the numerator

∑
i∈Ω

pi

(
〈G(i)〉

(
1− 〈G(i)〉

)
+ G2(i)

)
=

∑
i∈Ω

pi

((
1− 〈G(i)〉

)
bG(i)c2 + 〈G(i)〉

(
bG(i)c+ 1

)2
)

=

∑
i∈Ω

(
pi

(
1− 〈G(i)〉

)
bG(i)c2 + pi〈G(i)〉

(
bG(i)c+ 1

)2
)

The last expression is the second moment of a random variable with mean µ and
support on IN. Among the random variables with mean µ and support on IN the
one with the minimal second moment is X̄, defined as Pr(X̄ = bµc) = 1 − 〈µ〉 and
Pr(X̄ = bµc + 1) = 〈µ〉 (i.e., the probability is concentrated around µ as much as
possible), which means that:
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∑
i∈Ω

pi

(
1− 〈G(i)〉

)
bG(i)c2 + pi〈G(i)〉

(
bG(i)c+ 1

)2

≥ (1− 〈µ〉) bµc2 + 〈µ〉 (bµc+ 1)2 = µ2 + 〈µ〉(1− 〈µ〉)

from which

cv2(τ) ≥ 〈µ〉(1− 〈µ〉)
µ2

Since
〈µ〉(1− 〈µ〉)

µ2
is greater than

1

N
− 1

µ
when N is greater than µ and

〈µ〉(1− 〈µ〉)
µ2

is less than
1

N
− 1

µ
when N is less than µ, the theorem is given. 2
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Chapter 10

The Scale Factor: A New Degree
of Freedom in Phase Type
Approximation

A unified approach of discrete and continuous phase type approximation is presented
in this chapter, in which the discrete and the continuous phase type models form
a common model set. The models of this common set are assigned with a non-
negative real parameter, the scale factor. The case when the scale factor is strictly
positive results in discrete phase type distributions and the scale factor represents
the time elapsed in one step. If the scale factor is 0, the resulting class is the class
of continuous phase type distributions. Applying this unified view, it is shown that
there is no qualitative difference between the discrete and the continuous phase type
models and one can look for the best phase type approximation of a stochastic model
by optimizing the scale factor.

The definition of discrete and continuous phase type distributions implies that
DPH distributions have support on the set of the natural numbers while CPH distrib-
utions have support on the set of positive real numbers which is commonly associated
with the positive half of the continuous time axis. When DPH distributions are used
to model timed activities, the set of the natural numbers must be related to a time
measure. Hence, a new parameter need to be introduced that represents the time
span associated to each step. This new parameter is the scale factor of the DPH
distribution, and can be viewed as a new degree of freedom, since its choice largely
impacts the shape and properties of a DPH distribution over the continuous time
axes. When DPH distributions are used to approximate a given continuous distrib-
ution, the scale factor affects the goodness of the fit.

10.1 Definition and Notation

A DPH distribution [64, 65] is the distribution of the time to absorption in a DTMC
with n transient states, and one absorbing state numbered (n + 1). The one-step
transition probability matrix of the corresponding DTMC can be partitioned as:
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B̂ =

[
B b
0 1

]
(10.1)

where B = [bij] is the (n × n) matrix collecting the transition probabilities among
the transient states, b = [bi,n+1]

T is the column vector of length n grouping the
probabilities from any state to the absorbing one, and 0 = [0] is the zero vector. The
initial probability vector α̂ = [α, αn+1] is of length (n+1), with

∑n
j=1 αj = 1−αn+1.

Here, we consider only the class of DPH distributions for which αn+1 = 0, but the
extension to the case when αn+1 > 0 is straightforward. The tuple (α, B) is called
the representation of the DPH distribution, and n the order.

Similarly, a CPH distribution [65] is the distribution of the time to absorption in
a CTMC with n transient states, and one absorbing state numbered (n + 1). The

infinitesimal generator Â of the CTMC can be partitioned in the following way:

Â =

[
A a
0 1

]
(10.2)

where, A is a (n × n) matrix that describes the transient behavior of the CTMC
and a is the column vector grouping the transition rates to the absorbing state. Let
α̂ = [ α, αn+1 ] be the (n+1) initial probability (row) vector with

∑n
i=1 αi = 1−αn+1.

The tuple (α, A) is called the representation of the CPH distribution, and n the
order.

It has been shown in [10] for the discrete case and in [25] for the continuous
case that the representations in (10.1) and (10.2), because of their too many free
parameters, do not provide a convenient form for running a fitting algorithm. Instead,
resorting to acyclic phase type distributions, the number of free parameters is reduced
significantly since both in the discrete and the continuous case a canonical form can
be used. The canonical form and its constraints for the discrete case [10] is depicted
in Figure 10.1. Figure 10.2 gives the canonical form and associated constraints for
the continuous case. In both cases the canonical form corresponds to a mixture of
hypo-exponential distributions.

A fitting algorithm that provides acyclic CPH, acyclic DPH distributions has
been provided in [8] and [10], respectively. Experiments suggests (an exhaustive
comparison of fitting algorithms can be found in [53]) that, from the point of view of
applications, the acyclic phase type class is as flexible as the whole phase type class.
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Figure 10.1: Canonical representation of acyclic DPH distributions and its con-
straints

93



�� ��

����

�	


�

�

���
�����
����������

����� �

Figure 10.2: Canonical representation of acyclic CPH distributions and its con-
straints

10.2 Comparing properties of CPH and DPH dis-

tributions

CTMCs are defined as a function of a continuous variable, t, which is assumed to be
the time in most cases. DTMCs are defined over the set of the natural numbers. In
order to relate the number of jumps in a DTMC with a time measure, a time span
must be assigned to each step. Let δ be (in some arbitrary units) the scale factor,
i.e., the time span assigned to each step. The value of δ establishes an equivalence
between the sentence ”probability at the k-th step” and ”probability at time k δ”,
and hence, defines the time scale on which the properties of the DTMC are measured.
The consideration of the scale factor δ introduces a new parameter, and consequently
a new degree of freedom, in the DPH class with respect to the CPH class. In the
following, we discuss how this new degree of freedom impacts the properties of the
DPH class and how it can be exploited in practice.

Let u be an ”unscaled” DPH distributed random variable (r.v.) of order n with
representation (α, B), defined over the set of the non-negative natural numbers. Let
us consider a scale factor δ; the scaled r.v. τ = δ u is defined over the discrete set
of time points (0, 1 δ, 2 δ, 3 δ, . . . , k δ, . . .), being k a non-negative natural number.
For the unscaled and the scaled DPH r.v. the following equations hold.

Fu(k) = Pr{u ≤ k} = 1−αBk e
Fτ (δk) = Pr{τ ≤ δk} = 1−αBk e

mi
u = E(ui)

mi
τ = E(τ i) = δi E(ui) i ≥ 1,

(10.3)

where e is the column vector of ones, and E(ui) is the i-th moment calculated from
the factorial moments of u: E(u(u − 1) . . . (u − i + 1)) = i! α(I −B)−iBi−1e. It is
evident from (10.3) that the mean mτ of the scaled r.v. τ is δ times the mean mu

of the unscaled r.v. u. While mu is an invariant of the representation (α, B), δ is
a free parameter; adjusting δ, the scaled r.v. can assume any mean value mτ ≥ 0.
On the other hand, one can easily infer from (10.3) that the coefficients of variation
of τ and u are equal. A consequence of the above properties is that one can easily
provide a scaled DPH of order ≥ 2 with arbitrary mean and arbitrary coefficient of
variation with an appropriate scale factor. Or more formally: the unscaled DPH r.v.
u of any order n > 1 can exhibit a coefficient of variation between 0 ≤ cv2

u ≤ ∞. For
n = 1 the coefficient of variation ranges between 0 ≤ cv2

u ≤ 1.
As mentioned earlier, an important property of the DPH class with respect to
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the CPH class is the possibility of exactly representing a deterministic delay. A
deterministic distribution with value a can be realized by means of a scaled DPH
distribution with n phases with scale factor δ if n = a/δ is integer. In this case, the
structure of the DPH distribution is such that phase i is connected with probability
1 only to phase i + 1 (i = 1, . . . , n), and with an initial probability concentrated in
state 1. If n = a/δ is not integer for the given δ, the deterministic behavior can only
be approximated.

10.2.1 First order discrete approximation of CTMCs

Given a CTMC with infinitesimal generator Ã, the transition probability matrix
over an interval of length δ can be written as:

e
fAδ =

∞∑
i=0

(Ãδ)i/i! = I + Ãδ + σ(δ),

hence the first order approximation of e
fAδ is matrix Π(δ) = I+Ãδ. Π(δ) is a proper

stochastic matrix if δ < 1/q, where q = maxi,j |Ãij|. Π(δ) is the exact transition
probability matrix of the CTMC assumed that at most one transition occurs in the
interval of length δ.

We can approximate the behavior of the CTMC at time (0, δ, 2δ, 3δ, . . . , kδ, . . .)
using the DTMC with transition probability matrix Π(δ). The approximate transi-
tion probability matrix at time t = kδ is:

Π(δ)k = (I + Ãδ)
t
δ

The following theorem proves the property that the above first order approxima-
tion becomes exact as δ → 0.

Theorem 10.1. As the length of the interval of the first order approximation, δ,
tends to 0, such that t = kδ the approximate transition probability matrix tends to
the exact one.

Proof. The scalar version of the applied limiting behavior is well-known in the fol-
lowing form limx→0(1 + ax)

1
x = ea. Since matrices I and Ã commute we can obtain

the matrix version of the same expression as follows

lim
δ→0

(I + Ãδ)
t
δ = lim

k→∞
Π(t/k)k = lim

k→∞

(
I +

Ãt

k

)k

=

lim
k→∞

k∑
j=0

(
k
j

) (
Ãt

k

)j

== lim
k→∞

k∑
j=0

(Ãt)j

j!

k!

kj (k − j)!
=

∞∑
j=0

(Ãt)j

j!
= e

fAt.

An obvious consequence of Theorem 10.1 for PH distributions is given in the
following corollary.

Corollary 10.2. Given a scaled DPH distribution of order n, representation
(α, I + Aδ) and scale factor δ, the limiting behavior as δ → 0 is the CPH dis-
tribution of order n with representation (α, A).
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10.2.2 The minimum coefficient of variation

It is known that one of the main limitation in approximating a given distribution by
a PH one is the attainable minimal coefficient of variation, cv2

min. In order to discuss
this point, we recall the theorems that state the cv2

min for the class of CPH and DPH
distributions.

Theorem 10.3. (Aldous and Shepp [3]) The cv2
min of a CPH distributed r.v. of

order n is cv2
min = 1/n and is attained by the Erlang(n) distribution independent of

its mean mc or of its parameter λ = n/mc.

The corresponding theorem for the unscaled DPH class has been proved in the
previous chapter. The next section restate that theorem for scaled PDH distributions.

10.2.3 The minimum coefficient of variation of scaled DPH
distributions

Theorem 10.4. The cv2
min of a scaled DPH r.v. of order n with scale factor δ and

mean mτ = δ mu is:

〈
mτ

δ

〉 (
1− 〈

mτ

δ

〉)
(

mτ

δ

)2 if mτ ≤ n δ ,

1

n
− δ

mτ

if mτ > n δ ,

(10.4)

The scaled DPH r.v. which exhibits the cv2
min has the same structure of Figures (9.1)

and (9.2), as in the unscaled case (see Theorem 9.1).

Corollary 10.5. For finite mean mτ , cv2
min → 1/n as δ → 0.

Proof. As δ → 0 the second part of (10.4) (mτ > n δ) becomes effective and 1/n −
δ/mτ → 1/n as δ → 0.

Corollary 10.5 proves that the cv2
min of the DPH class converges to the cv2

min

of the CPH class of the same order as δ ← 0. The following corollary presents a
much stronger convergence result for the case of approximating distributions with
low coefficient of variation. It is about the convergence in distribution.

Corollary 10.6. The best fitting scaled DPH approximation of distributions with
low coefficient of variation converges, in distribution, to the best fitting CPH ap-
proximation of the same distribution as δ tends to 0, where the best fitting PH
approximation is defined as the one which exhibits the same mean and provides the
closest approximation for the 2nd moment.

Proof. Both the CPH and the DPH classes have limits in approximating distributions
with low coefficient of variation. The best approximation of a distribution with
coefficient of variation less than these limits is the Erlang(n) distribution in both the
discrete and the continuous case (Theorem 10.3 and 9.1).
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The representation (α, A) of the continuous Erlang(n) with mean mτ and the
representation (α, B) of the discrete Erlang(n) with mean mτ , scale factor δ are:

α = {1, 0, . . . , 0}, A =

− n
mτ

n
mτ

0 . . . 0

0 − n
mτ

n
mτ

. . .
. . .

0 . . . − n
mτ

α = {1, 0, . . . , 0}, B =

1−nδ
mτ

nδ
mτ

0 . . . 0

0 1−nδ
mτ

nδ
mτ

. . .
. . .

0 . . . 1−nδ
mτ

Note that B = I −Aδ and Corollary 10.6 follows from Corollary 10.2.

In this particular case, when the structure of the best fitting scaled DPH and CPH
distributions are known, we can show that the distribution of the best fitting scaled
DPH distribution converges to the distribution of the best fitting CPH distribution
when δ → 0. Unfortunately, the same convergence property cannot be proved in
general, since the structural properties of the best fitting PH distributions are not
known and they depend on the chosen (arbitrary) optimization criterion. Instead, in
Section 10.3 we provide an extensive experimental study on the behavior of the best
fitting scaled DPH and CPH distributions as a function of the scale factor δ .

10.2.4 DPH distributions with finite support

Another peculiar characteristic of the DPH class is to contain distributions with finite
support. A DPH distribution has finite support if its structure does not contain cycles
and self-loops (any cycle or self loop implies an infinite support).

Let [a, b] be the finite support of a given distribution, with a, b ≥ 0 and a ≤ b
(when a = b the finite support distribution reduces to a deterministic distribution
with mass 1 at a = b). If a/δ and b/δ are both integers, it is possible to construct
a scaled DPH of order b/δ for which the probability mass function has non-zero
elements only for the values a, a+δ, a+2δ, ..., b. As an example, the discrete uniform
distribution between a = 2 and b = 6 is reported in Figure 10.3, for scale factor
δ = 1.
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Figure 10.3: DPH representation of the discrete uniform distribution [a = 2, b = 6]

10.3 The optimal δ in PH fitting

The scale factor δ provides a new degree of freedom in fitting, and, furthermore, since
the limit of a DPH distribution for δ → 0 is a CPH distribution, the optimization of

97



the scale factor in a fitting problem provides a quantitative way to decide whether a
continuous or a discrete approximation performs better in the given problem. Hence,
assuming δ as a decision variable, we can consider the CPH and the DPH class as
a unique model set in which the choice among DPH or CPH classes is given by the
optimal value of δ.

Let X be the continuous r.v. to be fit by a PH distribution, and let FX(x) be its
cdf, E(X i) the i-th moment and cv2(X) the squared coefficient of variation. In order
to define a fitting procedure, a distance measure between X and the approximating
PH distribution needs to be defined. Then, the fitting algorithm provides the PH
distribution which minimizes the chosen distance measure. In order to compare,
in a unified framework, the goodness of the approximation reached by CPH and
DPH distributions, we need to chose a distance measure that is meaningful and
applicable both in the continuous as well as in the discrete setting. The selected
distance measure is the squared area difference between the original cdf F (·) and the
approximating cdf F̂ (·):

D =

∫

x

(F (x)− F̂ (x))2dx (10.5)

The distance measure D is easily applicable for any combination of discrete and
continuous distributions. All the numerical experiments reported in the sequel are
based on the minimization of the area difference given in (10.5).

10.3.1 Fitting distributions with low cv2

The following considerations provide practical upper and lower bounds to guide in
the choice of a suitable scale factor δ, and are mainly based on the dependence of
the minimal coefficient of variation of a scaled DPH distribution on the order n and
on the mean mτ .

Since we only consider DPH distributions with no mass at zero, the mean of
any unscaled DPH distribution is greater than 1. This means that δ should be less
than E(X). However, a more convenient upper bound that exploits the flexibility
associated with the n phases, is given by:

δ ≤ E(X)

n− 1
. (10.6)

If the squared coefficient of variation of the distribution to be approximated is less
than 1/n, δ should satisfy the following relation (see Theorem 10.4):

δ >

(
1

n
− cv2(X)

)
E(X) (10.7)

Let X be a Lognormal r.v. with parameters (1, 0.2), whose mean is E(X) = 1 and
cv2(X) = 0.0408 (this distribution is the distribution L3 taken from the benchmark
examined in [14, 10], hence we refer to it as L3). Table 10.1 reports the lower and
upper bounds of δ, with n = 2, 4, 8, 12, computed from (10.7) and (10.6).

The cdf and pdf of the approximating CPH and DPH distributions of order
n = 10, with different scale factors δ, are presented in Figure 10.4 and 10.5. When
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considering the approximate DPH distribution, the f(x) values are calculated at the
discrete points (δ, 2δ, 3δ, . . . , kδ, . . .) to which the following mass is assigned:

f(kδ) = 1/δ(F (kδ)− F ((k − 1)δ)) (10.8)

For the ease of visual interpretation the points are connected with a line.
When δ is less than its lower bound the required cv2 cannot be attained; when

δ becomes too large the wide separation of the discrete steps increases the approx-
imation error; when δ is in the proper range (e.g. n = 10; δ = 0.06) a reasonably
good fit is achieved. This example also suggests that an optimal value of δ exists
that minimizes the chosen distance measure D in (10.5).

In order to display the goodness of fit for the L3 distribution, Figure 10.6 shows
the distance measure D as a function of δ for various values of the order n. A min-
imum value of δ is attained in the range where the parameters fit the bounds of
Table 10.1. Notice also that, as δ increases, the advantage of having more phases
disappears, according to Theorem 10.4. The circles in the left part of Figure 10.6
(as well as in all the successive figures) indicate the corresponding distance measure
D obtained from CPH fitting. The figure (and the subsequent ones as well) sug-
gests that the distance measure obtained from DPH fitting converges to the distance
measure obtained by the CPH approximation as δ tends to 0.

n lower bound of δ upper bound of δ
equation (10.7) equation (10.6)

4 0.2092 0.333
8 0.0842 0.1428
12 0.0425 0.0909
16 0.0217 0.0666

Table 10.1: Upper and lower bound of δ for fitting distribution L3

10.3.2 Fitting distributions with high cv2

We have seen in the previous subsections that it is beneficial to approximate distri-
butions with a low coefficient of variation by means of a DPH distributions. In this
subsection, we investigate the optimal value of δ when fitting distributions with a
high coefficient of variation.

Let X be a Lognormal r.v. with parameters (1, 1.8) (this is the distribution L1
taken from the benchmark in [14, 10]). For X we have E(X) = 1 and cv2(X) =
24.534. Figure 10.7 shows the measure of the goodness of fit as a function of δ for
various orders n (the cases when the number of phases are greater than 2 result in
practically the same goodness of fit). The distance measures D decreases as δ → 0
indicating that the optimal fitting is achieved by applying CPH distribution. This
example suggests that, for smooth distributions with infinite support and cv2(X) >
1/n, the optimal value of δ tends to 0, implying that the best fit is obtained by a CPH.
However, this conclusion might not be true for distributions with finite support, as
it is explored in the next subsection.
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Figure 10.4: Approximating the L3 distribution with 10-phase PH approximations
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10.3.3 Fitting distributions with finite support

In this case, two features must be considered, namely the cv2 and the maximum value
of the finite support. It should be stressed that the chosen distance measure D in
(10.5) can be considered as not completely appropriate in the case of finite support,
since it does not force the approximating PH to have its mass confined in the finite
support and 0 outside.

Let X be a uniform r.v. over the interval [1, 2], with E(X) = 1.5 and cv2(X) =
0.0370 (this is the distribution U2 taken from the benchmark in [14, 10]). Figure 10.8
shows the distance measure as a function of δ for various orders n. It is evident that,
for each n, a minimal value of δ is obtained, that provides the best approximation
according to the chosen distance measure.

As a second example, let X be a uniform r.v. over the interval [0, 1], with E(X) =
0.5 and cv2(X) = 0.333 (this is the distribution U1 taken from the benchmark in
[14, 10]). Figure 10.9 shows the distance measure as a function of δ for various orders
n. Since, in this example cv2(X) = 0.333, an order n = 3 is large enough for a CPH
to attain the coefficient of variation of the distribution. Nevertheless, the optimal δ
in Figure (10.9), which minimizes the distance measure D for high order PH (n > 2),
ranges between δ = 0.02 and δ = 0.05, thus leading to the conclusion that a DPH
provides a better fit. This example evidences that the coefficient of variation is not
the only factor which influences the optimal δ value. The shape of the distribution
plays an essential role as well. Our experiments show that a discontinuity in the pdf
(or in the cdf) is hard to approximate with CPH, hence in the majority of these cases
DPH provides a better approximation.

Figure 10.10 shows the cdf and the pdf of the U1 distribution, compared with the
best fit PH approximations of order n = 10, and various scale factors δ. In the case
of DPH approximation, the f(x) values are calculated as in (10.8). With respect
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to the chosen distance measure, the best approximation is obtained for δ = 0.03,
which corresponds to a DPH distribution with infinite support. When δ = 0.1 the
approximate distribution has a finite support. Hence, the value δ = 0.1 (for n = 10)
provides a DPH able to represent the logical property that the random variable is
less than 1. Another fitting criterion may, of course, stress this property.

10.4 Approximating non-Markovian models

Section 10.3 has explored the problem of how to find the best fit among either
a DPH or a CPH distribution by tuning the scale factor δ. When dealing with
a stochastic model of a system that incorporates non exponential distributions, a
well know solution technique consists in a markovianization of the underlying non-
Markovian process by substituting the non exponential distribution with a best fit
PH distribution, and then expanding the state space. A natural question arises also
in this case, on how to decide among a discrete (using DPH) or a continuous (using
CPH) approximation, in order to minimize the error in the performance measures
we are interested in for the overall model.

One possible way to handle this problem could consist in finding the best PH fits
for any single distribution and to plug them in the model. We only consider the case
where the PH distributions are either all discrete (and with the same scale factor δ)
or they are all continuous1.

In order to quantitatively evaluate the influence of the scale factor on some per-
formance measures defined at the system level, we have considered a preemptive

1Various embedding techniques have been explored in the literature for mixing DPH (with
different scale factors) and CPH ([33, 46]).
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Figure 10.6: Distance measure as the function of the scale factor δ for low cv2 (L3)

M/G/1/2/2 queue with two classes of customers. We have chosen this example be-
cause accurate analytical solutions are available both in transient condition and in
steady-state using the methods presented in, e.g., [33]. The general distribution G
is taken from the set of distributions (L1, L3, U1, U2) already considered in the
previous section.

Customers arrive at the queue with rate λ = 0.5 in both classes. The service
time of a higher priority job is exponentially distributed with parameter µ = 1. The
service time distribution of the lower priority job is either L1, L3, U1 or U2. Arrival
of a higher priority job preempts the lower priority one. The policy associated to the
preemption of the lower priority job is preemptive repeat different (prd), i.e. after
the departure of the higher priority customer the service of the low priority customer
starts from the beginning with a new service time sample.

The system has 4 states (Figure 10.12): in state s1 the server is empty, in state
s2 a higher priority customer is under service with no lower priority customer in the
system, in state s3 a higher priority customer is under service with a lower priority
customer waiting, in state s4 a lower priority job is under service (in this case there
cannot be a higher priority job).

Let pi (i = 1, . . . , 4) denote the steady state probability of the M/G/1/2/2 queue
obtained from an exact analytical solution.

In order to evaluate the correctness of the PH approximation we have solved the
model by substituting the original general distribution (either L1, L3, U1 or U2)
with approximating DPH or CPH distributions. Let p̂i (i = 1, . . . , 4) denote the
steady state probability of the M/PH/1/2/2 queue with the PH approximation.

The overall approximation error is measured in terms of the difference between
the exact steady state probabilities pi and the approximate steady state probabilities
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Figure 10.7: Distance measure as the function of the scale factor δ for high cv2 (L1)

p̂i. Two error measures are defined:

εSUM =
∑

i

|pi − p̂i| and εMAX = max
i
|pi − p̂i|.

The evaluated numerical values for εSUM and εMAX are reported in Figures 10.13
and 10.14 for the distribution L3. Since the behavior of εMAX is very similar to the
behavior of εSUM in all the cases, for the other distributions we report εSUM only
(Figures 10.15, 10.16, 10.17). The figures, which refer to the error measure in a
performance index of a global stochastic model, show a behavior similar to the one
obtained for a single distribution fitting. Depending on the coefficient of variation
and on the shape of the considered non-exponential distributions an optimal value of
δ is found which minimizes the approximation error. In these examples, the optimal
value of δ is close to the one obtained for the single distribution fitting.

Based on our experiments, we guess that the observed property is rather general.
If the stochastic model under study contains a single non-exponential distribution,
then the approximation error in the evaluation of the performance indices of the
global model can be minimized by resorting to a PH type approximation (and sub-
sequent DTMC or CTMC expansion) with the optimal δ of the single distribution.
The same should be true if the stochastic model under study contains more than one
general distribution, whose best PH fit provides the same optimal δ.

In order to investigate the approximation error in the transient behavior, we
have considered distribution U2 for the service time and we have computed the
transient probability of state s1 with two different initial conditions. Figure 10.18
depicts the transient probability of state s1 with initial state s1. Figure 10.19 depicts
the transient probability of the same state, s1, when the service of a lower priority
job starts at time 0 (the initial state is s4). All approximations are with DPH
distributions of order n = 10. Only the DPH approximations are depicted because
the CPH approximation is very similar to the DPH one with scale factor δ = 0.03.
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Figure 10.8: Distance measure as the function of the scale factor δ for Uniform(1,2)
(U2)

In the first case, (Figure 10.18), the scale factor δ = 0.03, which was the optimal
one from the point of view of fitting the single distribution in isolation, provides
the most accurate results for the transient analysis as well. Instead, in the second
case, the approximation with a scale factor δ = 0.2 captures better the sharp change
in the transient probability. Moreover, this value of δ is the only one among the
values reported in the figure that results in 0 probability for time points smaller
than 1. In other words, the second example depicts the advantage given by DPH
distributions to model durations with finite support. This example suggests also that
DPH approximation can be of importance when preserving reachability properties
is crucial (like in modeling time-critical systems) and, hence, DPH approximation
can be seen as a bridge between the world of stochastic modeling and the world of
functional analysis and model checking [9].

10.5 Remarks on the use of CPH versus DPH dis-

tributions

To conclude this chapter, we summarize the advantages and the disadvantages of
applying approximate DPH models (even with optimal δ value) with respect to using
CPH approximations.

Advantages of using DPH: An obvious advantage of the application of DPH distrib-
utions is that one can have a closer approximate of distributions with low coefficient
of variation. An other important quantitative property of the DPH class is that it
can capture distributions with finite support and deterministic values. This prop-
erty allows to capture the periodic behavior of a complex stochastic model, while
any CPH based approximation of the same model tends to a steady state.
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Figure 10.9: Distance measure as the function of the scale factor δ for Uniform(0,1)
(U1)

Numerical experiments have also shown that DPH can better approximate dis-
tributions with some abrupt or sharp changes in the CDF or in the PDF.
Disadvantages of using DPH: There is a definite disadvantage of discrete time approx-
imation of continuous time models. In the case of CPH approximation, coincident
events do not have to be considered (they have zero probability of occurrence). In-
stead, when applying DPH approximation coincident events have to be handled, and
their consideration may burden significantly the complexity of the analysis.
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Figure 10.12: The state space of the considered M/G/1/2/2 queue

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

su
m

 o
f e

rr
or

s

scale factor

2 phases
4 phases
6 phases
8 phases

10 phases
12 phases

Figure 10.13: εSUM with scale factor δ and distribution L3
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Figure 10.14: εMAX with scale factor δ and distribution L3
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Figure 10.15: εSUM with scale factor δ and distribution L1
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Figure 10.16: εSUM with scale factor δ and distribution U1
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Figure 10.17: εSUM with scale factor δ and distribution U2
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Figure 10.18: Approximating transient probabilities
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Chapter 11

Moment Bounds for Acyclic
Discrete and Continuous Phase
Type Distributions of Second
Order

The problem of matching moments to phase type (PH) distributions occurs in many
applications. Often, low dimensions of the selected distributions are desired. It is
obvious that the three parameters of acyclic PH distributions of second order – be
they continuous (ACPH(2)) or discrete (ADPH(2)) – can be fitted to three given
moments provided that these are feasible. For both types of PH distributions, this
chapter provides the precise permissible ranges by giving the immanent lower and
upper (if existing) bounds for the first three moments. For moments which obey these
bounds an exact and minimal (with respect to the dimension of the representation)
analytic mapping of three moments into ACPH(2) or ADPH(2) is presented.

The moments of ACPH(2) and ADPH(2) distributions are subject to a few re-
strictions. With respect to the second moments, the squared coefficients of variation
(defined as the variance of the distribution divided by the squared mean (= f1

2))
must be greater than or equal to 0.5 for ACPH(2) [3] and for ADPH(2) the squared
coefficients of variation must be greater than or equal to 0.5 − 1

f1
if 2 ≤ f1 or to

2 · (f1 − 1) if 1 ≤ f1 < 2 [77].
Here we present – for both the continuous and discrete case – the bounds of the

third moment as a function of the first two, namely in the respective full range of
the squared coefficient of variation (including the hypoexponential/hypogeometric
region).

11.1 The canonical ACPH(2) distribution and

moment bounds

Generally, the random variable X associated with an arbitrary continuous PH distri-
bution function FX(t) represents the time to absorption in a finite continuous-time

Markov chain (with n transient states), or more formally: FX(t) = 1−αeT te. The
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nonsingular (n × n)-matrix T denotes the generator of the transient Markov chain
((T )ii ≤ 0 for 1 ≤ i ≤ n, (T )ij ≥ 0 for i 6= j so that (Te)i ≤ 0, but Te 6= 0).
The n-dimensional vector α is the initial distribution and e is the n-dimensional
vector of ones. Note that the tuple (α, T ) completely characterizes the continuous
PH distribution with power moments

mi = E[X i] = i! α (−T )−ie . (11.1)

In this paper, we focus on the following specific class of continuous PH distributions:
First, we consider the subclass of acyclic distributions, which admits minimal repre-
sentations called canonical forms [25]. These distributions can be encoded by acyclic
graphs so that T is an upper triangular matrix (with an appropriate ordering of the
n states). Second, we study ACPH distributions of order 2, i.e., s = 2. The canonical
representation (α,T ) is then given by

α = (p, 1− p) and T =

∣∣∣∣
−λ1 λ1

0 −λ2

∣∣∣∣ , (11.2)

where 0 ≤ p ≤ 1 and 0 < λ1 ≤ λ2. Figure 11.1 shows the related graph, where the
filled circle depicts the absorbing state.

λ1 λ2

01

Figure 11.1: Canonical form of ACPH(2) distribution

Of course, the power moments can be computed directly from (11.1), but it might
be more intuitive to have a look at the Laplace transform of the random variable X:

GX(s) = E[e−sX ] = p
λ1

s + λ1

λ2

s + λ2

+ (1− p)
λ2

s + λ2

.

The first three power moments of X are:

m1 = E[X] = − d

ds
GX(s)|s=0 =

λ1 + p λ2

λ1λ2

, (11.3)

m2 = E[X2] =
d2

ds2
GX(s)|s=0 =

2 (λ1
2 + p λ1λ2 + p λ2

2)

λ1
2λ2

2 , (11.4)

m3 = E[X3] = − d3

ds3
GX(s)|s=0 =

6 (λ1
3 + p λ1

2λ2 + p λ1λ2
2 + p λ2

3)

λ1
3λ2

3 .(11.5)

Having gone from the distribution parameters p, λ1, λ2 to the power moments
m1,m2,m3, we would now like to find the reverse way (and succeed therein in Sec-
tion 11.3). First of all, we observe that not any arbitrary triple (m1,m2,m3) can be
transformed back to some valid parameter set (p, λ1, λ2). For example, nonpositive
values for m1 will obviously render the triple infeasible (since ACPH(2) distribu-
tions describe nonnegative random variables). Analogously, the other moments are
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Figure 11.2: Third-moment bounds for ACPH(2) distribution with m (= m1) = 4
3

bounded - possibly from more than one side. For the second moment, Aldous and
Shepp provided the (order-independent) result that “the least variable phase-type
distribution is Erlang” [3]. In other words and for s = 2, the squared coefficient of
variation c2

X of an ACPH(2) distribution must satisfy:

c2
X =

m2

m1
2
− 1 ≥ 0.5 ⇔ m2 ≥ 1.5 m1

2 .

Since the ACPH(2) class contains the Erlang-2 distribution (p = 1, λ1 = λ2), this
bound is tight. It can be obtained from the formulae (11.3) and (11.4) by equating
to 0 the derivative of m2 with respect to m1 (after having exploited the structural
information p = 1, λ1 = λ2). Similarly, the bounds for the third moment m3 can be
found, where it turns out however that the bound behavior strongly depends on the
precise value of c2

X or - expressed alternatively - on the relationship between the first
two power moments. Figure 11.2 illustrates the typical features of the third-moment
bounds for a fixed value m1 = 4

3
(= m in the figure). While for c2

X > 1 only a lower
bound exists, both a lower and an upper bound limit m3 to a rather small region for
0.5 ≤ c2

X ≤ 1.

Table 11.1 gives the derived functions of the bounds along with the respectively
employed structural information in the last column. This information documents
which types of ACPH(2) distributions attain the specific bounds. At c2

X = 1,m3 =
6 m1

3, we have a singular point. At this point the one-dimensional exponential
distribution with parameter λ2 = 1

m1
(p = 0, λ1 = irrelevant) fulfills the conditions

113



mom. condition bounds ACPH(2)

1. 0 < m1 < ∞ -

2.(c2
X) 0.5 ≤ c2

X < ∞ -

0.5 ≤ c2
X ≤ 1 3 m1

3(3 c2
X − 1 +

√
2 (1− c2

X)
3
2 ) λ1 = λ2 (BII)

3. ≤ m3 ≤ 6 m1
3c2

X p = 1 (BIII)

1 < c2
X

3
2
m1

3(1 + c2
X)2 ≤ m3(< ∞) λ2 →∞ (BI)

Table 11.1: Bounds for the first three moments of the ACPH(2) distributions

of the coordinates1. This point lies on the dotted line of Figure 11.2 defined by

c = 3 m2
2 − 2 m1m3 = 0 ⇔ m3 =

3

2
m1

3(c2
X + 1)2 ,

which coincides with the lower bound in c2
X ∈ (1,∞). The importance of this dotted

curve which separates the regions c > 0 and c < 0 will be discussed in Section 11.3.
The lowest curve in Figure 11.2 marks the general lower bound for the third moment
of any distribution on the nonnegative axis [82], where

m1 ≤ m2

1
2 ≤ m3

1
3 ⇔ m3 ≥ m1

3(1 + c2
X)

3
2 .

Despite the obvious restrictions on the first three moments of ACPH(2) distribu-
tions, this subclass of continuous PH(2) distributions preserves an utmost flexibility
in the sense that the presented bounds are identical with those of the more general
class of matrix-exponential distributions [61].

11.2 The canonical ADPH(2) distribution and

moment bounds

For the discrete case, we very much proceed along the same lines as for the contin-
uous case - with the main difference that the factorial moments take the role of the
power moments. As we will see, the bound behavior naturally bears similarities, but
becomes a bit more involved. Again, we start by specializing the general notation
(see [10]) of the discrete PH distributions to the canonical form of acyclic discrete
PH distributions of order 2:

α = (p, 1− p) and B =

∣∣∣∣
1− β1 β1

0 1− β2

∣∣∣∣ , (11.6)

where 0 ≤ p ≤ 1 and 0 < β1 ≤ β2 ≤ 1. Figure 11.3 displays the transient discrete-
time Markov chain associated with this canonical representation. The discrete time
to absorption (in unit time steps) will be denoted by the random variable N .

1Note that there are infinitely many ACPH(2) representation of the exponential distribution, but
the minimal unique canonical representation of this distribution is the first order CPH distribution,
the exponential.
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β1 β2

01

1− β21− β1

Figure 11.3: Canonical form of ADPH(2) distribution

Power moments might be derived directly from the probability mass function
fN(k) = P{N = k} = αBk−1(I −B)e (I is the two-dimensional identity matrix)
or indirectly via the factorial moments. These can be conveniently computed from
the generator function of N

GN(z) = E[zN ] = p
β1z

1− (1− β1)z

β2z

1− (1− β2)z
+ (1− p)

β2z

1− (1− β2)z

resulting in:

f1 = E[N ] =
d

dz
GN(z)|z=1 =

β1 + β2p

β1β2

, (11.7)

f2 = E[N(N − 1)] =
d2

dz2
GN(z)|z=1

=
2

(
β1

2 (1− β2) + p β1 β2 + p β2
2 (1− β1)

)

β1
2 β2

2 , (11.8)

f3 = E[N(N − 1)(N − 2)] =
d3

dz3
GN(z)|z=1

=
6

(
β1

3 (1− β2)
2 + p β1 β2 (β1 − 2 β1 β2 + β2) + p β2

3 (1− β1)
2
)

β1
3 β2

3 . (11.9)

The first three factorial moments serve as the starting point on our way from
such a partial description of a discrete random variable to the parameter specification
(p, β1, β2) of the ADPH(2) canonical form. Also the moment bounds are given in
the context of factorial moments. In [77], it was shown that the feasible range of
the first factorial moment f1 ≥ 1 must be divided into two sections, in which the

minimum squared coefficient of variation (scv: c2
N = E[N2]

E[N ]2
− 1 = f2+f1−f1

2

f1
2 ) follows

different laws - both explicitly f1-dependent though (see Table 11.2). These two
ranges, 1 ≤ f1 < 2 and 2 ≤ f1, also have an effect on the third-moment behavior.

For f1 = 4
3

(< 2) - the same value as for the mean m1 in Figure 11.2 - the
third factorial moment f1 is plotted over the squared coefficient of variation c2

N .
Although the shapes of the feasible regions of Figures 11.4 and 11.2 have much in
common, several important differences are identified: First, the low-variability (here
hypogeometric) range is not fixed (as to (0.5, 1.0) for ACPH(2) distributions), but
lies within boundaries which depend on f1 (1 ≤ f1 < 2):

〈f1〉(1− 〈f1〉)
f1

2 =
(f1 − 1)(2− f1)

f1
2 = −(1− 3

f1

+
2

f1
2 ) ≤ c2

N < 1− 1

f1

, (11.10)
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Figure 11.4: Third-moment bounds for ADPH(2) distribution with f (= f1) = 4
3

(<
2)

where 〈f1〉 denotes the fractional part of f1, i.e., 〈f1〉 = f1 − bf1c = f1 − 1 (since
1 < f1 < 2). Note that as f1 approaches 1 or 2, the lower bound on the (nonnegative)
squared coefficient of variation vanishes, i.e., c2

N ≥ 0 in the limit. For f1 → 1,
the ADPH(2) distributions converge towards the unit-step deterministic distribution
(p = 0, β2 = 1), while for f1 = 2 (actually part of case 2 ≤ f1), the respective
minimum c2

N = 0 yields the deterministic distribution with E[N ] = 2 (p = 1, β1 =
β2 = 1). Our choice of f1 = 4

3
in Figure 11.4 imposes the strictest lower bound on c2

N

in the range 1 ≤ f1 < 2, i.e., the minimum squared coefficient of variation is maximal
and equal to c2

N = 1
8
. The third factorial moment starts from zero at the minimum

coefficient of variation and increases to 6 f1 (f1 − 1)2 for c2
N → 1 − 1

f1
, where only

relatively little variation is tolerated in between.
With f1 entering the range 2 ≤ f1, the expression (1 − 3

f1
+ 2

f1
2 ) (see formula

(11.10)) turns nonnegative and - as indicated above - the lower bound of the squared
coefficient of variation is replaced by 0.5− 1

f1
. Nevertheless, the expression in brackets

retains an important role also in the case 2 ≤ f1, which is illustrated by Figure 11.5
for the specific f1 = 8

3
(= f in the figure). Note that this doubled f1 stipulates

the same value for the minimum squared coefficient of variation as before. I.e.,
0.5− 1

f
(2)
1

= 1
8

= −(1− 3

f
(1)
1

+ 2

f
(1)
1

2 ), where f
(2)
1 = 8

3
and f

(1)
1 = 4

3
.

In Figure 11.5, we observe that for 2 ≤ f1 – as opposed to the case 1 ≤ f1 < 2 –
the third factorial moment does no longer reach down to zero at the minimum c2

N .
Furthermore, the upper bound in the low-variability range behaves differently for c2

N

less or greater than 1− 3
f1

+ 2
f1

2 = (f1−2)(f1−1)

f1
2 (bounds BIV and BIII).

In both cases, 1 ≤ f1 < 2 and 2 ≤ f1 (i.e., 1 ≤ f1) – in analogy to ACPH(2) – a
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Figure 11.5: Third-moment bounds for ADPH(2) distribution with f (= f1) = 8
3

(>
2)

singular point occurs, now at (c2
N = 1− 1

f1
, f3 = 6 f1 (f1 − 1)2) on the dotted lines

c = 3 f2
2 − 2 f1f3 = 0 ⇔ f3 =

3

2
f1

(
f1 (c2

N + 1)− 1
)2

.

The canonical representation of this point is the geometric distribution with parame-
ter β2 = 1

f1
(p = 0, β1 = irrelevant). In the hypergeometric range (i.e., c2

N > 1− 1
f1

),

only lower bounds exist for the third factorial moment for any feasible value of f1 (see
Figures 11.4 and 11.5). The exact formulae of the discussed bounds can be found
in Table 11.2. They were derived in a similar manner as in the continuous case –
again exploiting the structural information listed in the last column. To enhance
the readability of Table 11.2, we left the variable f2 in some expressions (instead
of substituting it by f2 = f1

2(c2
N + 1) − f1) and introduced the following auxiliary

variable

g =
6

(2 f1 +
√

2 d)3

(
f1 (2 f1 +

√
2 d)(3 f2 + 2 f1)(f2 − 2 f1 + 2)− 2 f2

2 (f2 −
√

2 d)
)

,

where d = 2 f1
2 − 2 f1 − f2. Variable d and the previously defined c will also appear

in the moment fitting procedure to be outlined in the next section.
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mom. condition bounds ADPH(2)

1. 1 ≤ f1 < ∞ -

2. 1 ≤ f1 < 2 (2−f1)(f1−1)

f1
2 ≤ c2

N < ∞ -

(c2
N) 2 ≤ f1 0.5− 1

f1
≤ c2

N < ∞ -

1 ≤ f1 < 2
(2−f1)(f1−1)

f1
2 ≤ c2

N < 1− 1
f1

g ≤ f3 β1 = β2 (BII)

≤ 3 f2(f2 − 2 f1 + 2)

2 (f1 − 1)
β2 = 1 (BIII)

2 ≤ f1

0.5− 1
f1
≤ c2

N < (f1−2)(f1−1)

f1
2 g ≤ f3 β1 = β2 (BII)

3. ≤ 6 f1
2(f1 − 1)c2

N p = 1 (BIV)

(f1−2)(f1−1)

f1
2 ≤ c2

N < 1− 1
f1

g ≤ f3 β1 = β2 (BII)

≤ 3 f2(f2 − 2 f1 + 2)

2 (f1 − 1)
β2 = 1 (BIII)

1 ≤ f1

1− 1
f1
≤ c2

N

3 f2(f2 − 2 f1 + 2)

2 (f1 − 1)
≤ f3 β2 = 1 (BI)

Table 11.2: Bounds for the first three moments of the ADPH(2) distributions

11.3 Method of moments for ACPH(2) and

ADPH(2) distributions

The procedures of this section provide the best possible mapping of the first three
moments of a generally distributed random variable into a PH representation of order
2 – in both the continuous and discrete setting. Though starting from power or
factorial moments, respectively, the corresponding formulae for both cases resemble
one another so strongly that the two methods of moments are treated in parallel.
The moment bounds of the previous sections are crucial for these procedures in that
they determine whether the given triple of moments is feasible or not.

Let us begin with the former situation (feasibility), in which all three moments
fall into the related intervals within the derived boundaries. Solving each system of
nonlinear algebraic equations – either (11.3), (11.4), (11.5) or (11.7), (11.8), (11.9)
– for the parameters of the ACPH(2) or ADPH(2) distributions, respectively2, one
may finally arrive at the moment-fitting procedures of Table 11.3. In particular, the
distinction of cases c < 0, c = 0, c > 0 can be graphically reproduced in Figures 11.2,
11.4 and 11.5. In this context, notice the congruent expressions for c in the discrete
and continuous cases regardless of power or factorial moments.

2For example, we applied the Mathematica package with subsequent manipulations.
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ACPH(2) ADPH(2)
Power moments Factorial moments

m1 = E[X], m2 = E[X2], f1 = E[N ], f2 = E[N(N−1)],
m3 = E[X3] f3 = E[N(N−1)(N−2)]

Auxiliary variables

d = 2 m1
2 −m2, c = 3 m2

2 − 2 m1 m3 d = 2 f1
2 − 2 f1 − f2, c = 3 f2

2 − 2 f1 f3

b = 3 m1 m2 −m3 b = 3 f1 f2 − 6 (f1 + f2 − f1
2)− f3

a = b2 − 6 c d a = b2 − 6 c d
Moments fitting

m1, m2, m3 → p, λ1, λ2 f1, f2, f3 → p, β1, β2

if c > 0

p =
−b + 6 m1 d +

√
a

b +
√

a
p =

−b + 6 f1 d +
√

a

b +
√

a

λ1 =
b−√a

c
, λ2 =

b +
√

a

c
β1 =

b−√a

c
, β2 =

b +
√

a

c
if c < 0

p =
b− 6 m1 d +

√
a

−b +
√

a
p =

b− 6 f1 d +
√

a

−b +
√

a

λ1 =
b +

√
a

c
, λ2 =

b−√a

c
β1 =

b +
√

a

c
, β2 =

b−√a

c
if c = 0

p = 0, λ1 = 0, λ2 =
1

m1

(exp.) p = 0, β1 = 0, β2 =
1

f1

(geom.)

Table 11.3: Moment fitting with ACPH(2) and ADPH(2) distributions

We now turn to the situation with initially infeasible moments. Generally – and
according to [45] –, there are essentially three approaches to handle this problem:

option 1: matching the first two moments instead of three

option 2: adjusting the moments to be matched

option 3: using alternative three-moment matching techniques usually (in our case
definitely) leading to higher-order (PH) representations

The presented moment bounds for ACPH(2) and ADPH(2) distributions make option
2 superior over option 1. They enable us to select the optimal moment-boundary
values to enforce feasibility. In practice, one will merely set the third moment to
the closest boundary value (computed for feasible first two moments), if the third
power/factorial moment exceeds the limits. Moment fitting then follows Table 11.3.
If the second power/factorial moment does not comply with the moment bounds
significantly, avoiding higher-order representations hardly seems reasonable. For ex-
ample, analytic option 3 alternatives are discussed in [45, 40] for the continuous and
in [10] for the discrete case.
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Chapter 12

Output Models of
MAP/PH/1(/K) Queues for an
Efficient Network Decomposition

For non-trivial (open) queueing networks, traffic-based decomposition often repre-
sents the only feasible solution method besides simulation. The network is partitioned
into individual nodes which are analyzed in isolation with respect to approximate
internal traffic representations. Since the correlations of network traffic may have a
considerable impact on performance measures, they must be captured to some ex-
tent by the employed traffic descriptors. The decomposition methodology presented
there is based on Markovian arrival processes (MAPs), whose correlation structure
is determined from the busy-period behavior of the upstream queues. The resulting
compact MAPs in connection with sophisticated moment matching techniques allow
an efficient decomposition of large queueing networks.

Although most decomposition algorithms (e.g., [48, 83, 37, 72]) are based on
renewal processes as traffic descriptors for ease of tractability, one should not ne-
glect the correlation structures of the external and internal flows. These correlations
have been demonstrated to significantly influence performance measures especially
for bursty input traffic. For example, a simulation study [56] showed that the av-
erage waiting time in a queue with highly correlated arrivals can be 40 times larger
than in the uncorrelated case. The following decomposition methods take into ac-
count the traffic correlations in different ways. In [4] truncation techniques for the
infinite output MAP of a MAP/PH/1 queue are studied. For dual tandem queues,
very good numerical results are reported. However, depending on the number of
phases/states of the service distribution of the queue and its arrival process, the
truncated MAPs still become quite large in general. More precisely, their orders
depend multiplicatively on the orders of the PH distribution and the input MAP.
Similar observations hold for the closely related and more flexible way [71] to ob-
tain finite MAP representations of the departure processes of MAP/MAP/1 queues.
While these truncated MAPs have been shown to match a size-dependent number
of coefficients of correlations of lagged interdeparture times exactly [36], a different
approach to output modeling is to fit a predefined set of traffic descriptors to selected
performance indices of the true departure process.
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The adopted approach is completely different from the previously applied ones
in that it does not attempt to capture single elements of the correlation structure of
the departure process directly (e.g., by matching the first coefficients of correlation).
Instead the parameters of a MAP are chosen so that this traffic descriptor reflects
the busy-period behavior of the considered queue.

12.1 MAP-Based Decomposition

Traffic-based decomposition assumes that dependences between queues are suffi-
ciently conveyed by the traffic characterizations. In the first phase, the algorithm
determines the parameters of these internal traffic representations. In the second
phase, it derives performance indices for single nodes and network-wide results.

Our methodology progresses in the same way. The order in which the isolated
queues are analyzed does not deviate from other (iterative) approaches. Without
feedback loops, each node only needs to be treated once provided that the nodes
have been reordered in advance with respect to external inputs and the network
structure [38]; in the presence of feedback loops, the algorithm iterates over those
nodes included therein until the rates and the squared coefficients of variation of
the internal arrival flows, i.e., MAPs in our case, have converged. As for any other
decomposition algorithm of this type, no general statements on the existence and
uniqueness of a fixed point can currently be made for this iteration scheme.

In general, the following three operations are performed at each node: 1) MAP
traffic descriptors directed to the node are merged into a single input MAP. 2) The
departure process of the queue is approximated as a MAP. 3) The output MAP
is split into MAP substreams according to the Markovian routing. For the output
approximation, matrix-analytic techniques (for MAP/PH/1(/K) systems) deliver the
relevant quantities via a busy-period analysis. Corresponding procedures yield the
performance measures, like the first two moments of the waiting time and queue
lengths as well as throughputs and loss probabilities. Global performance indices
can be derived from these quantities as in [83]. Since the splitting and merging of
MAPs in the context of traffic-based decomposition have been discussed in other
publications (e.g., [71, 39]), there we concentrate on the output approximations of
queues. It should, however, be mentioned that the commonly used merging procedure
ignores possible cross-correlations among the involved traffic processes and therefore
it is not exact in case of closed queueing networks. On this assumption, merging just
like splitting of MAPs are simple matrix operations [65].

For the overall algorithm to work efficiently also for larger networks, the dimen-
sions of the block matrices in the matrix-analytic methods ought to remain in a
reasonable range. The major contribution of the presented approach in this respect
consists in the fact that the orders of the output MAPs depend only linearly on the
orders of the input MAP and the PH service distribution of the considered queue.
Moreover, these traffic descriptors can be further compressed due to their structure:
so more compact PH representations of the residual arrival time and/or of the ser-
vice time may be sought for based on their moments1. Even more fundamentally,

1If the service time is specified by its moments, PH fitting will already be necessary during node
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an output approximation may decide to ignore the second and third moment of the
number of customers in a busy period (as in [40]) yielding reduced MAP skeletons,
which are sufficiently accurate in many cases. All of the related moment matching
techniques may be combined in comprehensive heuristics (which will also take into
account merging situations, i.e., the sizes of the involved MAPs, see e.g., [39]) in
order to enforce that the dimensions of the mentioned block matrices range below
a given upper bound. This bound reflects the user’s choice in the trade-off between
accuracy and efficiency.

As described above, analytic moment fitting procedures occur in various situa-
tions of the proposed methodology – be it for continuous or discrete random vari-
ables – and impart a lot of flexibility to the MAP-based decomposition. Here we
apply the methods, presented in the previous chapter, for matching an acyclic con-
tinuous/discrete phase-type distribution of order 2 to three given (power/factorial)
moments, respectively.

If the second power/factorial moment falls outside the feasible range, we will
resort to specific higher-order representations (see [40] for the continuous and [10]
for the discrete case) during the moment matching to achieve an exact fit in the first
two moments. If the third power/factorial moment does not fulfill the requirements,
one option is to set it to the closest boundary value (computed for the given first
two moments).

We once again point out the importance of compact representations of service/idle
times or number of customers in a busy period for an efficient MAP-based decompo-
sition. The applied procedures provide the best possible mapping of three moments
into a continuous or discrete PH representation of order 2.

12.2 Markovian Arrival Processes (MAPs)

Markovian arrival processes are a rich subclass of Markov renewal processes with
high popularity in the research community of traffic engineering. Let us consider
a MAP with a finite state space of size m. This parameter is also called the order
of the MAP and determines the dimensions of the matrices and vectors introduced
below. Transitions of a MAP are distinguished whether they cause an arrival or not.
Associated rates are correspondingly grouped into the two matrices D1 and D0:

• D1 is a nonnegative (m×m)-rate matrix.

• D0 of the same dimension has negative diagonal elements and nonnegative
off-diagonal elements.

• The irreducible infinitesimal generator D is defined by D = D0 + D1.

We require that D0 is invertible. Then D 6= D0, i.e., the arrival process does not

terminate. With probability (D0)ik

(−D0)ii
(1 ≤ i, k ≤ m, k 6= i), there will be a transition

from state i to state k without an arrival. With probability (D1)ik

(−D0)ii
(1 ≤ i, k ≤ m),

there will be a transition from state i to state k accompanied by an arrival.

analysis.
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For the underlying Markov process with CTMC generator D, we define the sta-
tionary probability vector π by

πD = 0 , πe = 1 ,

where e = (1, . . . , 1)T is the column vector of ones.
The mean arrival rate and squared coefficient of variation of a MAP are [66]

λMAP =
1

E [Γ]
= πD1e and

c2
MAP =

E [Γ2]

(E [Γ])2
− 1 = 2λΓπ(−D0)

−1e− 1, respectively, (12.1)

where Γ denotes the marginal interevent (i.e., interarrival or interdeparture) time of
the traffic process. In general, the interevent times of a MAP are correlated. The
non-zero lag coefficients of correlation ρΓ(j) (j > 0) of an interval-stationary MAP
can be derived [66]:

ρΓ(j) =
E [Γ¯Γ¯+j]− E [Γ]2

E [Γ2]− E [Γ]2
=

λΓπ[(−D0)
−1D1]

j(−D0)
−1e− 1

2λΓπ(−D0)−1e− 1
.

Γ¯ and Γ¯+j denote any two intervals j lags apart in the sequence of interevent
times.

Many familiar arrival processes represent special cases of MAPs, among them
Poisson processes, MMPPs, and – most important in view of MAP-based decompo-
sition for general queueing networks – the superpositions of independent MAPs.

In steady state, the marginal distribution of the interevent time of a MAP is

phase-type distributed with α = πD1
πD1e

and T = D0. On the other hand, the MAP

notation of the (α,T ) PH renewal process is: T = D0, D1 = (−Te)α.

12.3 Busy-Period Analysis of MAP/PH/1(/K)

Queues

The analytical tractability of MAPs manifests itself in efficient computational pro-
cedures of the matrix-analytic approach to queueing systems, which starts from a
description of the level-defining queue length process as a quasi-birth-death process
(QBD, [65]). We exploit corresponding methods for the proposed decomposition,
where all nodes of the network are analyzed as MAP/PH/1 or MAP/PH/1/K sys-
tems. We adopt the following notation:

K the size of a finite buffer including the (single) server place

S the random variable for PH service time with representation (α,T )

N the number of customers served during a busy period with conditional factorial
moments ϕ1,ϕ2,ϕ3 (defined as column vectors)
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y = (y0,y1, ..., yK) the stationary queue length distribution (qld) at arbitrary time

x0 the stationary probabilities that a departure leaves behind an empty system

Throughout this chapter, subscripts A/S and superscripts (A)/(S) indicate affiliation
to the arrival process or service time, respectively. The scalars mA and mS are the

orders of the input MAP (D
(A)
0 , D

(A)
1 ) and of the PH service time distribution, which

will also be denoted by D
(S)
0 = T and D

(S)
1 = (−Te)α in the chosen QBD notation.

Let ρ = λA ·E [S] = πD
(A)
1 e ·α(−T )−1e be the offered load of the queueing system

with the following QBD generator matrix of block tridiagonal structure:

D̃ =




Ã
(0)
1 Ã0 0 · · · 0

Ã2 Ã1 Ã0
. . .

...

0
. . . . . . . . . 0

...
. . . Ã2 Ã1 Ã0

0 · · · 0 Ã2 Ã
(K)
1




with

Ã
(0)
1 = D

(A)
0 ⊗ I

Ã0 = D
(A)
1 ⊗ I

Ã1 = D
(A)
0 ⊗ I + I ⊗D

(S)
0

Ã2 = I ⊗D
(S)
1

Ã
(K)
1 = Ã0 + Ã1

The operator ⊗ denotes the Kronecker product [35]. For queues with unlimited

capacity (K = ∞), the bottom line of matrix D̃ becomes irrelevant and its dimension
as well as the bold-faced subscript in yi run to infinity. Our definition of the QBD
implies the same dimensions for the vectors yi and x0, namely mA · mS, which
also is the dimension of each block row/level of matrix D̃. The matrix-analytic
techniques [65, 55] efficiently compute various kinds of qlds (e.g., y), their moments
and many other performance measures, like loss probabilities, etc. Formulae for the
first two moments of the waiting time can be found in [39, 40]. In view of the output
approximation in the next section, we discuss here how the moments of N – the
number of customers served in a busy period – are determined for MAP/PH/1 and
MAP/PH/1/K systems.

12.3.1 MAP/PH/1 queue: number of customers in a busy
period

In order to obtain the generating function of the random variable N , we examine the
discrete-time Markov chain (DTMC with transition probability matrix Π) embedded
in the QBD at the epochs of level switching:

Π =




0 A
(0)
0 0 0 · · ·

A2 0 A0 0 · · ·
0 A2 0 A0

. . .
...

. . . . . . . . . . . .




with

A
(0)
0 = (−Ã

(0)
1 )−1 Ã0

A0 = (−Ã1)
−1 Ã0

A2 = (−Ã1)
−1 Ã2

Furthermore, we define fij(n) = P{N = n, Z
γ
(1,i)
0

= (0, j) |Z0 = (1, i)} and matrix

F̃ (n) = {fij(n)} (1 ≤ i, j ≤ mA ·mS), where Zu stands for the state of the DTMC
in terms of a level number and a block matrix index at the uth step. The stopping
time γ

(1,i)
0 specifies the occurrence of the transition that ends the busy period having
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started in Z0 = (1, i). The conditional generating function F (z) of the number of
customers served in a busy period is given by

F (z) =
∞∑

n=1

F̃ (n) · zn = z A2 + A0 F (z)2 (see [58]) . (12.2)

Note that F (1) = G, where G is the well-known fundamental-period matrix of both
the DTMC and CTMC above – the key ingredient for the computational procedures
of the matrix-analytic approach (e.g., see [54] for its computation). Since we assume
ρ < 1 for the infinite-buffer queue (i.e., stability), G is a stochastic matrix (i.e.,
Ge = e).

Now, we derive the first three conditional factorial moments ϕ1,ϕ2 and ϕ3

of random variable N . For notational convenience, let F (n) = dn

dzn F (z)|z=1 (n ≥
0, where F (0) = G). The derivatives of F (z) at z = 1 can be written in the general
form (where I{•} is the indicator of event •):

F (`) = I{`∈{0,1}} ·A2 + A0 ·
∑̀
i=0

(
`

i

)
F (`−i)F (i) (` ≥ 0) . (12.3)

Algebraic manipulations yield the following simple iterative procedures for F (1) (to
be determined first) and F (2) assuming G is known:

F
(1)
m+1 = (I −A0G)−1

(
A2 + A0F

(1)
m G

)
,

F
(2)
m+1 = (I −A0G)−1A0

(
F (2)

m G + 2F (1)2
)

,

with initial values F
(1)
0 = F

(2)
0 = 0.

Finally, vectors ϕi = F (i)e (i = 1, 2, 3) for the conditional factorial moments are
obtained from (12.2) as

ϕ1 = { E[N |Z0 = (1, i)] } = (I −A0 −A0G)−1A2e ,

ϕ2 = { E[N(N − 1)|Z0 = (1, i)] } = 2 (I −A0 −A0G)−1A0F
(1)ϕ1 ,

ϕ3 = { E[N(N − 1)(N − 2)|Z0 = (1, i)] }
= 3 (I −A0 −A0G)−1A0(F

(2)ϕ1 + F (1)ϕ2) .

Note that (12.3) allows to compute the higher moments in a similar way, and to
calculate the vectors of the first ` factorial moments we need to compute matrices
F (0) = G, . . . , F (`−1).

12.3.2 MAP/PH/1/K queue: number of customers in a
busy period

Again, we start from the DTMC embedded in the QBD. The quadratic transition
probability matrix Π ends with the (K + 1)st block row (i.e., the one belonging to
level K), in which the next to last block – the only nonzero block in the last row –

has to be replaced by A
(K)
2 = (−Ã

(K)
1 )−1Ã2. Determining the conditional factorial
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moments of N for the finite-buffer queue proceeds very much along the same lines
as for the MAP/PH/1 system. But now – since the busy-period behavior is no
longer level-independent – the corresponding definitions are expanded by a capacity
information.

Π =




0 A
(0)
0 0 . . . 0

A2 0 A0
. . .

...

0
. . . . . . . . . 0

...
. . . A2 0 A0

0 . . . 0 A
(K)
2 0




with

A
(0)
0 = (−Ã

(0)
1 )−1 Ã0

A0 = (−Ã1)
−1 Ã0

A2 = (−Ã1)
−1 Ã2

A
(K)
2 = (−Ã

(K)
1 )−1Ã2

Consequently, we have fij(n, k) = P{N = n, Z
γ
(1,i)
0

= (0, j) |Z0 = (1, i), ∆ = k} and

F̃ (n, k) = {fij(n, k)}, where the variable ∆ counts the number of levels starting from
the current level to the greatest one. In analogy to (12.2), the conditional generating
function F (z) of the number of customers served in a busy period of a MAP/PH/1/K
system is given by:

F (z, k) =
∞∑

n=1

F̃ (n, k) · zn =

{
z ·A(K)

2 if k = 1
z A2 + A0 F (z, k − 1) F (z, k) if k > 1

(12.4)

With F
(n)
k = dn

dzn F (z, k)|z=1 (n ≥ 0, where F
(0)
k = F (1, k)), the derivatives are

(` ≥ 0)

F
(`)
k =





I{`∈{0,1}} A
(K)
2 if k = 1

I{`∈{0,1}} A2 + A0 ·
∑̀
i=0

(
`

i

)
F

(`−i)
k−1 F

(i)
k if k > 1

(12.5)

We are interested in the conditional factorial-moment vectors ϕi = F
(i)
K e (i = 1, 2, 3)

for the subscript k = K. Due to the more involved successive substitution scheme,

we now have to compute all four matrices F
(0)
K ,F

(1)
K , F

(2)
K ,F

(3)
K explicitly from:

F
(`)
k = (I −A0 F

(0)
k−1)

−1 ·
(

I{`∈{0,1}} A2 + A0 ·
`−1∑
i=0

(
`

i

)
F

(`−i)
k−1 F

(i)
k

)
. (12.6)

Starting with initial values F
(0)
1 = F

(1)
1 = A

(K)
2 ,F

(2)
1 = F

(3)
1 = 0, this substitution

scheme suggests to calculate the terms F
(`)
k consecutively in the order

for ( ` = 0 to 3 ) { for ( k = 2 to K ) { F
(`)
k = . . . Eq. (12.6) } } .

Finally: ϕ1 = F
(1)
K e , ϕ2 = F

(2)
K e , ϕ3 = F

(3)
K e .

12.3.3 Quantities needed for the output approximation

As will be outlined in the next section, the proposed output approximation for
MAP/PH/1(/K>1) queues attempts to match an ADPH(2) distribution to the first
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three factorial moments f1, f2, f3 of the random variable N∗ – the number of cus-
tomers served after the first customer of a busy period on the condition that more
than one customers are served in this busy period. The relationship between N and
N∗ can be formulated by

P{N∗ = n} = P{N = n + 1|N > 1} =
P{N = n + 1}
1− P{N = 1} (n ≥ 1) . (12.7)

Before converting the (conditional) factorial moments ϕi (i = 1, 2, 3) of N into the
(unconditional) factorial moments fi (i = 1, 2, 3) of N∗, we state that for K > 1
(including K = ∞) p00 ≡ P{N = 1} can be computed from:

p00 = P{N = 1} =
x0

x0e
(−D

(A)
0 ⊗ I)−1(D

(A)
1 ⊗ I) ·A2e = z̃eA2e . (12.8)

The vector z̃e =
x0

x0e
(−D

(A)
0 ⊗I)−1(D

(A)
1 ⊗I) contains the distribution of the QBD,

when the first customer of a busy period has just entered the system. The elements of
matrix A2 can be interpreted as the conditional probabilities that no other customers
arrive before the first customer’s service is finished. For MAP/PH/1(/K) queues, x0

is obtained from

x0 =
1

λA(1− Ploss)
y0(−D

(A)
0 ⊗ I) (see [18]) ,

where Ploss denotes the loss probability (which naturally equals 0 for K = ∞). Vector
z̃e will also serve to uncondition the factorial moments of N . Exploiting expression
(12.7) together with some algebraic manipulations, we can transform the factorial
moments of N into those of N∗:

f1 =
z̃eϕ1 − 1

1− z̃eA2e
, f2 =

z̃eϕ2 − 2 z̃eϕ1 + 2

1− z̃eA2e
,

f3 =
z̃eϕ3 − 3 z̃eϕ2 + 6 z̃eϕ1 − 6

1− z̃eA2e
.

12.4 Output Models for MAP/PH/1(/K>1)

Queues

In the output approximation of the systems above, we extend ideas from [40], where
the departure processes are approximately modeled as MAPs with an SMP skeleton.
The so-called busy-period approach leads to very compact and yet sufficiently accu-
rate MAPs with intuitive physical interpretations. In analogy to [40], we distinguish
between MAP/PH/1(/K>1) and MAP/PH/1/1 queues in principle. For the latter
systems, the exact departure process might often be of a reasonable size (namely
mA · (mS +1)) for efficient use in a MAP-based decomposition. The proposed output
approximation has been designed for queueing systems, where more than a single
customer may be served during a busy period (as opposed to MAP/PH/1/1 queues).
Therefore, this section is dedicated to MAP/PH/1(/K>1) systems. First, we de-
velop a DTMC model that approximates the behavior (i.e., more precisely the first
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Figure 12.1: Via the DTMC to the SMP(3)

three moments, if it is possible with ADPH(2)) of the number of customers in a busy
period. Enhancing this DTMC with conditional jump time distributions yields a
semi-Markov process, from which the output MAP is easily derived by plugging in
PH representations for service times and idle periods.

In general, the proposed output approximations are very flexible with respect to
the order of the corresponding MAPs, especially due to moment-matching techniques.
To avoid ambiguities, many quantities related to the output process will be indexed
with subscript D or superscript (D).

12.4.1 DTMC model for the number of customers in a busy
period

An event in the departure process, i.e., a customer leaving the MAP/PH/1(/K>1)
system, corresponds to a transition in the proposed DTMC model. Any move to
state 0 exclusively signals the departure of the first customer in any busy period.
Without any additional information – as depicted in Figure 12.1 (top part) – we
can state that – if the DTMC follows the (solid) arc from 0 back to the same state
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– a single-customer busy period must have occurred in the queueing system (with
the corresponding interdeparture time being associated with the previous transition
of the DTMC). Thus, the probability p00 = P{N = 1} is attributed to transition
0 → 0. Any path originating in state 0 and leading to non-zero states comprises as
many transitions as customers succeed the first customer in a busy period with more
than a single customer, before this path returns back to state 0 for the first time.
So, these paths describe the random variable N∗, which might have any distribution
depending on the node specifications. If its moments are not entirely out of the
feasible range (which would require a higher-order approximation), we will choose to
match an ADPH(2) distribution (with parameters p, β1, β2) to the first three factorial
moments of N∗ (f1, f2, f3). The moment-matching procedure of Chapter 11 results
in the DTMC with three states of Figure 12.1 (middle part), which approximates
the behavior of the random variable N∗.

12.4.2 From the DTMC to the SMP(3)

The above DTMC contains no information on the durations of the interdeparture
times. However, an output model to be used in a traffic-based decomposition must
reflect that interdeparture times consist of either a single service period or of the
sum of a residual arrival time and a service period. To this end, we interpret the
DTMC of the previous paragraph as a DTMC embedded in an SMP with three
states (SMP(3)) and attach a jump time distribution function conditioned on both
the source and target state to each transition (with transition probabilities pij, see
Figure 12.1 (bottom part)). The interdeparture time preceding the departure of
a customer associated with a move to state 1 or state 2 equals a service period
S with distribution function FS(t) (where S = S01 = S11 = S21 = S02 = S22).
I(N=1) and I(N>1) stand for the random variables of the idle periods following a busy
period with a single or more than one customer, respectively. The service period
of the first customer in a busy period is taken into account in the conditional jump
time distribution functions FI(N=1)+S00

(t) and FI(N>1)+S10
(t). This SMP(3) skeleton

distinguishes only two idle periods (as a simplification). Generally, an idle period
depends on the state of the input process right after the departure which finished the
previous busy period of the MAP/G/1(/K) queue. The state of the input process
at this instant, in turn, is influenced by the number of served customers in this busy
period.

12.4.3 From the SMP(3) to the output MAP

By utilizing PH representations of service times and idle periods, we now derive
compact output MAPs from the SMP(3) skeleton (Figure 12.2). The SMP(3) remains
invariant, if we reverse the order of the idle periods I(N=1) and I(N>1) and their
physically succeeding service times S00 and S10, respectively, while keeping the event
of departure at the end of each sum of random variables. In our MAP representation,
we now contract the services contained within transitions originating from the same

state into a single PH specification (α, T ) (S00, S01, S02 → 1st block row of D
(D)
0 ,

and analogously S10, S11 → 3rd block row of D
(D)
0 and S21, S22 → 5th block row
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of D
(D)
0 ). The interchange of random variables yields a more compact (and equally

precise) MAP:

D
(D)
0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T p00(−Te) · x
(N=1)
0 (I⊗e)

x
(N=1)
0 e

0 0 0

0 D
(N=1)
0 0 0 0

0 0 T p10(−Te) · x
(N>1)
0 (I⊗e)

x
(N>1)
0 e

0

0 0 0 D
(N>1)
0 0

0 0 0 0 T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(12.9)

D
(D)
1 =

∣∣∣∣∣∣∣∣∣∣

0 0 p01(−Te)α 0 p02(−Te)α

D
(N=1)
1 eα 0 0 0 0

0 0 p11(−Te)α 0 0

D
(N>1)
1 eα 0 0 0 0

0 0 p21(−Te)α 0 p22(−Te)α

∣∣∣∣∣∣∣∣∣∣

(12.10)

The MAPs (D
(N=1)
0 ,D

(N=1)
1 ) and (D

(N>1)
0 ,D

(N>1)
1 ) describe the idle periods after

a busy period with a single customer or more than one customer, respectively. The

probability vectors
x

(N=1)
0 (I⊗e)

x
(N=1)
0 e

and
x

(N>1)
0 (I⊗e)

x
(N>1)
0 e

are appropriate initial distrib-

utions (the term (I ⊗ e) reduces the dimension from mA ·mS to mA). If we want

to capture the full behavior of the input MAP (D
(A)
0 ,D

(A)
1 ) in the output model,

we may set D
(N=1)
0 = D

(N>1)
0 = D

(A)
0 and D

(N=1)
1 = D

(N>1)
1 = D

(A)
1 . Then the

descriptions of the idle periods only differ in their initial distributions and the output

130



MAP can be compressed to

D
(D)
0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

T 0 0 p00(−Te) · x
(N=1)
0 (I⊗e)

x
(N=1)
0 e

0 T 0 p10(−Te) · x
(N>1)
0 (I⊗e)

x
(N>1)
0 e

0 0 T 0

0 0 0 D
(A)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣

(12.11)

D
(D)
1 =

∣∣∣∣∣∣∣∣

0 p01(−Te)α p02(−Te)α 0
0 p11(−Te)α 0 0
0 p21(−Te)α p22(−Te)α 0

D
(A)
1 eα 0 0 0

∣∣∣∣∣∣∣∣
(12.12)

In the following, we outline how the unknown quantities are determined from the
MAP/PH/1(/K>1) queue.

Determining x
(N=1)
0 and x

(N>1)
0

As indicated by the notation, x
(N=1)
0 is the vector of the stationary probabilities

of ending a single-customer busy period in the QBD. Obviously (see also 12.3.3),

x
(N=1)
0 can be computed from

x
(N=1)
0 = z̃eA2

Vector x
(N>1)
0 is a compound analogue of x

(N=1)
0 for the idle period after a busy

period with more than one customer resulting from x
(N=1)
0 + x

(N>1)
0 = 1

x0ex0.

Moment fitting for the idle periods and service times

Unless the order of the output MAP becomes too large, (D
(N=1)
0 , D

(N=1)
1 ) and

(D
(N>1)
0 , D

(N>1)
1 ) are chosen identical to the input MAP matrices (D

(A)
0 , D

(A)
1 ).

The corresponding output model (12.11)/(12.12) has the order mA + 3 mS, which
is linear in mA and mS. Considering the second and third moments of the number
of customers served in a busy period only added mS additional states (compared
to [40]). If the distinction between I(N=1) and I(N>1) is completely ignored, we

will substitute
x0(I⊗e)

x0e for
x

(N=1)
0 (I⊗e)

x
(N=1)
0 e

and
x

(N>1)
0 (I⊗e)

x
(N>1)
0 e

in D
(D)
0 of (12.11),

which allows to find an even more concise output MAP. Then we might as well
match a low-order PH distribution (β,U (I)) to the first moments of the idle period
(preferentially an ACPH(2) one to the first three power moments). The residual
arrival time corresponds to the absorption time of a CTMC (with initial distribution
x0(I⊗e)

x0e ). So, it is itself a PH distribution with representation (
x0(I⊗e)

x0e ,D
(A)
0 ),

whose moments can easily be calculated. This results in the following replacements
in (12.11)/(12.12):

D
(A)
0 ← U (I) D

(A)
1 e ← −U (I)e

x0(I⊗e)
x0e ← β
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Figure 12.3: The dual tandem queue

Similar substitutions – typically of order 2 in form of an ACPH(2) distribution, unless
the squared coefficient of variation is less than 0.5) – can be performed for the idle
periods of the output model (12.9)/(12.10) (of order 2 mA + 3 mS) and in general
for possibly unnecessarily large PH service time distributions. Especially, when the
two types of idle periods need to be distinguished (for reasons of accuracy), the
application of moment matching to (12.9)/(12.10) often yields the most compact
approximation of the departure process.

The busy queue

A special situation arises, if the system almost never becomes empty, i.e., x0e ≈ 0.
Then, the output process can be modeled as a PH renewal process, where the PH
interarrival time distribution corresponds to the service time (α,T ) (either exact or
approximate).

12.5 Numerical experiments

In this section, we examine the output approximation (12.11)/(12.12) of the previous
section. We concentrate on the mean queue length E [Nt] at arbitrary time (see
[55, 63] for the computation for MAP/PH/1(/K) systems). In order to assess the
accuracy of the decomposition results, we perform simulations by means of the SPNL
component of TimeNET [84] with 99% confidence level and a maximum relative error
of 1%. We first study the dual tandem queue in Figure 12.3 taken from [40]. External
arrivals occur according to a bursty and nonrenewal MMPP with two states whose
parameters are given in the figure and result in the MAP notation

D
(A)
0 =

∣∣∣∣
−(r0 + λ0) r0

r1 −(r1 + λ1)

∣∣∣∣ and D
(A)
1 =

∣∣∣∣
λ0 0
0 λ1

∣∣∣∣ .

While the first queue processes requests in exponentially distributed service times
(with rate 2.0), the second queue (with infinite capacity) has an Erlang-2 service time
distribution of expectation 0.8. Since in the MAP-based decomposition the analysis
of the first node in a tandem queueing network will always be exact (except for
numerical errors), we focus on the mean queue length at the second node. In three
sets of experiments, we vary specifications at the first queue (i.e., buffer size, service
rate and mean arrival rate) in order to investigate their impact on the proposed
output approximation as observed in the queueing behavior of the downstream queue.

Table 12.1 lists simulation data and decomposition results for different values of
capacity K at the first queue. In [40], where the MAP-based decomposition ignores
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Simulation Decomposition Simulation Decomposition
K mql conf. int. mql rel. err. K mql conf. int. mql rel. err.
∞ 2.0401 ±0.0128 2.0795 +1.9% 10 1.2779 ±0.0090 1.2809 +0.2%

(results from ref. [40]: 1.8789 −7.9% 1.2671 −0.8%)
30 1.9696 ±0.0141 2.0157 +2.3% 6 0.9017 ±0.0086 0.8847 −1.9%
25 1.9199 ±0.0159 1.9540 +1.8% 4 0.6748 ±0.0036 0.6451 −4.4%
20 1.8083 ±0.0127 1.8380 +1.6% 3 0.5632 ±0.0045 0.5025 −10.8%
15 1.6068 ±0.0118 1.6287 +1.4% 2 0.4311 ±0.0023 0.3307 −23.3%

Table 12.1: Mean queue lengths (mql) at second node for the dual tandem queue
(varied K)

Series for varied parameter at first queue
service rate mean arrival rate

Simulation Decomposition Simulation Decomposition
ρ mql conf. int. mql rel. err. mql conf. int. mql rel. err.

0.1 2.8038 ±0.0219 2.5636 −8.6% 0.2032 ±0.0020 0.2035 +0.1%
0.2 2.3016 ±0.0155 2.3267 +1.1% 0.4809 ±0.0041 0.4880 +1.5%
0.3 1.7402 ±0.0170 1.8152 +4.3% 0.8187 ±0.0060 0.8422 +2.9%
0.4 1.2543 ±0.0095 1.3200 +4.6% 1.2542 ±0.0099 1.3120 +4.6%
0.5 0.9479 ±0.0073 0.9762 +3.0% 1.8458 ±0.0152 1.9696 +6.7%
0.6 0.7964 ±0.0052 0.8064 +1.3% 2.7272 ±0.0242 2.9567 +8.4%
0.7 0.7141 ±0.0060 0.7163 +0.3% 4.1579 ±0.0325 4.6005 +10.6%
0.8 0.6514 ±0.0045 0.6619 +1.6% 6.9917 ±0.0399 7.8729 +12.6%
0.9 0.6290 ±0.0055 0.6258 −0.5% 15.402 ±0.1299 17.573 +14.1%

Table 12.2: Mean queue lengths (mql) at second node for the dual tandem queue
(K = ∞)

higher moments of the number of customers served in a busy period, the considered
dual tandem queue is evaluated for K = ∞ and K = 10. Comparing rows 3 and 4
shows that an additional matching of the second and third moment of this random
variable N significantly improves the numerical accuracy (from −7.9% to +1.9% and
from −0.8% to +0.2%, respectively). At the same time, the order of the output MAP
approximations only increases from 4 to 5. Note that the orders of the exact output
MAPs are substantially larger (i.e., infinite for K = ∞ or mexact

D = mA(1 + KmS) =
22 for K = 10). Medium-sized and large capacities lead to satisfactory relative
errors, even though in cases K = 20, 15, 10, 6 the third (factorial) moment is set
to the closest permissible boundary value as outlined in Chapter 11. The largest
relative modification occurs for K = 15, where the true value f3 = 2098.0 is replaced
by 2222.9. Very small buffer sizes (see K = 2, 3) appear to be unfavorable to the
proposed output approximation. This drawback, however, need not be overrated,
since in these cases the exact output MAPs are usually so compact themselves that
they can directly be employed in the context of MAP-based decomposition (as it is
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q.- MAP Simulation Decomposition q.- MAP Simulation Decomposition
no. mD mql mql rel. err. no. mD mql mql rel. err.
1 8 0.2800 0.2804 +0.1% 6 38 0.2527 0.2680 +6.1%
2 14 0.2661 0.2716 +2.1% 7 44 0.2544 0.2671 +5.0%
3 20 0.2615 0.2706 +3.5% 8 50 0.2538 0.2662 +4.9%
4 26 0.2584 0.2698 +4.4% 9 56 0.2536 0.2654 +4.7%
5 32 0.2542 0.2689 +5.8% 10 (62) 0.2493 0.2646 +6.1%

Table 12.3: Mean queue lengths (mql) for 10-node tandem network

queue input MAP output MAP Simulation Decomposition
number order mA order mD mql conf. int. mql rel. err.

1 2 8 0.4630 ±0.0042 0.4635 +0.1%
2 32 41 0.7994 ±0.0078 0.8240 +3.1%
3 41 (44) 0.2726 ±0.0016 0.2799 +2.7%
4 41 (47) 0.2613 ±0.0024 0.2683 +2.7%

Table 12.4: Mean queue lengths (mql) for four-node queueing network

done for the MAP/PH/1/1 system, see [40]).

In the next two series of experiments, we look into the dependence of decompo-
sition results on the utility of the first queue, which is tuned in two ways: either
by changing the service rate of the exponential distribution or by uniformly scaling
all parameters of the arrival process so that its squared coefficient of variation (see
(12.1)) remains constant, while the mean arrival rate varies. Capacity K is fixed
to infinity. In the first series (left-hand side of Table 12.2), all other specifications
of the network of Figure 12.3 are left untouched so that the utility at the second
queue does not change. In the second series (right-hand side of Table 12.2), the
expectation of the Erlang-2 distribution is additionally altered to 0.5 so that we have
identical utilities at both queues. The last column suggests that the approximations
of the mean queue lengths at the second node deteriorate with increasing utility of
the first queue, which however cannot be confirmed in general with respect to the
fifth column. While overall results might be regarded acceptable, the deviations of
more than 10% for few values in the last column arouse the conjecture that in some
cases the fourth and fifth moments of the random variable N ought to be taken into
account, too.

An important feature of the proposed MAP output models, which is indispensible
for an efficient network decomposition, consists in their moderate orders. Table 12.3
demonstrates how these orders (see columns labeled mD) grow only linearly in a
tandem network of ten homogeneous infinite-buffer queues with Erlang-2 service
distributions (mean rate 1.9). The two-state MAP depicted in Figure 12.4 as the
arrival process to queue 1 also serves as the external input to the tandem network.
However, it is scaled to a mean arrival rate of 0.38 (with the squared coefficient of
variation kept at 8.1). The first two queues of this network are also analyzed by
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Figure 12.4: The four-node queueing network

MAP-based decomposition in [71]. Therein, MAP representations of order 134 for
the departure process of the first queue deliver excellent results for the mean queue
length at the second node. In order to proceed in the analysis of longer tandem
networks, more compact representations are required. In the proposed methodology,
the internal MAP sizes evolve according to the formula mD = mA +3 ·mS = mA +6
from queue to queue so that the output of the tenth queue in series is of order 62 only
(brackets indicate that this MAP is actually not used in the computations). In a
comparison between decomposition and simulation results (confidence intervals range
from ±0.0012 to ±0.0026), the analytic values come off well both quantitatively and
qualitatively. The mean queue lengths are slightly overestimated, but their falling off
due to decreasing squared coefficients of variation of the internal traffic is correctly
captured (unlike simulation, see queues 6/7).

Finally, we present a general four-node queueing network with splitting and merg-
ing (Figure 12.4) to emphasize the potential of an obvious decomposition approach to
such networks based on the output approximation of Section 12.4. Again two bursty
external inputs – MAPs of orders 2 and 4 with the given squared coefficients of vari-
ation (scv) – are taken from [71] with their mean rates being scaled to the stated
values. Besides the known specifications for the exponential and Erlang distribu-
tions – here Erlang-3 at queue 2 –, a mixed Erlang and a hyperexponential service
time distribution – as also used in [4] – are represented in PH notation in Figure
12.4 below the corresponding queues. They cover variabilities ranging from 1/3 to
11/9. Furthermore, routing probabilities and a finite buffer size are depicted. Table
12.4 collects the errors of the decomposition results (all below 3.1%) relative to the
simulated values along with the orders of the involved traffic descriptors. Note that
both splitting (invariant to MAP order) and merging (multiplies orders of involved
MAPs) are performed as exact operations. The data illustrates that the provided
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output approximation allows a reasonable trade-off between accuracy and efficiency.
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Chapter 13

Concluding remarks

This dissertation provides a collection of selected research results obtained since
1995. The subjects are selected such that they belong to two main research fields:
stochastic reward models, and state based techniques, but it was not intended to
introduce the width of any of these fields completely.

The “distance” among the selected research results varies as well. Some chapters
are closer to each others than to the other chapters of the same part. The notations
of these chapters are more or less unified, but the notations of the chapters are
independent in general.

Intensive research cooperation produced all of the introduced results. All results
were already published in international conference proceedings or journals previously
(as it is detailed in the associated thesis booklet), and parts of these publications
are repeated in this dissertation. Only the set of results presented in the associated
thesis booklet is meant to be the results of the author.

Last, but not least, I would like to thank the minutes of enjoy when we worked on
the introduced research problems with the co-authors of the papers summarized in
this dissertation: Andrea Bobbio, Armin Heindl, András Horváth, András Pfening
and Sándor Rácz. I am really glad to meet and work with these exceptional people.
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[9] A. Bobbio and A. Horváth. Petri nets with discrete phase type timing: A
bridge between stochastic and functional analysis. Electronic Notes in Theoret-
ical Computer Science, 52(3), 2001.
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Appendix A

List of notations

Ω Finite state space of the structure state process

Z(t) Continuous time finite state stochastic process

ri Reward rate in state i

W Work requirement, r.v.

C Completion time of the (random) work requirement W , r.v.

Ĉ(t) Distribution of the completion time of the work requirement W(
Ĉ(t) = Pr {C ≤ t}

)

C(w) Completion time of the deterministic work requirement w, r.v.

C(t, w) Distribution of C(w) C(t, w) = Pr {C(w) ≤ t}
W (w) Distribution of the work requirement W

W (w) = Pr {W ≤ w}
(

Ĉ(t) =

∫ ∞

a=0

C(t, w)dW (w)

)

B(t) Accumulated reward at time t, r.v.

B(t, w) Distribution of B(t)
B(t, w) = Pr {B(t) ≤ w}

P (0) Row vector of initial state probabilities

h Column vector of ones

A = {aij} Infinitesimal operator of continuous time Markov chains

ai = −aii =
∑

j∈Ω,j 6=i

aij

H Holding time of a regeneration period, r.v.

Q(t) = {Qij(t)} Kernel of semi-Markov process

Qij(t) = Pr {H ≤ t, Z(H) = j|Z(0) = i}
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K(t) = {Kij(t)} Global kernel of Markov regenerative process
Kij(t) = Pr {H ≤ t, Z(H) = j|Z(0) = i}

E(t) = {Eij(t)} Local kernel of Markov regenerative process
Eij(t) = Pr {H > t, Z(t) = j|Z(0) = i}

Π = {pij} One step state transition probability matrix of the embedded
Markov chain
pij = Pr {Z(H) = j|Z(0) = i}

F (t) → F ∗(s) Laplace transform pair

F (t) → F∼(s) Laplace-Stieltjes transform pair

Abbreviations

CTMC continuous time Markov chain

DTMC discrete time Markov chain

RTP regeneration time point

EMC embedded Markov chain

SMP semi-Markov process

MRP Markov regenerative process

LT Laplace transform

LST Laplace-Stieltjes transform

SRM stochastic reward model

MRM Markov reward model

prs preemptive resume

prd preemptive repeat different

pri preemptive repeat identical

PH phase type distribution

MAP Markovian arrival process

DPH discrete time PH

CPH continuous time PH
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