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Chapter 1

Introduction

The solution of reliability evaluation problems consist of model construction and
model analysis, where the model construction phase means the abstract description
of the real systems by a given description tool, while in the model analysis phase the
required measures of the model are derived. The reliability behaviour of real systems
can be generally described by a continuous time random process whose state space
are composed by the finite distinguishable states of the model.

Based on the well-known results available for the continuous time Markov chains
the Markovian models of systems have been applied for more than 30 years, although
in several cases these models yield only a rude representation of the reality1. The
introduction of the class of Phase Type distributions and its applications for the con-
version of non-Markovian systems into a continuous time Markov chain have provided
an important opportunity towards the analysis of the non-Markovian models since
the early 70th2. The other main direction in reliability modelling the consideration
of more complex stochastic processes is the subject of this study. The application
of semi-Markov processes for reliability analysis is widespread as well, but there are
only few known results obtained by the use of Markov Regenerative Processes.

While the traditional analysis problems included only the steady state and/or
the transient analysis of the reliability models, since the 70th the considered analysis
problems have been also extended for the performance-like analysis of these models
due to the introduction of reward variables.

Obviously, the evolution of the reliability modelling techniques is not separated
from the evolution of the scientific research fields in which the same theory of the
continuous time discrete state stochastic processes and their modelling tools are ap-
plied. Thus, the results achieved in queueing theory, and with a further application
step, in the performance analysis of communication networks and dependable com-
puter systems have always played significant role in the development of reliability
modelling and analysis, as well.

The key modelling tools considered in this study are the timed Petri Nets. They
have been widely applied in the stochastic modelling and simulation for a long time,

1Mentionable preliminaries in the application of Markovian reliability models are [56, 6] on the
field of generation and analysis of Markovian models and [51, 52, 53, 54, 55] on the field of network
reliability analysis.

2Preliminaries are summarized in [14, 17, 16].
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however, their transient analysis have been restricted to the cases in which the mark-
ing processes are continuous time Markov or semi-Markov ones. The first results for
the analysis of Petri nets with Markov regenerative marking processes appeared only
in 1993.

This study is basically devoted to the investigation of modelling opportunities
of system reliability, i.e. a class of stochastic processes with the so-called Generally
Distributed Transition Stochastic Petri Nets (GDT SPN). The numerical analysis
problems of the introduced results are not studied, only simple example with small
state space is evaluated. The study is organized as follows.

The following chapter gives an introduction to the considered stochastic processes
(i.e. semi-Markov processes, Markov regenerative processes) with the techniques ap-
plied throughout the later chapters. Appendix B contains some related results which
do not belong to the theoretical base of these processes, but which play important role
in their applications. A short introduction and survey of stochastic reward models
are discussed later on with an outlook in Appendix C.

New results about the measures of some special stochastic reward models are pre-
sented in Chapter 3. The considered stochastic processes are semi-Markov processes
and Markov regenerative processes with subordinated semi-Markov processes and
the results are given in transform domain in the former case and in integral equation
form in the latter case. In the first part of the chapter some subsets of Markov
regenerative processes with subordinated semi-Markov processes are taken into con-
sideration in order to obtain simpler results for the measures when the states are of
prs type. In the following sections (Section 3.2 - 3.4) the states of the models are only
prs, prd and pri type, respectively, and an absorbing group of states are considered
as well.

Chapter 4 contains the introduction of timed Petri nets and summarizes the
available results on their transient analysis including the recent results for timed
Petri nets with Markov regenerative marking processes.

Chapter 5 gives a more general approach to the analysis of Markov regenera-
tive stochastic Petri nets. The regenerative time points of marking processes are
introduced in the second section by the inspections of the age variables assigned to
each timed transition. Then the life cycle of transitions and the features of memory
policies are examined. The structural restrictions of Petri nets are classified which
provide that the regeneration periods can be analyzed by single reward models. A
method for the analysis of subordinated semi-Markov process is also described.

The potential application opportunities of the results are shown in Chapter 6 by
an example described in the language of queueing theory. The study is concluded in
Chapter 7.

Simple reliability examples are provided before the theoretical treatment. These
examples are not discussed in detailes in the study, they only show the practical
importance of the studied problems. The solution of the introduced simple examples
requires the application of the subsequent results.
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Chapter 2

Stochastic Reward Processes

Example 1:
Let us consider a reliability system of two operating machines (A and B) and one

repair man. Machine B has higher priority than machine A. The repair man immediately
starts the repair of the failed machine. If machine B fails during the repair of machine A,
the repair man preempts the repair of machine A and starts to repair machine B. There
are four states of this system:

• state 1: both of the machines are working,

• state 2: machine B is working and machine A is failed,

• state 3: machine A is working and machine B is failed,

• state 4: both of the machines are failed.

Case I: When both of the failure and repair times are exponentially distributed random
variables, the stochastic process over this state space is a continuous time Markov chain.

When the failure times of the machines are exponentially distributed random variables,
but their repair times are any other positive random variables the stochastic process
describes the behaviour of the system, depending on the property of the preempted
repair.

Case II: If the repair work on machine A done up to the preemption is lost, and the
repair starts from the beginning after the completion of the repair of machine B, then
the stochastic process is a semi-Markov process.

Case III: If the repair work on machine A done up to the preemption is resumed
after the completion of the repair of machine B, then the stochastic process is a Markov
regenerative process.

This chapter intends to provide a short introduction to the later studied subjects
and a summary of the ideas as well as the used notations.

Before introducing the concept of reward processes we discuss the considered
stochastic processes and their properties based on the pioneer work of Cinlar [29].
But according to the later studied analysis method we diverge a bit from the original
work in the following. The differences are emphasized in each definition.

3



2.1 Continuous time discrete state stochastic

processes with regeneration time points

In this work we pay special attention to the stochastic processes (Z(t)) defined over
a discrete state space (Ω), whose features can be characterized by the existence of
(random) time instants, at which the future of the stochastic process depends only on
its current state. Theoretically the time instants of this kind cover the past history
of the process, thus they are called regenerative time points1.

Definition 2.1 Tn is called a regenerative time point2 (RTP) if

E {f(Z(Tn + t1), . . . , Z(Tn + tm), ) |Z(Tn), Z(u), 0 ≤ u < Tn}

= E {f(Z(Tn + t1), . . . , Z(Tn + tm), ) |Z(Tn)}
for any 0 ≤ t1 ≤ . . . ≤ tm, and bounded function defined on Ωn.

This property is referred to as strong Markov property of the process at Tn taking
m = 1 ([29]).

The sequence of the RTPs plays special role in the study of stochastic processes.

Definition 2.2 The sequence of the random variables {Xn, Tn; n ≥ 0} is said to be
a (time homogeneous) Markov renewal sequence3 provided that

Pr {Xn+1 = x, Tn+1 − Tn ≤ t |X0, . . . , Xn, T0, . . . , Tn}

= Pr {Xn+1 = x, Tn+1 − Tn ≤ t |Xn}

= Pr {X1 = x, T1 − T0 ≤ t |X0}
for all n ≥ 0, x ∈ Ω and t ≥ 0.

It follows that the series of states {Xn; n ≥ 0} forms a Markov chain ([29]).
In the following we restrict the considered Markov renewal sequences to the ones
whose RTPs compose a strictly monotone increasing series (T0 < T1 < T2 < . . .).
We generally suppose that the studied process starts at T0 = 0.

Since we are interested in the probabilistic behaviour of the continuous time
stochastic processes during a positive period of time, we will not take care of the
states of the process visited for 0 duration of time.

Proposition 2.3 We will interpret the studied stochastic processes to be right con-
tinuous by Z(t) = Z ′(t+), t ≥ 0.

1Considering Example 1 any time instant of state transition to State 1 or State 3 is a regenerative
time point. The futher time instants of state transitions can also be regenerative time points
depending on the given case of the example.

2It is referred as regeneration time in [29] p. 298 for renewal processes.
3This sequence of random variables is called Markov renewal process in [29], but it is referred

to as Markov renewal sequence in some later works ([25, 24]).
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2.1.1 Semi-Markov processes

The time continuous stochastic process defined as the continuous time extension of
a Markov renewal sequence is called semi-Markov process.

Definition 2.4 Z(t) is a (homogeneous) semi-Markov process (SMP) if a
{Xn, Tn; n ≥ 0} Markov renewal sequence exists and

Z(t) = Xn , if Tn ≤ t < Tn+1 .

There are some obvious consequences of this definition:

• Tn, n ≥ 0 are RTPs of the process,

• there is no state transition between two consecutive RTPs,

• there can be RTP without real state transition (this case is considered as a
virtual state transition from state i to state i [47]).

From the definition of the time homogeneous Markov renewal sequence one can
argue that the probability

Pr {X1 = j, T1 − T0 ≤ t |X0 = i} , i, j ∈ Ω

plays a central role in the description of the Markov renewal sequences and the
corresponding probability

Qij(t) = Pr {Z(T1) = j, T1 ≤ t |Z(0) = i} i, j ∈ Ω

in the description of the SMPs as well. The matrix Q(t) = {Qij(t)} is called the
kernel of the SMP and summarizes all the information on the process that is neces-
sary for evaluating its probabilistic behaviour. However, it is not unique since there
can be different kernels describing the same SMP4.

The Markov chain {Xn; n ≥ 0} is called the embedded Markov chain (EMC)
of the SMP. According to this approach the time points Tn are called embedded
time points, since the embedded Markov chain is formed by sampling the SMP at
these time instants. The {Xn, Tn; n ≥ 0} Markov renewal sequence is also called the
embedded Markov renewal sequence.

The one step state transition matrix of the EMC (Π = {pij}) is derived from the
kernel as:

pij = Pr {Z(T1) = j |Z(0) = i} = lim
t→∞Qij(t) . (2.1)

For the purpose of the later studied subjects, we discuss some further features
of SMPs. During this discussion we diverge a bit from the usual way of analyzing
SMPs.

There are two possible interpretations of the evolution of a SMP:

• being in a given RTP, first, the next state is chosen from a discrete distribu-
tion (independent on the waiting time) and then the waiting time is sampled
considering the next state on a (generally) continuous distribution,

4See Appendix B.
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• being in a given RTP, first, the waiting time is sampled on a (generally) con-
tinuous distribution (independent on the next state), then the next state is
chosen on a discrete distribution considering the waiting time.

Let us define these distributions respectively based on the kernel of the SMP. The
(unconditional) distribution of the next state pij, which is sometimes referred as
switching probability, has been already introduced (2.1). The probability distribution
of the waiting time conditioned on the next state is written as

Hij(t) = Pr {T1 ≤ t |Z(T1) = j, Z(0) = i} =
Qij(t)

pij

,

the (unconditional) distribution of the waiting time is obtained as

Qi(t) = Pr {T1 ≤ t |Z(0) = i} =
∑

j∈Ω

Qij(t) ,

and finally the switching probability conditioned on the holding time is given by

pij(t) = Pr {Z(T1) = j |T1 = t, Z(0) = i} =

lim
∆→0

Pr {Z(T1) = j, t < T1 ≤ t + ∆ |Z(0) = i}
Pr {t < T1 ≤ t + ∆ |Z(0) = i} =

lim
∆→0

Qij(t + ∆)−Qij(t)

Qi(t + ∆)−Qi(t)
=

dQij(t)

dQi(t)
.

pij and Hij(t) are the functions for the description of the SMP according to the
first interpretation, while Qi(t) and pij(t) defines the distributions according to the
second one.

There are available results for the steady state analysis of a SMP in time domain.
We are mainly interested in the transient analysis and we note that the steady state
result can be obtained as a particular case of the transient description by t →∞5.

Let us denote the state transition matrix by V(t), whose elements are

Vij(t) = Pr {Z(t) = j |Z(0) = i} .

Theorem 2.5 The state transition probability (Vij(t)) satisfies the following equa-
tion [47]:

Vij(t) = δij [1−Qi(t)] +
∑

k∈Ω

∫ t

h=0
Vkj(t− h) dQik(h) (2.2)

5The applied analysis method gives the transform domain description of the system behaviour.
Hence the steady state results can be obtained without inverse transforming (by s → 0), while the
transient results can be obtained only by a numerical or a simbolical inverse transform method.
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Proof:
Based on the above defined properties of the SMP in the RTPs and by condition-

ing on the time to the next RTP (T1 = h) we have:

Vij(t |T1 = h) =





δij if : h > t

∑

k∈Ω

dQik(h)

dQi(h)
· Vkj(t− h) if : h ≤ t

(2.3)

where δij is the Kronecker delta6. In (2.3) two mutually exclusive events are defined.
If there is no RTP up to t the value of the state transition probability can be 1 (if
i = j) or 0 (if i 6= j). If the first RTP occurs before t a state transition (real or
virtual) happens and the state transition probability can be evaluated independently
from that time.

Towards the analysis of a SMP based on (2.3), the first step is the evaluation
of the unconditional state transition probabilities based on the distribution of T1,
which is Qi(t) :

Vij(t) =
∫ ∞

h=t
δij dQi(h) +

∫ t

h=0

∑

k∈Ω

Vkj(t− h) dQik(h) (2.4)

Equation 2.2 is obtained from Equation 2.4 by evaluating the first integral.

2

By solving this integral equation set we have the transient behaviour of a SMP
in time domain. The convolution in (2.2) suggests us to look for the solution also in
transform domain.

Let us denote the Laplace transform (LT) and the Laplace-Stieltjes transform
(LST) of F (t), t ≥ 0 as F ∗(s) and F∼(s) respectively7, where:

F ∗(s) =
∫ ∞

0
e−st F (t) dt and F∼(s) =

∫ ∞

0
e−st dF (t) .

The introduction of the second one is useful for the cases in which FX(t) is the
distribution function of a positive random variable X, because

F∼
X (s) = E

{
e−sX

}
.

By transforming (2.2) into LST domain we have:

V ∼
ij (s) = δij [1−Q∼

i (s)] +
∑

k∈Ω

Q∼
ik(s) V ∼

kj (s) (2.5)

6δij =
{

1 if : i = j
0 if : i 6= j

7Appendix A contains the main properties of these transforms.
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By rearranging (2.5) into matrix form we obtain:

V∼(s) = QD
∼(s) + Q∼(s)V∼(s) (2.6)

where QD
∼(s) is a diagonal matrix with elements {1−Q∼

i (s)}. Finally the solution
of (2.6) can be easily derived as:

V∼(s) = [I−Q∼(s)]−1 QD
∼(s) (2.7)

The [I −Q∼(s)]−1 matrix is called the Markov renewal kernel, and its elements
are called the Markov renewal functions in [29].

The transient analysis based on (2.7) requires the application of symbolical or
numerical inversion methods. However, the steady state results can be directly ob-
tained without the inversion as:

V(∞) = lim
t→∞V(t) = lim

s→0
V∼(s) (2.8)

where V(∞) is the steady state probability matrix.

Continuous Time Markov Chain

Let us introduce as a special SMP the Continuous Time Homogeneous Markov Chain
(CTMC) by its special property, that every time instant t ≥ 0 is a RTP.

Definition 2.6 Z(t) is a Continuous Time Homogeneous Markov Chain if

Pr {Z(tn+1) = xn+1 |Z(tn) = xn, Z(tn−1) = xn−1, . . . , Z(t1) = x1}

= Pr {Z(tn+1) = xn+1 |Z(tn) = xn}

= Pr {Z(tn+1 − tn) = xn+1 |Z(0) = xn}

for all 0 ≤ t1 ≤ . . . ≤ tn−1 ≤ tn ≤ tn+1 and x1, . . . , xn, xn+1 ∈ Ω.

With reference to [47], we just mention that a CTMC can be described by its
(time independent) infinitesimal generator matrix A, whose aij; i 6= j elements are
the transition rates from state i to state j (aij ≥ 0; i 6= j ) and whose diagonal
elements are aii = −∑

i∈Ω,i6=j aij (aii ≤ 0). The following (canonical) kernel defines
a CTMC with infinitesimal generator matrix A:

Qij(t) =





aij

−aii

(1 − eaii t) if : i 6= j

0 if : i = j

(2.9)
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2.1.2 Markov regenerative processes

In this subsection we introduce a more general stochastic process that for t > 0
contains RTPs as well, but state transitions between any two consecutive RTPs8 are
allowed.

Definition 2.7 Z(t) is a (homogeneous) Markov regenerative process (MRP)
if there exists a Markov renewal sequence {Xn, Tn; n ≥ 0} that

Pr {Z(Tn + t1) = x1, . . . , Z(Tn + tm) = xm |Z(Tn), Z(u), 0 ≤ u < Tn} =

Pr {Z(Tn + t1) = x1, . . . , Z(Tn + tm) = xm |Z(Tn)}

for all m ≥ 1, 0 < t1 < . . . < tm and x1, . . . , xm ∈ Ω.

This definition can be expressed in words as, Z(t) is a MRP if there exists a Markov
renewal sequence {Xn, Tn; n ≥ 0} of random variables such that all the finite di-
mensional distributions of {Z(Tn + t); t ≥ 0} given {Z(u), 0 ≤ u < Tn, Xn = i} are
the same as those of {Z(t); t ≥ 0} given X0 = i.

On the other hand, from the homogeneity of the process, Definition 2.7 states that
a MRP process viewed from two RTPs with the same states (for example Z(t− Tn)
and Z(t−Tm) if Xn = Xm) forms the probabilistic replica of each other. The Markov
renewal sequence {Xn, Tn; n ≥ 0} is sometimes referred to as the embedded Markov
renewal sequence of the MRP.

Following the line of the former subsection we discuss the transient analysis of
MRPs. At the beginning let us define the state transition probabilities of the process
before the next RTP

Gij(t) = Pr {Z(t) = j |T1 > t, Z(0) = i} ,

and the probabilities which describe the occurrence of the next RTP

Kij(t) = Pr {Z(T1) = j, T1 ≤ t |Z(0) = i} .

The matrix K(t) is the kernel of the embedded Markov regenerative sequence
({Xn, Tn; n ≥ 0}) and plays similar role as Q(t) for SMPs, but in order to emphasize
the difference from the kernel of a SMP we use this different notation. Hence, the
switching probability conditioned on the time to the next RTP is:

pij(t) = Pr {Z(T1) = j |T1 = t, Z(0) = i} =
dKij(t)

dKi(t)
.

In order to use the usual quantities ([29]) let us introduce the following notation:

Eij(t) = Gij(t) [1−Ki(t)] = Pr {Z(t) = j |T1 > t, Z(0) = i}Pr {T1 > t}

= Pr {Z(t) = j, T1 > t, |Z(0) = i} ,

8It is the key property by which the class of MRPs is more general than the class of SMPs.
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Theorem 2.8 The state transition probability (Vij(t)) satisfies the following equa-
tion [29]:

Vij(t) = Eij(t) +
∑

k∈Ω

∫ t

h=0
Vkj(t− h) dKik(h) (2.10)

Proof: Let us define the state transition probabilities conditioning on T1 = h :

Vij(t |T1 = h) =





Gij(t) if : h > t

∑

k∈Ω

dKik(h)

dKi(h)
· Vkj(t− h) if : h ≤ t

(2.11)

In (2.11), similarly to (2.3) two mutually exclusive events are defined. If there is no
RTP up to t, Gij(t) is the probability of the state transition by its definition. If there
is at least one RTP before t the process jumps to the next regeneration state (which
can be i as well in general) according to the switching probabilities and due to the
property of the RTPs, the state transition probability is evaluated from that time.

By evaluating the unconditional state transition probability based on the distri-
bution of T1 (Ki(t)) (2.11) becomes:

Vij(t) =
∫ ∞

h=t
Gij(t) dKi(h) +

∫ t

h=0

∑

k∈Ω

Vkj(t− h) dKik(h)

= Gij(t) [1−Ki(t)] +
∑

k∈Ω

∫ t

h=0
Vkj(t− h) dKik(h)

(2.12)

Equation 2.12 yields Equation 2.10 by substituting Eij(t) for Gij(t) [1−Ki(t)] .

2

The solution of (2.10) can be performed in the same manner as (2.2). The trans-
formation of (2.10) into LST domain results in:

V ∼
ij (s) = E∼

ij (s) +
∑

k∈Ω

K∼
ik(s) V ∼

kj (s) (2.13)

whose matrix form is:

V∼(s) = E∼(s) + K∼(s)V∼(s) (2.14)

and the matrix form solution can be written as:

V∼(s) = [I−K∼(s)]−1 E∼(s) (2.15)

Equations (2.10) − (2.15) are the usual closed form equations for the MRPs,
and matrices K(t) (called external kernel) and E(t) (called internal kernel) are
the usual description tools of a MRP. Similarly to the SMP case, the external kernel
K(t) is not unique, because of the possibility of having identical states in consecutive
RTPs9.

For the steady state solution we refer to (2.8).
The evolution of MRPs can be divided into independent parts by the RTPs.

9See Appendix B for canonical representation of MRPs.
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Definition 2.9 The stochastic process (denoted by Zi(t)) subordinated to a MRP
starting from state i in a RTP up to the next RTP is the restriction of the MRP Z(t)
for t ≤ T1 given Z(T0) = i; T0 = 0 :

Zi(t) = [Z(t) : 0 ≤ t ≤ T1, Z(0) = i]

referred to as the subordinated process of state i.

In this way, the evolution of a MRP is composed of an internal evolution inside
the subordinated process (described by E(t)) and an external evolution due to the
occurrence of the RTPs (described by K(t)).

2.1.3 Determined processes

In the rest of this study different properties of stochastic processes are studied, and
for this purpose it is very important to see how much the sources of information on
the considered stochastic process defines its properties.

Definition 2.10 A stochastic process is said to be determined by a given descrip-
tion tool if all of its finite dimensional distributions

Pr {Z(t1) ≤ x1, . . . , Z(tm) ≤ xm |Z(0) = x0}

(for all m ≥ 1, 0 ≤ t1 ≤ . . . ≤ tm and x0, x1, . . . , xm ∈ Ω), can be derived based on
the description tool.

The CTMCs, and SMPs are determined by their infinitesimal generators (A) and
kernels (Q(t)), respectively.

A MRP given by its external and internal kernels, K(t) and E(t) respectively
is not determined, since the subordinated process is described only by the state
probabilities

Gij(t) = Pr {Z(t) = j |T1 > t, Z(0) = i} =
Eij(t)

1−Ki(t)

which corresponds to case m = 1 of Definition 2.10.
The external evolution of a MRP (i.e. the occurrence of the RTPs and the

states in RTPs) is indeed the evolution of the embedded Markov renewal sequence.
This embedded Markov renewal sequence is determined by its kernel K(t), hence a
MRP can become determined by its external kernel and by a description tool which
determines the subordinated process. It is the case when the subordinated process is
a CTMC determined by A and when the subordinated process is a SMP determined
by Q(t); and moreover the subordinated process can be a determined MRP as well.

2.2 Introduction to Stochastic Reward Processes

Example 2:

11



Let us consider a reliability system of one machine and one repair man. The repair
man immediately starts the repair of the machine, when it fails.

The company that sold the machine has to pay punishment for the time during the
machine is down.

How much punishment should the company pay in a year?
When does the amount of punishment exceed 10.000 UC (unit of currency)?

The adopted modelling framework consists in describing the behaviour of the
system configuration in time by means of a stochastic process, called the structure-
state process, and by associating to each state of the structure-state process a non-
negative real constant representing the effective working capacity or performance
level or cost or stress of the system in that state. The real variable associated
to each structure-state is called the reward rate [47]. The structure-state process
together with the reward rates forms the Stochastic Reward Model (SRM) [80].

Let the structure-state process Z(t) (t ≥ 0) be a (right continuous) stochastic
process defined over a discrete and finite state space Ω of cardinality n. Let f be a
non-negative real-valued function defined as:

f [Z(t)] = ri ≥ 0 , if Z(t) = i (2.16)

f [Z(t)] represents the instantaneous reward rate associated to state i.

Definition 2.11 The accumulated reward B(t) is a random variable which rep-
resents the accumulation of reward in time.

During the sojourn of Z(t) in state i between t and t + δ, B(t) increases by ri δ.
B(t) is a stochastic process that depends on Z(u) for 0 ≤ u ≤ t [29]. However, a
transition in Z(t) may induce a modification in the accumulation process depending
whether the transition entails a loss of accumulated reward , or no loss of accumulated
reward10. A transition which does not entail any loss of reward already accumulated
by the system is called preemptive resume (first transition on Figure 2.1), and its
effect on the model is that the functional B(t) resumes the previous value in the new
state. A transition which entails the loss of reward accumulated by the system is
called preemptive repeat (second and third transitions on Figure 2.1), and its effect
on the model is that the functional B(t) is reset to 0 in the new state.

A state whose outgoing transitions are all of preemptive resume type is called
a preemptive resume (prs) state, while a state whose outgoing transitions are all of
preemptive repeat type is called a preemptive repeat (prt) state.

A possible realization of the accumulation process B(t) is shown in Figure 2.1.
State j is a preemptive resume state while state i and k are preemptive repeat states.

The complementary question concerning the reward accumulation of SRMs is the
question of the time for completing a given (possibly random) work requirement (i.e.
time to accumulate the required amount of reward).

10The class of the discussed SRMs is much wider [47, 85, 81], but we restrict our attention to the
later studied cases.
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Figure 2.1: The behaviour of the functional B(t) versus time.

Definition 2.12 The completion time C is a random variable representing the
time to accumulate a reward requirement equal to a random variable W :

C = min [t ≥ 0 : B(t) = W ] .

C is the time at which the work accumulated by the system reaches the value W
for the first time. Hence, W acts as an absorbing barrier for the functional B(t).
With reference to Figure 2.1, the completion time is the time at which B(t) hits the
barrier W for the first time and is absorbed.

We assume, in general, that W is a random variable with distribution W (w)
with support on (0, ∞). The degenerate case, in which W is deterministic and the
distribution W (w) becomes the unit step function U(w − wd), can be considered as
well. When W is a random variable and the preemption policy is prt, two cases
arise depending whether the repeated task has the identical work requirement as the
original preempted task (preemptive repeat identical (pri) - policy) (second transition
on Figure 2.1), or a different work requirement sampled from the same distribution
(preemptive repeat different (prd) - policy) (third transition on Figure 2.1). In the
latter case, each when the functional B(t) goes to zero, the barrier height W is
resampled from the same distribution W (w), while in the former case W maintains
an identical value.
For a barrier height W = w, the completion time C(w) is defined as:

C(w) = min [t ≥ 0 : B(t) = w] . (2.17)

Let C(t, w) be the Cdf of the completion time when the barrier height is w:

C(t, w) = Pr {C(w) ≤ t} (2.18)

The completion time C of a SRM with prs and pri transitions is characterized by
the following distribution:

Ĉ(t) = Pr {C ≤ t} =
∫ ∞

0
C(t, w) dW (w) (2.19)
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The distribution of the completion time C(t, w) incorporates the effect of a ran-
dom variation of the execution speed consequent to a degradation and reconfigura-
tion process, combined with the effect of the preemption and recovery policy on the
execution of the task.

The following relationships between the different preemption policies can be easily
established. If the work requirement W is an exponential random variable, the two
policies prs and prd give rise to the same completion time (due to the memoryless
property of the exponential distribution, the residual task requirement under the prs
policy coincides with the resampled requirement under the prd policy). On the other
hand, if W is deterministic, the two policies pri and prd are coincident (resampling
a step function provides always the same constant value).

Moreover, assuming that the structure-states are all of prs type, so that no loss
of reward occurs, the distribution of the completion time is closely related to the
distribution of the accumulated reward by means of the following relation:

Pr {B(t) ≤ w} = Pr {C(w) ≥ t} (2.20)

2.3 A survey of SRMs applied for analyzing de-

pendable systems

Kulkarni et al. [60] derived the closed form Laplace transform equations of C(t, w)
when Z(t) is a CTMC and all the states belong to the same preemption class. The
extension to a semi-Markov Z(t) process whose state space is partitioned into the
three preemption classes has been considered in [61]. Bobbio and Trivedi [19] studied
the case where Z(t) is a CTMC, the work requirement W is a phase type (PH)
random variable11 [74] and the task execution policy is a probabilistic mixture of prs
and prd policies. The combination of prs and pri policies has been investigated in
[21, 22] having as an object the evaluation of the completion time of a program on
a gracefully degradable computing system.

The properties of stochastic reward processes have been studied since a long
time [66, 29, 57, 58, 47], however, only recently, SRMs have received attention as
a modelling tool in performance/reliability evaluation. Indeed, the possibility of
associating a reward variable to each structure state increases the descriptive power
and the flexibility of the model.

Different interpretations of the structure-state process and of the associated re-
ward structure give rise to different applications [69]. Common assignments of the
reward rates are: execution rates of tasks in computing systems (the computational
capacity) [5, 84], number of active processors (or processing power) [8, 42], through-
put [68, 38, 45], average response time [48, 59, 63] or response time distribution
[86, 79, 72].

To point out the reliability aspects, one of the most important interpretations is
the accumulation of the stress of a real systems in the different down states. It is

11A random variable is said to be a phase type random variable, if it is the time to reach the
absorbing state group of a finite state continuous time Markov chain. The distribution function of
phase type random variables are rational functions in Laplace transform domain.

14



often the case in the practical reliability systems [76, 34, 40, 78, 82]. For example in
a nuclear power plant the effect of the breakdown depends on the leaked radiation
rather than on the state of the system. Moreover the most important measures of
the classical reliability theory [4] can be viewed as a particular case of SRM obtained
by constraining the reward rates to be binary variables.

Two main different points of view have been assumed in the literature when
dealing with SRM for degradable systems [60]. In the system oriented point of view
the most significant measure is the total amount of work done by the system in
a finite interval. The accumulated reward is a random variable whose distribution
function is sometimes called performability [67]. Various numerical techniques for
the evaluation of the performability have been investigated in recent papers: [68, 49,
32, 41, 83, 35]. In the user oriented (or task oriented) point of view the system is
regarded as a server, and the emphasis of the analysis is on the ability of the system
to accomplish an assigned task in due time. Consequently, the most characterizing
measure becomes the probability of accomplishing an assigned service in a given
time. The task oriented point of view is a more direct representation of the quality
of service.

Gaver [37] analyzed the distribution of the completion time for a two state server
with different mechanisms of interruption and recovery policies. Extensions to the
above model were provided in [75], while the completion time problem for fault
tolerant computing systems was addressed in [20]. A unified formulation to the
system oriented and the user oriented point of view was provided by Kulkarni et
al. in [60, 61, 77]. An alternative interpretation of the completion time problem
can be given in terms of the hitting time of an appropriate cumulative functional
[29] against an absorbing barrier equal to the work requirement. The definition of a
cumulative functional was first suggested by Kulkarni et al. [60] and then explicitly
exploited in [13], where the completion time was modelled as a first hitting time
against an absorbing barrier. This interpretation leads the above problem into the
main stream of absorption problems in stochastic models and has proved to be useful
in association with Stochastic Petri nets [9] and with the extension to multi-reward
models [10, 13].

2.3.1 Classification of the SRM problems

To characterize the SRM problems we introduce a structure of the considered para-
meters.

Stochastic process The stochastic behaviour of the structure-state process gains
a significant importance at the first sight. SRMs of the well behaved stochastic
processes (CTMC, SMP) are detailed in several above referred papers [60, 61,
77, 85], but the analysis when the structure-state process is a MRP can be
considered as a new issue of this work.

Preemption policy The effect of the state transitions, which can be prs, prd and
pri, can depend on several parameters. The existence of the different policies in
a single model increases its modelling power on the one hand, but it increases
the complexity of the analysis on the other hand. This work does not discuss
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models in which the different policies are allowed simultaneously, however, there
are models studied exclusively with prs, prd and pri states.

Evaluated measure The analysis of SRMs means indeed two analysis problems,
i.e. evaluation of the distribution of the accumulated reward and of the com-
pletion time. For the below discussed Petri Net analysis purposes this work
includes the study of both problems.

Absorbing subset of states There are practically important modelling problems
in which the entrance of the structure state process in a special subset of
states stops the accumulation of further reward independent of the later life
of the model. For the purpose of the analysis a subset of this kind can be
considered as an absorbing one. To have general results we suppose that our
model can contain an absorbing subset of states. Hence the state space without
the absorbing subset of states can be analyzed as a special case.

State dependent measures An other interesting approach of reward models is
the ”state dependent” analysis of the above introduced measures. This kind of
measures are defined as:

• the probability of completion in a given state before t

• the probability of being in a given state at time t suppose that C > t

Some state dependent measures are introduced and analyzed in Section 5.6 for
the first time (including the mentioned ones), but some other was introduced
in [61].
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Chapter 3

Analysis of reward Markov
regenerative process

Example 3:
Let us consider Example 1. The company that sold the machines has to pay punish-

ment for the time during any machine is down. The punishment is different in State 2,
3 and 4.

How much punishment should the company pay in a year?
When does the amount of punishment exceed 10.000 UC?

Let us consider these problems for Case III of Example 1.

This chapter summarizes the analysis of some of the considerable cases of the
SRMs. The analyzed cases are chosen according to the purposes of the later studied
problems, but the introduced methods and results can be extended to the evaluation
of the similar measures of the processes not included in this study1. The subsections
are organized from the general problems (MRPs) to the special ones (SMPs). At the
end special cases are taken into consideration.

3.1 Completion time of a reward MRP with sub-

ordinated semi-Markov processes and with prs

states

The aim of this section is the evaluation of the distribution function of the completion
time of reward MRPs, but there are two main problems:

• The K(t) and E(t) matrices of a MRP do not contain enough information
for the evaluation of the distribution of the completion time and the accumu-
lated reward since only the state probabilities of the subordinated processes
are known by them2.

1An extended manuscript is available with the analysis of further measures.
2Only the mean of the accumulated reward can be evaluated based on K(t) and E(t). See

Appendix C.
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• In the applied analysis method the reward accumulation is evaluated state
transition by state transition. The occurrence of the next state transition of a
MRP depends on several reasons determined by the subordinated process, the
last RTP, the last regeneration state and the present state.

The analysis of the distribution of the completion time and of the accumulated
reward requires a complete description of the structure state process. Let us take
into consideration the case when the subordinated processes are SMPs with given
kernels Qj(t) = {Qj

ik(t)} (for subordinated process starting from state j). In this
way, the distribution of the sojourn time of the states inside a regeneration period
are known, and the analysis of the completion time becomes possible.

The internal kernel E(t) of a MRP of this kind is defined by its external kernel
K(t) and by the kernels of the subordinated processes Qj(t) as follows:

Eij(t) = V i
ij(t)[1−Ki(t)] (3.1)

where V i
ij(t) is the ij element of the state transition matrix of the subordinated

process starting from state i, which can be evaluated based on Qj(t) by Equation
(2.7).

Due to the second problem of the evaluation of the completion time a complicated
measure is defined which includes all of the information describing the occurrence of
the next state transition of the process.

Let us introduce

Cj
i (t, w, b) = Pr(C(w) ≤ t|Z(−b) = j, Z(0) = i, T0 = −b, T1 > 0)

where C(w) is the time to complete a work requirement equal to w, b is the time
passed from the last regeneration time point T0, j is the last regeneration state (i.e.
Z(T0) = j).

In this way, Cj
i (t, w, b) is the probability that the completion time C(w) is not

greater than t if the reward accumulation starts at time 0, inside the regeneration
period started in state j at time −b.

Theorem 3.1 For the completion time (Cj
i (t, w, b)) the following equation holds:

Cj
i (t, w, b) = U

(
t − w

ri

) [
1−Kj(

w

ri

+ b)
] [

1−Qj
i (

w

ri

)
]

+
∫ w/ri+b

h=b

∑

k∈Ω

Ck
k (t− (h− b), w − (h− b)ri, 0)

[
1−Qj

i (h− b)
]
dKjk(h)

+
∫ w/ri

g=0

∑

k∈Ω

Cj
k(t− g, w − g ri, b + g) [1−Kj(g + b)] dQj

ik(g)

(3.2)

Proof: Conditioning on the time duration of the regeneration period H = T1−T0 =
h and on the time to the next transition in the subordinated process G = g , let us
define:
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Cj
i (t, w, b|H = h, G = g) =





U
(
t − w

ri

)

if : (h− b) ri ≥ w and g ri ≥ w

∑

k∈Ω

dKjk(h)

dKj(h)
· Ck

k (t− (h− b), w − (h− b)ri, 0)

if : h− b ≤ g and (h− b) ri < w

∑

k∈Ω

dQj
ik(g)

dQj
i (g)

· Cj
k(t− g, a− gri, b + g)

if : g < h− b and g ri < w
(3.3)

where U(t) is the unit step function. In (3.3), three mutually exclusive events are
identified. If ri 6= 0 and (h − b) ri ≥ w and g ri ≥ w, the completion time equals
w/ri. If (h − b) ri < w and (h − b) < g then the regeneration period completes
and a transition occurs to state k with probability dKjk(h)/dKj(h) and the residual
service (w − (h− b)ri) should be accomplished in a new regeneration period starting
from state k at time (t − (h − b)). If g ri < w and g < (h − b) then a transition
occurs inside the subordinated process to state k with probability dQj

ik(g)/dQj
i (g)

and the residual service (w − g ri) should be accomplished starting from state k at
time (t − g) still inside the same regeneration period.
The mean of the conditional expression in Equation (3.3) with respect to H is:

Cj
i (t, w, b |G = g) =





∫ w/ri+b

h=b

∑

k∈Ω

Ck
k (t− (h− b), w − (h− b)ri, 0) dKjk(h)

+ U
(
t − w

ri

) [
1−Kj(

w

ri

+ b)
]

if : g ri ≥ w

∫ g+b

h=b

∑

k∈Ω

Ck
k (t− (h− b), w − (h− b)ri, 0) dKjk(h)

+
∑

k∈Ω

dQj
ik(g)

dQj
i (g)

· Cj
k(t− g, w − g ri, b + g) [1−Kj(g + b)]

if : g ri < w
(3.4)

and the mean of Cj
i (t, w, b |G = g) in (3.4) is:
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Cj
i (t, w, b) = U

(
t − w

ri

) [
1−Kj(

w

ri

+ b)
] [

1−Qj
i (

w

ri

)
]

+
∫ w/ri+b

h=b

∑

k∈Ω

Ck
k (t− (h− b), w − (h− b)ri, 0) dKjk(h)

[
1−Qj

i (
w

ri

)
]

+
∫ w/ri

g=0

∫ g+b

h=b

∑

k∈Ω

Ck
k (t− (h− b), w − (h− b)ri, 0) dKjk(h) dQj

i (g)

+
∫ w/ri

g=0

∑

k∈Ω

Cj
k(t− g, w − g ri, b + g) [1−Kj(g + b)] dQj

ik(g)

(3.5)
Equation (3.2) is obtained from (3.5) by changing the order of the integrals.

2

The integral equation set (3.2) gives the distribution of the completion time of
a MRP whose subordinated processes are SMPs. The evaluation of (3.2) in general
cases, is very complicated, however we can study two restricted classes of reward
MRPs, which provide tractable results.

3.1.1 Memoryless regeneration periods

Example 4:
Let us consider a reliability system with one machine and one repair man. Both of

the failure and repair times are exponentially distributed random variables. The company
that sold the machine has to pay punishment for the time interval during the down time
exceeds a given (random) limit.

When does the amount of punishment exceed 10.000 UC?

The main difficulty of the evaluation of Cj
i (s, w, b) is the fact that it depends

on the time passed from the beginning of the regeneration period. If the sojourn
time of the regeneration period is memoryless (i.e. exponentially distributed) than
the analysis of the completion time becomes simpler since the dependence of the
future on the past history of the system in the embedded points of the subordinated
processes and in the regeneration points is comprised by two discrete variables which
are the identifiers of the present state and the initial state of the subordinated process.

Let us define

Cj
i (t, w) = Cj

i (t, w, 0) = Pr(C(w) ≤ t|Z(T0) = j, Z(0) = i, T0 ≤ 0, T1 > 0)

for the completion time of a MRP of this kind.

Corollary 3.2 For Cj
i (t, w) the following transform domain equation holds:
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Cj∼
i (s, w) =

e−(s+λi) w / ri

[
1−Qj

i (
w

ri

)
]

+
∫ w/ri

h=0
e−s h

∑

k∈Ω

Ck∼
k (s, w − h ri)

[
1−Qj

i (h)
]
dKjk(h)

+
∫ w/ri

g=0
e−(s+λi) g

∑

k∈Ω

Cj∼
k (s, w − g ri) dQj

ik(g)

(3.6)

Proof:
Conditioning on the time to the next regeneration time point H = T1 = h and

on the time to the next transition in the subordinated process G = g , let us define:

Cj
i (t, w|H = h, G = g) =





U
(
t − w

ri

)

if : h ri ≥ w and g ri ≥ w

∑

k∈Ω

dKjk(h)

dKj(h)
· Ck

k (t− h,w − hri)

if : h ≤ g and h ri < w

∑

k∈Ω

dQj
ik(g)

dQj
i (g)

· Cj
k(t− g, w − gri)

if : g < h and g ri < w

(3.7)

The mean of the conditional completion time in Equation (3.7) with respect to H
and G is:

Cj
i (t, w) =

U
(
t − w

ri

) [
1−Kj(

w

ri

)
] [

1−Qj
i (

w

ri

)
]

+
∫ w/ri

h=0

∑

k∈Ω

Ck
k (t− h,w − h ri)

[
1−Qj

i (h)
]
dKjk(h)

+
∫ w/ri

g=0

∑

k∈Ω

Cj
k(t− g, w − g ri) [1−Kj(g)] dQj

ik(g)

(3.8)

For an exponentially distributed regeneration period starting from state j
Kj(t) = 1 − e−λjt. By using this fact and by taking the Laplace-Stieltjes trans-
form with respect to t (3.6) is obtained.

2
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3.1.2 Embedded Reward SMP

Example 5:
Let us consider Example 1 with Case III. The company that sold the machines has to

pay punishment for the time during any machine is down. The punishment is the same
in State 2, 3 and 4.

How much punishment should the company pay in a year?
When does the amount of punishment exceed 10.000 UC?

In the above MRPs the state transition inside the regeneration periods of the
MRPs plays important role in the amount of the accumulated reward. There are
special Markov regenerative reward processes in which the internal state transitions
do not effect the process of reward accumulation.

An MRP whose regenerative periods have constant reward rates independent of
the state available in the given regenerative period forms a simple SMP with kernel
K(t) from the point of view of the reward accumulation.

This requirement can be formulated by the non-zero elements of the E(t) matrix
and by the reward rates:

• A Markov regenerative reward process fits the requirements of this class if for
all j for which Eij(t) > 0 for any t (i.e. state j available in the regeneration
period) rj = ri, being ri the reward rate at the beginning of the regeneration
period.

Starting the reward accumulation in a regeneration time point let us define

Ci(t, w) = Pr(C(w) ≤ t|Z(T0) = i)

for the completion time of a MRP of this kind.

Corollary 3.3 The completion time of a MRP of this kind is [61, 15]:

C∼∗
i (s, v) =

ri [1 − K∼
i (s + v ri) ]

s + v ri

+
∑

k∈Ω

K∼
ik(s + v ri) C∼∗

k (s, v) (3.9)

Proof: Conditioning on the time to the next regeneration time point H = T1 = h

Ci(t, w|H = h) =





U
(
t − w

ri

)
if : h ri ≥ w

∑

k∈Ω

dKik(h)

dKi(h)
· Ck(t− h,w − hri) if : h ri < w

(3.10)

Evaluating the mean of Ci(t, w|H = h) taking the Laplace-Stieltjes transform with
respect to t and taking the Laplace transform with respect to w (3.10) becomes (3.9).

2
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3.2 Analysis of SRMs with absorbing state group

and with prs states

Example 6:
Let us consider a reliability system of three operating machines (A, B and C) and

one repair man. Machine C has higher priority than machine A and B, while machine
B has higher priority than machine A. The repair of a lower priority machine is always
interrupted by the failures of a higher priority machine.

The failure times of the machines are exponentially distributed random variables, but
their repair times are any other positive random variables. The repair work on a lower
priority machine done up to the preemption is resumed after the completion of the repair
of higher priority machines.

The company that sold the machines has to pay punishment for the time during any
machine is down. The punishment is different for the different machines. The contract
is given up if all of the three machines are failed at the same time.

How much punishment should the company pay in a year in the frame of the contract?
When does the amount of punishment exceed 10.000 UC?

A stochastic process with prs states accumulates continuously the reward without
any loss of the accumulated reward; thus in every realization of the stochastic process
the accumulated reward up to t ( B(t) ) is a monotonically increasing function.

3.2.1 MRP with subordinated SMPs

In this subsection we take into consideration MRP whose subordinated processes are
SMPs with finite state space Ω partitioned in two exhaustive and mutually exclusive
subsets R and Rc. The considered reward accumulation starts at time 0 in any
state of R at a regeneration time point or in an embedded time point of one of the
subordinated SMP and stops if it enters Rc or if it reaches the required reward limit
i.e. it completes. There is no state transition after the stop of the process.

The reward accumulation is restricted to subset R, and Rc can be considered as
an absorbing subset. There is no reward accumulation in Rc: i.e. ri = 0 for i ∈ Rc.
It follows from the above definition of the process that there is no transition inside
the Rc subset.

Let us define the truncated distribution of the completion time for any state
i, j ∈ R as

Cj
i (t, w, b) = Pr(C(w) ≤ t |Z(−b) = j, Z(0) = i, T0 = −b, T1 > 0)

A jump from R to Rc before the completion disables the further reward accu-
mulation and the completion. Thus Cj

i (t, w, b) is a defective distribution function
( lim
t→∞Cj

i (t, w, b) ≤ 1).

Theorem 3.4 The completion time (Cj
i (t, w, b)) satisfies the following equation:
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Cj
i (t, w, b) =

U
(
t − w

ri

) [
1−Kj(

w

ri

+ b)
] [

1−Qj
i (

w

ri

)
]

+
∫ w/ri+b

h=b

∑

k∈R

Ck
k (t− (h− b), w − (h− b)ri, 0)

[
1−Qj

i (h− b)
]
dKjk(h)

+
∫ w/ri

g=0

∑

k∈R

Cj
k(t− g, w − g ri, b + g) [1−Kj(g + b)] dQj

ik(g)

(3.11)

Proof: Conditioning on the time duration of the regeneration period H = T1−T0 =
h and on the time to the next transition in the subordinated process G = g , let us
define:

Cj
i (t, w, b|H = h, G = g) =





U
(
t − w

ri

)

if : (h− b) ri ≥ w and g ri ≥ w

∑

k∈R

dKjk(h)

dKj(h)
· Ck

k (t− (h− b), w − (h− b)ri, 0)

if : h− b ≤ g and (h− b) ri < w

∑

k∈R

dQj
ik(g)

dQj
i (g)

· Cj
k(t− g, w − gri, b + g)

if : g < h− b and g ri < w
(3.12)

The evaluation of the mean of Cj
i (t, w, b|H = h, G = g) results in 3.11.

2

The other obvious measure of SRMs of this kind is the probability of leaving the
state group R before the completion. Due to the properties of the studied process
we can define easily this measure starting from state i ∈ R:

Dj
i (t, w, b) = Pr(Z(t) ∈ Rc, C(w) > t |Z(−b) = j, Z(0) = i, T0 = −b, T1 > 0)

= Pr(Z(t) ∈ Rc |Z(−b) = j, Z(0) = i, T0 = −b, T1 > 0,W = w)

Corollary 3.5 For Dj
i (t, w, b) the following equation holds:
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Dj
i (t, w, b) =∫ w/ri+b

h=b

∑

k∈R

Dk
k(t− (h− b), w − (h− b)ri, 0)

[
1−Qj

i (h− b)
]
dKjk(h)

+
∫ w/ri+b

h=b

∑

k∈Rc

U(t− (h− b))
[
1−Qj

i (h− b)
]
dKjk(h)

+
∫ w/ri

g=0

∑

k∈R

Dj
k(t− g, w − g ri, b + g) [1−Kj(g + b)] dQj

ik(g)

+
∫ w/ri

g=0

∑

k∈Rc

U(t− g) [1−Kj(g + b)] dQj
ik(g)

(3.13)

Proof:
Conditioning on H and G as before, for state i ∈ R let us define:

Dj
i (t, w, b|H = h, G = g) =





0 if : (h− b) ri ≥ w and g ri ≥ w

∑

k∈R

dKjk(h)

dKj(h)
· Dk

k(t− (h− b), w − (h− b)ri, 0)+

∑

k∈Rc

dKjk(h)

dKj(h)
· U(t− (h− b))

if : h− b ≤ g and (h− b) ri < w

∑

k∈R

dQj
ik(g)

dQj
i (g)

· Dj
k(t− g, w − gri, b + g)+

∑

k∈Rc

dQj
ik(g)

dQj
i (g)

· U(t− g)

if : g < h− b and g ri < w
(3.14)

The mean of Dj
i (t, w, b|H = h, G = g) with respect to H and G is (3.14).

2

We can study this MRP from a system oriented point of view, which means that
we are interested in the amount of work (accumulated reward) done by the system
up to time t, rather than a user who is interested in the time required to complete a
task (accumulate a given amount of reward). To this end let us introduce Sj

i (t, w, b),
the distribution of the accumulated reward up to t, as:

Sj
i (t, w, b) = Pr(B(t) ≤ w |Z(−b) = j, Z(0) = i, T0 = −b, T1 > 0)

= Pr(C(w) > t |Z(−b) = j, Z(0) = i, T0 = −b, T1 > 0)
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Corollary 3.6 For Sj
i (t, w, b) the following equation holds:

Sj
i (t, w, b) =[

U(t)− U
(
t − w

ri

)] [
1−Kj(

w

ri

+ b)
] [

1−Qj
i (

w

ri

)
]

+
∫ w/ri+b

h=b

∑

k∈R

Sk
k (t− (h− b), w − (h− b)ri, 0)

[
1−Qj

i (h− b)
]
dKjk(h)

+
∫ w/ri+b

h=b

∑

k∈Rc

U(t− (h− b))
[
1−Qj

i (h− b)
]
dKjk(h)

+
∫ w/ri+b

h=b
U(t)− U(t− (h− b))

[
1−Qj

i (h− b)
]
dKj(h)

+
∫ w/ri

g=0

∑

k∈R

Sj
k(t− g, w − g ri, b + g) [1−Kj(g + b)] dQj

ik(g)

+
∫ w/ri

g=0

∑

k∈Rc

U(t− g) [1−Kj(g + b)] dQj
ik(g)

+
∫ w/ri

g=0
U(t)− U(t− g) [1−Kj(g + b)] dQj

i (g)

(3.15)

Proof: By conditioning on H and G we have:

Sj
i (t, w, b|H = h, G = g) =





U(t)− U
(
t − w

ri

)

if : (h− b) ri ≥ w and g ri ≥ w

∑

k∈R

dKjk(h)

dKj(h)
· Sk

k (t− (h− b), w − (h− b)ri, 0)+

U(t)− U(t− (h− b))+
∑

k∈Rc

dKjk(h)

dKj(h)
· U(t− (h− b))

if : h− b ≤ g and (h− b) ri < w

∑

k∈R

dQj
ik(g)

dQj
i (g)

· Sj
k(t− g, w − gri, b + g)+

U(t)− U(t− g) +
∑

k∈Rc

dQj
ik(g)

dQj
i (g)

· U(t− g)

if : g < h− b and g ri < w
(3.16)

which yields (3.16) by evaluating the mean of Sj
i (t, w, b|H = h, G = g) with respect

to H and G.

2

The former defined measure Sj
i (t, w, b) has the disadvantage that it covers the

fact that the system still has the ability to accumulate additional amount of reward
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or it is already absorbed by the Rc state group which excludes the further reward
accumulation. Let us define the modified measure which is sensitive to this difference:

P j
i (t, w, b) = Pr(B(t) ≤ w,Z(t) ∈ R |Z(−b) = j, Z(0) = i, T0 = −b, T1 > 0)

To explain in words, while Sj
i (t, w, b) is the distribution of the accumulated reward

up to t, P j
i (t, w, b) is the distribution of the accumulated reward up to t supposed

that the process did not leave the subset R up to t.

Corollary 3.7 P j
i (t, w, b) satisfies the following equation:

P j
i (t, w, b) =[

U(t)− U
(
t − w

ri

)] [
1−Kj(

w

ri

+ b)
] [

1−Qj
i (

w

ri

)
]

+
∫ w/ri+b

h=b

∑

k∈R

P k
k (t− (h− b), w − (h− b)ri, 0)

[
1−Qj

i (h− b)
]
dKjk(h)

+
∫ w/ri+b

h=b
U(t)− U(t− (h− b))

[
1−Qj

i (h− b)
]
dKj(h)

+
∫ w/ri

g=0

∑

k∈R

P j
k (t− g, w − g ri, b + g) [1−Kj(g + b)] dQj

ik(g)

+
∫ w/ri

g=0
U(t)− U(t− g) [1−Kj(g + b)] dQj

i (g)

(3.17)

Proof: By the usual way of conditioning on H and G, let us define:

P j
i (t, w, b|H = h, G = g) =





U(t)− U
(
t − w

ri

)

if : (h− b) ri ≥ w and g ri ≥ w

U(t)− U(t− (h− b))+
∑

k∈R

dKjk(h)

dKj(h)
· P k

k (t− (h− b), w − (h− b)ri, 0)

if : h− b ≤ g and (h− b) ri < w

U(t)− U(t− g)+
∑

k∈R

dQj
ik(g)

dQj
i (g)

· P j
k (t− g, w − gri, b + g)

if : g < h− b and g ri < w
(3.18)

(3.18) is the mean of P j
i (t, w, b|H = h, G = g) with respect to H and G.

2
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3.2.2 Results for SMP in double transform domain

Example 7:
Let us consider Example 6 with the only difference, that the repair work on a lower

priority machine done up to the preemption is lost, and the repair restarts after the
completion of the repair of higher priority machine(s).

Following the structure of the previous section we discuss the analysis of the
special case when the structure state process is a SMP [61, 15, 85]. A linear equation
set can be defined in this case which describes the solution in double transform
domain.

Let us define the distribution of the completion time for any state of R as

Ci(t, w) = Pr(C(w) ≤ t|Z(0) = i).

A jump from R to Rc before the completion disables the further reward accumu-
lation and the completion. Thus Ci(t, w) is a defective distribution function.

Corollary 3.8 Ci(t, w) satisfies the following equation in double transform domain:

C∼∗
i (s, v) =

ri [1 − Q∼
i (s + v ri) ]

s + v ri

+
∑

k∈R

Q∼
ik(s + v ri) C∼∗

k (s, v) (3.19)

Proof: Conditioning on the time to the next embedded time point H, let us define:

Ci(t, w|H = h) =





U
(
t − w

ri

)
if : h ri ≥ w

∑

k∈R

dQik(h)

dQi(h)
· Ck(t− h,w − hri) if : h ri < w

(3.20)

Evaluating the mean with respect to H, taking the Laplace-Stieltjes transform with
respect to t and taking the Laplace transform with respect to w (3.20) becomes
(3.19).

2

Let us define the probability of leaving the state group R before the completion
as before:

Di(t, w) = Pr(Z(t) ∈ Rc, C(w) > t|Z(0) = i) = Pr(Z(t) ∈ Rc|Z(0) = i,W = w)

Corollary 3.9 For Di(t, w) the following equation holds in double transform do-
main:

D∼∗
i (s, v) =

1

v

∑

k∈Rc

Q∼
ik(s + v ri) +

∑

k∈R

Q∼
ik(s + v ri) D∼∗

k (s, v) (3.21)
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Proof: Conditioning on the time to the next embedded time point H, let us define:

Di(t, w|H = h) =





0 if : h ri ≥ w

∑

k∈R

dQik(h)

dQi(h)
· Dk(t− h,w − hri)

+
∑

k∈Rc

dQik(h)

dQi(h)
· U(t− h) if : h ri < w

(3.22)

Evaluating the mean with respect to H, taking the Laplace-Stieltjes transform with
respect to t and taking the Laplace transform with respect to w results (3.21).

2

Let us introduce the appropriate distribution of the accumulated reward as:

Si(t, w) = Pr(B(t) ≤ w|Z(0) = i) = Pr(C(w) > t|Z(0) = i)

Corollary 3.10 For Si(t, w) the following equation holds in double transform do-
main:

S∼∗i (s, v) =
1

v


1 +

∑

k∈Rc

Q∼
ik(s + v ri)


 +

ri [Q∼
i (s + v ri) − 1 ]

s + v ri

+
∑

k∈R

Q∼
ik(s + v ri) S∼∗k (s, v)

(3.23)

Proof: Conditioning on H, we can write:

Si(t, w|H = h) =





U(t)− U
(
t − w

ri

)
if : h ri ≥ w

U(t) − U(t− h)

+
∑

k∈Rc

dQik(h)

dQi(h)
· U(t− h)

+
∑

k∈R

dQik(h)

dQi(h)
· Sk(t− h, w − hri) if : h ri < w

(3.24)

(3.24) results (3.23) by evaluating the mean of Si(t, w|H = h) with respect to H, by
taking the Laplace-Stieltjes transform with respect to t and by taking the Laplace
transform with respect to w.

2

And finally, the second system oriented measure which takes into consideration
the ability of the further reward accumulation is:

Pi(t, w) = Pr(B(t) ≤ w, Z(t) ∈ R|Z(0) = i) = Pr(C(w) > t, Z(t) ∈ R|Z(0) = i)
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Corollary 3.11 For Pi(t, w) the following equation holds in double transform do-
main:

P∼∗
i (s, v) =

1

v
+

ri [−1 + Q∼
i (s + v ri) ]

s + v ri

+
∑

k∈R

Q∼
ik(s + v ri) P∼∗

k (s, v) (3.25)

Proof: Conditioning on H, we have:

Pi(t, w|H = h) =





U(t)− U
(
t − w

ri

)
if : h ri ≥ w

U(t) − U(t− h)

+
∑

k∈R

dQik(h)

dQi(h)
· Pk(t− h,w − hri) if : h ri < w

(3.26)

Evaluating the mean with respect to H, taking the Laplace-Stieltjes transform with
respect to t and taking the Laplace transform with respect to w (3.26) becomes
(3.25).

2

3.3 Analysis of SRM with absorbing state group

and with prd states

In a SMP with positive diagonal elements in Q(t) or in a MRP there can be two
basically different events in an embedded or regenerative time points; there can be
real state transition from state i to state j (j 6= i) and there can be virtual state
transition from state i to state i. In the prs case (Section 3.2) there is no difference
between the two cases concerning the reward accumulation process (i.e. the B(t)
function is continuous for any realization in both cases); but in case of prd or pri
type states the reward accumulation restarts after a transition from state i to state
j (j 6= i) and it is resumed continuously after a virtual transition in an embedded
time point.

For the analysis of the prd and pri cases we have to use an accurate way to
handle this difference. In case of SMP a practical technique is to introduce Qu(t) the
kernel of the SMP without positive diagonal element (i.e. virtual transition). In the
Appendix B the generation of Qu(t) from any Q(t) is defined. We use the notation
Quj(t) for the kernel of the process subordinated to the regeneration period starting
from state j without positive diagonal element. (The generation of Quj(t) from any
Qj(t) is the same as the generation of Qu(t) by any Q(t).)

On the other hand, the problem of virtual and real state transitions in the RTPs
can not be avoided without special restrictions of the external kernel and the kernels
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of the subordinated SMPs. For the analysis of the general cases we have to introduce
an additional variable to indicate the amount of the accumulated reward at the RTPs.
(The analysis of SMPs based on kernels with positive diagonal element requires the
introduction of the same variable, but in that case the extra variable can be avoided
by the canonical representation of the kernel Qu(t).)

In the following we restrict the studied cases (to the measure Ci(t)
3 ) noting that

the results for the other cases can be obtained by applying a similar reasoning.

3.3.1 MRP with subordinated SMPs

Let us denote the random work requirement by W whose distribution is W (w), and
the completion time of the work requirement W by C whose distribution is C(t). The
relation of the former defined C(w) (with distribution C(t, w)) and the unconditional
C is obvious by

Ĉ(t) =
∫ ∞

w=0
C(t, w) dW (w)

Let us define the distribution of the completion time starting from any state
i ∈ R, inside a regeneration period starting from j at −b when the actual value of
the accumulated reward is d as:

Cj
i (t, b, d) = Pr(C ≤ t |Z(−b) = j, Z(0) = i, T0 = −b, T1 > 0, B(0) = d, W1 > d)

where W1 is the residual work requirement whose distribution under the given con-
dition is

W (w, d) =





0 if : w ≤ d

W (w)−W (d)

1−W (d)
if : w > d

The introduction of the positive amount of reward at the start of the examined
period of the process is necessary because of the possibility of virtual state transition
at the start which does not restart the reward accumulation.

Theorem 3.12 The following equation holds for Cj
i (t, b, d):

Cj
i (t, b, d) =∫ ∞

w=d
U

(
t − w − d

ri

) [
1−Kj

(
w − d

ri

+ b

)] [
1−Quj

i

(
w − d

ri

)]
dW (w, d)

+
∫ ∞

h=b

∑

k∈R,k 6=i

Ck
k (t− (h− b), 0, 0)

[
1−Quj

i (h− b)
]

[1−W ((h− b)ri + d, d)] dKjk(h)

+
∫ ∞

h=b
Ci

i(t− (h− b), 0, (h− b)ri + d)
[
1−Quj

i (h− b)
]

[1−W ((h− b)ri + d, d)] dKji(h)

+
∫ ∞

g=0

∑

k∈R

Cj
k(t− g, b + g)

[
1−Ku

j (g + b)
]

[1−W (gri)] dQuj
ik (g)

(3.27)

3An extended version of this manuscript containing measures Di(t), Si(t), Pi(t) for prd and pri
preemption policies is available.
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Proof: Conditioning on the time duration of the regeneration period H = T1−T0 =
h , on the time to the next transition in the subordinated process G = g , and on
the work requirement W1 = w let us define:

Cj
i (t, b, d |H = h, G = g, W1 = w > d) =





U

(
t − w − d

ri

)

if : (h− b) ri ≥ w − d and g ri ≥ w − d

∑

k∈R,k 6=i

dKjk(h)

dKj(h)
· Ck

k (t− (h− b), 0, 0)

+
dKji(h)

dKj(h)
· Ci

i(t− (h− b), 0, d + (h− b)ri)

if : h− b ≤ g and (h− b) ri < w − d

∑

k∈R

dQuj
ik (g)

dQuj
i (g)

· Cj
k(t− g, b + g, 0)

if : g < h− b and g ri < w − d

(3.28)

In (3.28), four mutually exclusive events are identified. If ri 6= 0 and (h−b) ri ≥ w
and g ri ≥ w, the completion time equals w/ri. If g ri < w and g < (h − b)
then a transition occurs inside the subordinated process to state k with probability
dQj

ik(g)/dQj
i (g) and the residual service (w − g ri) should be accomplished starting

from state k at time (t− g) still inside the same regeneration period. If (h−b) ri < w
and (h − b) < g then the regeneration period completes. Two mutually exclusive
events can occur in this case. If there is a transition to state k ∈ R , k 6= i (with
probability dKjk(h)/dKj(h)) at the RTP then the accumulated work is lost (d is
reset to 0). If there is no transition at the RTP (i.e. a former regeneration period
is completed being in the next regeneration state) then the accumulation is resumed
without any interruption.

The mean of the conditional expression in Equation (3.28) with respect to H, G
and W1 is (3.27).

2

3.3.2 Results for SMP in transform domain

Following the structure of the previous section we discuss the analysis of the SMP,
to have the solution in transform domain.

Let us define the completion time for any state of R as

Ci(t) = Pr(C ≤ t |Z(0) = i).
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Corollary 3.13 For Ci(t) the following equation holds in Laplace-Stieltjes transform
domain:

C∼
i (s) =

∫ ∞

w=0
e−s w/ri

[
1−Qu

i (
w

ri

)
]

dW (w)

+
∫ ∞

h=0

∑

k∈R

C∼
k (s) [1−W (hri)] dQu

ik(h)

(3.29)

Proof: Conditioning on the time to the next embedded time point H, let us define:

Ci(t |H = h, W = w) =





U
(
t − w

ri

)
if : h ri ≥ w

∑

k∈R

dQu
ik(h)

dQu
i (h)

· Ck(t− h) if : h ri < w

(3.30)

Evaluating the mean with respect to H and W , taking the Laplace-Stieltjes transform
with respect to t (3.30) becomes (3.29).

2

3.4 Analysis of SRM with absorbing state group

and with pri states

In this section we follow the structure of the former one and we discuss only a
restricted group of cases as well.

Similarly to the cases with prs states the derivations are explained for a given work
requirement w, because the work requirement is the same throughout the lifetime of
the process (up to completion or enter Rc).

3.4.1 MRP with subordinated SMPs

According to the above discussed problems of the virtual and real state transitions
we also have to introduce the same additional variable d to indicate the amount of
accumulated reward at the RTPs, because both kinds of transitions can occur.

Let us define the distribution of the completion time starting from any state
i ∈ R, inside a regeneration period starting from j at −b when the actual value of
the accumulated reward is d as:

Cj
i (t, w, b, d) = Pr(C(w) ≤ t |Z(−b) = j, Z(0) = i, T0 = −b, T1 > 0, B(0) = d, w > d)
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Theorem 3.14 Cj
i (t, w, b, d) satisfies the following equation:

Cj
i (t, w, b, d) =

U

(
t − w − d

ri

) [
1−Kj

(
w − d

ri

+ b

)] [
1−Quj

i

(
w − d

ri

)]

+
∫ w−d

ri+b

h=b

∑

k∈R,k 6=i

Ck
k (t− (h− b), w, 0, 0)

[
1−Quj

i (h− b)
]
dKjk(h)

+
∫ w−d

ri+b

h=b
Ci

i(t− (h− b), w, 0, (h− b)ri + d)
[
1−Quj

i (h− b)
]
dKjk(h)

+
∫ w−d

ri

g=0

∑

k∈R

Cj
k(t− g, w, b + g, 0) [1−Kj(g + b)] dQuj

ik (g)

(3.31)

Proof: Conditioning on the time duration of the regeneration period H = T1−T0 =
h and on the time to the next transition in the subordinated process G = g , let us
define:

Cj
i (t, w, b, d|H = h, G = g, w > d) =





U

(
t − w − d

ri

)

if : (h− b) ri ≥ w − d and g ri ≥ w − d

∑

k∈R,k 6=i

dKjk(h)

dKj(h)
· Ck

k (t− (h− b), w, 0, 0)

+
dKji(h)

dKj(h)
· Ci

i(t− (h− b), w, 0, (h− b)ri + d)

if : h− b ≤ g and (h− b) ri < w − d

∑

k∈R

dQuj
ik (g)

dQuj
i (g)

· Cj
k(t− g, w, b + g, 0)

if : g < h− b and g ri < w − d

(3.32)

(3.31) is resulted by evaluation the mean of (3.32) with respect to H and G.

2

3.4.2 Results for SMP in transform domain

Considering w work requirement the distribution of the completion time for any state
of R is defined by

Ci(t, w) = Pr(C(w) ≤ t|Z(0) = i).
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Corollary 3.15 The following transform domain equation holds for Ci(t, w):

C∼
i (s, w) = e−s w/ri

[
1 − Qu

i (
w

ri

)
]

+
∑

k∈R

C∼
k (s, w)

∫ w/ri

h=0
e−sh Qu

ik(h) (3.33)

Proof: Conditioning on the time to the next embedded time point H, let us define:

Ci(t, w|H = h) =





U
(
t − w

ri

)
if : h ri ≥ w

∑

k∈R

dQu
ik(h)

dQu
i (h)

· Ck(t− h,w) if : h ri < w

(3.34)

Evaluating the mean with respect to H, taking the Laplace-Stieltjes transform with
respect to t results (3.33).

2

3.5 Application of the general results for special

cases

The above studied general cases of SRMs cover a wide range of special SRMs which
are more often used for modelling real systems. The way of the derivation of special
results from the general ones is summarized in this section.

First of all the consideration of the absence of the absorbing state group is very
simple by the substitution of R by Ω and Rc by an empty set.

The first reduction of the generality of the underlying stochastic process is the
use of the results for MRP with subordinated SMP to the analysis of the case when
the underlying stochastic process is a SMP. For this goal we have to exclude the case
of internal state transition inside the regeneration periods of the MRP, i.e. Eij = 0
for all i 6= j. Considering a SMP with kernel Q(t) the following substitution can be
used:

Kij(t) = Qij(t) Qj
ik(t) = 0 for ∀ i, j, k ∈ Ω (3.35)

The measures of this case can be described by a linear equation set in double
transform domain.

3.5.1 Underlying CTMC

A further restriction of the underlying SMP is the consideration of exponentially
distributed delays of the consecutive embedded time points, i.e. the analysis of
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the underlying CTMC (with infinitesimal generator A). The results of this case is
obtained by the following substitution of the kernel:

Qij(t) =





aij

−aii

(1 − eaii t) if : i 6= j

0 if : i = j

(3.36)

and since the results for SMPs are given in transform domain the appropriate sub-
stitution of the kernel is as follows:

Q∼
ij(s) =





aij

s − aii

if : i 6= j

0 if : i = j

(3.37)

As it already appeared in the pioneer work ([60]) the results for underlying CTMC
often can be organized into a matrix form by the utilization of the fact that

aii =
∑

j∈Ω,j 6=i

aij .

To have a view on this fact let us evaluate the probability of leaving the state
group R before the completion considering prs states, w work requirement, and
CTMC underlying stochastic process (with infinitesimal generator A).

Without any loss of generality we can suppose that the states numbered
1, 2, . . . ,m belong to R (1, 2, . . . , m ∈ R) and the states numbered m+1,m+2, . . . , n
belong to Rc (m + 1,m + 2, . . . , n ∈ Rc). By this ordering of states A can be parti-

tioned into the following submatrices A =
B C
D E

where B contains the transition

rates inside R, and C contains the transition rates from R to Rc.
The equation (3.21) describes the examined quantity for underlying SMP. By the

substitution (3.37) for underlying CTMC we have:

D∼∗
i (s, v) =

1

v

∑

k∈Rc

aik

s + v ri − aii

+
∑

k∈R, k 6=i

aik

s + v ri − aii

D∼∗
k (s, v) (3.38)

which becomes

(s + v ri)D
∼∗
i (s, v) =

1

v

∑

k∈Rc

aik +
∑

k∈R

aik D∼∗
k (s, v) (3.39)

Introducing the following column vectors D∼∗(s, v) = {D∼∗
i (s, v)}, h = {1} and

the diagonal matrix of the reward rates R = Diag{ri} equation (3.39) can be orga-
nized into matrix form:
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(s I + v R)D∼∗(s, v) =
1

v
Ch + BD∼∗(s, v) (3.40)

whose solution is

D∼∗(s, v) =
1

v
(s I + v R + B)−1Ch (3.41)
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Chapter 4

Timed Petri Nets

The designer and the analyst of a system are interested in the solution of the mod-
elling problem at first instance, and do not care so much how this solution is ac-
tually derived. They should be able to describe their system in a natural and easy
to use manner. The modeller’s representation should include enough information
to build up an analytical representation suitable for numerical solution, and should
also contain the specification of the required measures. The modeller’s representa-
tion should then automatically be transformed into the analytical representation.
Finally the numerical results should be again automatically mapped back into the
modeller’s representation, so that the user of the tool can interpret them in that
context. For Markovian systems several tools have been developed in recent years,
based on various specification paradigms, as surveyed in [46].

There are, however, situations that are not covered by these tools. One typical
situation occurs when the random time characteristic of the system cannot be con-
veniently approximated by exponential random variables. A second situation occurs
when the analyst requires the computation of stochastic measures (like the measures
derived in the previous section and in [80, 11]) whose numerical evaluation cannot
be performed in the framework of the standard linear first order equations typical of
Markovian systems.

In recent years several classes of Stochastic Petri Net (SPN) models have been
elaborated which incorporate some non exponential characteristics in their definition.
The semantics of SPN’s with generally distributed transition times has been discussed
in [1]. We refer to this model as Generally Distributed Transition SPN (GDT SPN).
In general, the stochastic process underlying a GDT SPN does not have a numerically
tractable analytical formulation, while a simulative approach has been investigated
in [43].

Various restrictions of the general GDT SPN model have been discussed in the
literature to provide the analytical representation of problems to be generated auto-
matically based on their modeller’s representation.

4.1 Generally Distributed Transition SPN

A marked Petri Net (PN) is a four tuple PN = (P, T, A,M), where:
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• P = {p1, p2, . . . , pnp} is the set of places (drawn as circle);

• TR = {tr1, tr2, . . . , trnt} is the set of transitions (drawn as bars);

• A is the set of directed arcs from places to transitions and from transitions to
places; I, O and H are the input, the output and the inhibitor arcs, respectively.
The input function I provides the multiplicities of the input arcs from places to
transitions; the output function O provides the multiplicities of the output arcs
from transitions to places; the inhibitor function H provides the multiplicity of
the inhibitor arcs from places to transitions. (Input and output arcs have an
arrowhead on their destination, inhibitor arcs have a small circle.)

• M = {m1,m2, . . . , mnp} is the marking. The generic entry mi is the number
of tokens (drawn as black dots) in place pi, in marking M .

A transition is enabled in a marking if each of its ordinary input places contains
at least as many tokens as the multiplicity of the input function I and each of its
inhibitor input places contains fewer tokens than the multiplicity of the inhibitor
function H. An enabled transition fires by removing as many tokens as the multi-
plicity of the input function I from each ordinary input place, and adding as many
tokens as the multiplicity of the output function O to each output place. The number
of tokens in an inhibitor input place is not affected.

The reachability set R(M0) is the set of all the markings that can be generated
from an initial marking M0 by repeated application of the above rules. If the set T
comprises both timed and immediate transitions, R(M0) is partitioned into tangible
(no immediate transitions are enabled) and vanishing markings, according to [2]. Let
Ω be the tangible subset of R(M0).

Marking M ′, obtained from M by firing trk, is said to be immediately reachable
from M , and the firing operation is denoted by the symbol (M − trk → M ′).

An execution sequence E in a marked PN, is a sequence of legal markings obtained
by firing a sequence of enabled transitions [1]:

E = { (M0) ; (tr1,M1) ; . . . ; (trj,Mj) ; . . .}

An execution sequence E is a connected path in the reachability graph R(M0)
of the net. A timed execution sequence TE is an execution sequence E augmented
by a non-decreasing sequence of real non-negative values representing the epochs of
firing of each transition, such that consecutive transitions (ti ; ti+1) in E correspond
to ordered epochs ti ≤ ti+1 in TE.

TE = { (t0,M0) ; (tr1, t1,M1) ; . . . ; (tri, ti,Mi) ; . . .} (4.1)

The time interval ti+1 − ti between consecutive epochs represents the period of
time that the PN sojourns in marking Mi.

Definition 4.1 A Timed PN (TPN) is a marked PN in which a set of specifications
are provided and a set of rules are defined such that to each legal execution sequence
E a timed execution sequence TE can be univocally associated.
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A variety of timing mechanisms have been proposed in the literature. The distin-
guishing features of the timing mechanisms are whether the duration of the events is
modelled by deterministic variables or random variables, and whether the time is as-
sociated to the PN places, transitions or tokens. If a probability measure is assigned
to the ensemble of all the possible execution sequences, a timed execution sequence
TE is mapped into a right continuous stochastic process ZT (t), (t ≥ 0), called the
Marking Process. TPNs in which the timing mechanism is stochastic are referred to
as Stochastic PN (SPN).

Definition 4.2 An execution sequence TE truncated at ti (t0 = 0) is called a history
of the PN and is denoted by Hi.

Assumption 4.3 Let Hi be the history and Mi the marking entered by firing tri at
ti. We assume that for all i, Hi and Mi, and for all the transitions trk enabled in
Mi the following firing distributions are uniquely defined:

Dk(t |Hi,Mi) = Pr { trk fires, ti+1 − ti ≤ t |Hi,Mi} (4.2)

The firing distribution function Dk(t |Hi,Mi) is called the kernel of the marking
process ZT (t) and completely characterizes the stochastic realization of a timed ex-
ecution sequence TE.

From the Assumption 4.3 follows that the unconditioned probability pk(Hi,Mi)
of selecting trk to be the next transition to fire in Mi is:

pk(Hi,Mi) = lim
t→∞ Dk(t |Hi,Mi) = Pr { trk fires |Hi,Mi} (4.3)

with
∑

∀trk enabled in Mi

pk(Hi,Mi) = 1 ,

and that the distribution of the sojourn time in Mi before the next transition is:

D ( t |Hi,Mi) =
∑

∀trk enabled in Mi

Fk( x |Hi, Mi)

(4.4)

= Pr { ti+1 − ti ≤ t |Hi,Mi}
A SPN with stochastic timing associated to the PN transitions and with generally

distributed firing times was defined in [1], with particular emphasis to the seman-
tical interpretation of the model. We refer to this model as Generally Distributed
Transition SPN (GDT SPN).

Definition 4.4 A stochastic GDT SPN is a marked SPN in which:

• To any transition trk ∈ Tr a random variable γk is associated, modelling the
time needed by the activity represented by trk to complete, when trk is considered
in isolation.

• Each random variable γk is characterized by the (possibly marking dependent)
cumulative distribution function Gk(t|Mi).
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• A set of specifications are given for calculating the kernel Dk(t |Hi,Mi) over
the ensemble of all the timed execution sequences TE. This set of specifications
is called the execution policy.

• An initial probability is given on the reachability set.

An execution policy is a set of specifications for deriving an analytical formulation of
the stochastic process associated to a marked PN, given the net structure and the set
of Cdf’s Gk(t|Mi). The semantics of different execution policies has been discussed
in [1]. The execution policy comprises two specifications: a criterion to choose the
next transition to fire (the firing policy), and a criterion to keep memory of the past
history of the process (the memory policy). The most widely used choice to select
the next transition to fire is according to a race policy: if more than one transition
is enabled in a given marking, the transition fires whose associated random delay is
statistically the minimum.

The memory policy is the part of the set of specifications of the execution policy
that defines how the process is conditioned upon the past. We associate to each
transition trk an age variable ak. The way in which ak is related to the past history
Hi determines the different memory policies. We consider three alternatives:

• Age memory - The age variable ak accounts for the work performed by the
activity corresponding to trk from its last firing up to the current epoch. The
firing distribution depends on the residual time needed for this activity to
complete given ak.

• Enabling memory - The age variable ak accounts for the work performed by
the activity corresponding to trk from the last epoch in which trk has been
enabled. The firing distribution depends on the residual time needed for this
activity to complete a given ak. When transition trk is disabled (even without
firing) the corresponding enabling age variable is reset.

• Resampling - The age variable ak is reset to zero at any change of marking. The
firing distribution depends only on the time elapsed in the present marking.

There are environments in which the age and the enabling, or the enabling and
the resampling, or all of the memory policies have the same effects. If a timed
transition is only exclusively enabled in any reachable tangible marking its memory
policy can be either age, enabling or resampling with the same effect. A transition,
which can not become disabled after it become enabled without firing, can be either
of age or enabling memory policy type with the same properties. The resampling
and the enabling memory policies provide the same features for the transitions which
become disabled or fire at the next transition in any tangible marking in which the
transition is enabled.

It is easy to prove that, when all the PN transitions are assigned a resampling
policy, the associated stochastic marking process ZT (t) becomes a SMP. However, the
resampling policy very rarely might have a practical application in system modelling.

Transition trk is called immediate transition if Pr(γk = 0) = 1. The markings
of a GDT SPN with immediate transitions can be divided into the set of vanishing

41



markings, in which at least one immediate transition is enabled, and the set of
tangible markings, in which no immediate marking is enabled. The right continuous
stochastic marking process contains only tangible markings. In the rest of this work
we restrict the considered random variables (γk) associated to the transitions (trk ∈
TR) to be positive, thus we exclude the opportunity of more than one transitions in
a time instant.

4.2 Overview of the existing GDT SPN models

The stochastic marking process ZT (t) does not have, in general, an analytically
tractable formulation, while a simulative approach has been described in [43, 44].
Various restrictions of the general model have been discussed in the literature such
that the underlying marking process ZT (t) is confined to belong to a known class of
analytically tractable problems.

4.2.1 Exponentially Distributed SPN

When the random variables γk associated to the PN transitions are exponentially
distributed, the dynamic behaviour of the net can be mapped into a time continuous
homogeneous Markov chain (CTMC), with state space isomorphic to the reachability
graph of the net. This restriction is the most popular in the literature [71, 36], and
a number of packages are built on this model [23, 28, 70, 62]. Ajmone Marsan et al.
showed that the right continuous marking process of a GDT SPN with exponentially
distributed and immediate transitions is a CTMC as well [2], and the class is called
Generalized Stochastic Petri Net.

4.2.2 Semi Markov SPN

When a resampling policy is assigned to all the PN transitions the marking process
becomes a SMP. This restriction has been studied in [73, 7] but is of little interest
in applications where it is difficult to imagine a situation where the firing of each
transition of the PN has the effect of forcing a resampling resetting to all the other
transitions. Only the case in which each transition is competing with all the other
ones seems to be appropriate for this model.

A more interesting Semi Markov SPN model has been discussed in [33]. In this
definition, the transitions are partitioned into three classes: exclusive, competitive
and concurrent. Provided that the firing time of all concurrent transitions is ex-
ponentially distributed and that competitive transitions are resampled at the time
the transition is enabled, the associated marking process becomes a semi Markov
process.

4.2.3 Phase Type SPN (PHSPN)

A numerically tractable realization of the GDT SPN, is obtained by restricting the
firing time random variables γk to be PH distributed [74], according to the following:
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Definition 4.5 A PHSPN is a GDT SPN in which:

• To any transition trk ∈ T a PH random variable γk is associated with Cdf
Gk(t|Mi). The PH model assigned to transition trk has νk stages with a single
initial stage numbered stage 1 and a single final stage numbered stage νk.

• To any transition trk ∈ T a memory policy is assigned from the three defined
alternatives: age, enabling or resampling memory.

The distinguishing feature of this model is that it is possible to design a completely
automated tool that responds to the requirements stated in [46], and at the same
time includes all the issues listed in Definition 4.5. The non-Markovian process
generated by the GDT SPN is converted into a CTMC defined over an expanded
state space. The measures pertinent to the original process can be evaluated by
solving the expanded CTMC.

The program package ESP [31] realizes the PHSPN model according to Definition
4.5. The program allows the user to assign a specific memory policy to each PN
transition so that the different execution policies can be put to work. In the ESP tool,
the expanded CTMC is generated from the model specifications (the PN topology,
and the PH models assigned to each timed transition). The generation algorithm is
driven by the different execution policies that the user assigns to each transition.

4.2.4 Deterministic SPN

The Deterministic and Stochastic PN model has been introduced in [3], with the aim
of providing a technique for considering stochastic systems in which the duration
of some activities assume a constant value. In [3] only the steady state solution
has been addressed. An improved algorithm for the evaluation of the steady state
probabilities has been successively presented in [64]. Recently, the DSPN model has
been revisited by Choi et al. [25]. In [25], the stochastic process associated to the
DSPN model is proved to be a MRP and an analytical method for the transient
solution is provided.

Definition 4.6 A DSPN is a GDT SPN in which:

• At most, a single deterministic transition (DET) is allowed to be enabled in
each tangible marking and the firing time of the deterministic transition is
marking independent.

• All the other timed transitions trk ∈ TR an exponentially distributed random
variable γk is associated.

• The time elapsed in a DET cannot be remembered when the transition becomes
disabled; the only allowed execution policy is the race policy with enabling mem-
ory.

In order to prove that the marking process associated to a DSPN is a MRP, Choi
et al. [25] have introduced the following modified execution sequence:

T ∗
E = { (T0,M(0)) ; (tr(1), T1,M(1)) ; . . . ; (tr(k), Tk,M(k)) ; . . .} (4.5)
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Epoch Tk+1 is derived from Tk as follows:

1. If no DET transition is enabled in marking M(k), define Tk+1 to be the first
time after Tk that a state change occurs. If no such time exists, set Tk+1 = ∞.

2. If a DET transition is enabled in marking M(k), define Tk+1 to be the time
when the DET transition fires or is disabled as a consequence of the firing of a
competitive exponential transition.

According to case 2) of the above definition, during [Tk, Tk+1 ), the PN can evolve
in the subset of R(M0) reachable from M(k), through exponential transitions concur-
rent with the given DET transition. The marking process during this time interval is
a CTMC called the subordinated CTMC of marking M(k). Therefore, if a DET tran-
sition is enabled in M(k), the regeneration period is given by the minimum between
the first passage time of the subordinated CTMC to any of states in which the DET
transition is disabled and the constant firing time associated to the DET transition.

Choi et al. show that, with Definition 4.6, the time execution sequence T ∗
E is

mapped into a MRP. Hence, the kernel of the modified execution sequence satisfies
the following condition:

D(k+1)(t |H(k),M(k)) = Pr { tr(k+1) fires, Tk+1 − Tk ≤ t |H(k),M(k)}
= Pr { tr(k+1) fires, Tk+1 − Tk ≤ t |M(k)} (4.6)

= Pr { tr(k+1) fires, T1 ≤ t |M(0) = M(k) }
The first equality expresses the Markov property (i.e. the condition on the history

is condensed in the present state); the second equality expresses the time homogeneity
(i.e. the same probability measure holds even if translated in the time axis). Hence
Tk ; k ≥ 0 are RTPs and {M(k), Tk ; k ≥ 0} is a Markov renewal sequence.

We simplify the notation by setting: M(k) = i and M(k+1) = j (where marking
j is reached by firing tr(k+1)). The kernel (4.6) can be written in matrix form:

∀i, j ∈ R(M0)

D(k+1)(t |H(k),M(k)) = Di j (t) = Pr {M(1) = j; T1 ≤ t |M(0) = i} (4.7)

According to (4.3), we have:

pi j = Di j (∞) = Pr {M(1) = j|M(0) = i} (4.8)

showing that the sequence M(i) is an embedded Markov chain. Furthermore, the Cdf
of the time interval T1 starting from M(0) = i is derived by combining (4.4) with
(4.7):

Fi (t) =
∑

∀tr(k+1) of M(k)

Dij(t) (4.9)

The kernel defined in (4.6) can be obtained from the specifications given in De-
finition 4.6. A transient solution for the marking probability has been derived in
[25]. The solution is in the form of an integral convolution equation, that can be
solved numerically in the time domain. An alternative approach suggested by the
authors consists in transforming the transient solution in the Laplace transform do-
main, and then deriving the time solution by a numerical inversion technique. The
paper proposes to use the Jagerman’s method [50], as adapted by Chimento and
Trivedi [22].
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4.2.5 The class MRSPN∗

A further extension of DSPN called MRSPN∗, has been developed in [24]:

Definition 4.7 A MRSPN∗ is a GDT SPN in which:

• At most, a single timed transition with generally distributed firing time is al-
lowed to be enabled in each marking.

• All the other timed transitions trk ∈ TR an exponentially distributed random
variable γk is associated.

• The only allowed execution policy is the race policy with enabling memory. This
means that the firing time of the generally distributed transition is sampled at
the time the transition is enabled and cannot change until the transition either
fires or is disabled.

• The firing time distribution may depend upon the marking at the time the tran-
sition is enabled.

The kernel equations from (4.6) to (4.9) still hold; however, the analytic kernel
expressions depend on the specific Cdf’s assumed in the model. In [24], closed form
expressions are derived when the Cdf of the generally distributed transitions is the
uniform distribution.

4.3 Modelling Power

The considered models differ because of the different classes of distribution functions
they are able to support, and the way in which the history of the process is taken
into account to condition the future evolution of the net.

Under the enabling memory policy the time accumulated by a PN transition is
reset as soon as the transition is disabled, while under the age memory policy the time
accumulates whenever the transition is enabled before firing. The enabling memory
policy is suited to realize the interaction mechanism among tasks in service that in
queueing theory or fault-tolerant systems is called a preemptive repeat different (prd)
policy. Whenever the task in service is preempted a corresponding PN transition is
disabled resetting the accumulated time. Hence, when the preempted task restarts
its work requirement should be resampled from the same distribution [9]. On the
other hand, the age memory policy is suited to represent an interaction mechanism
usually referred to as preemptive resume policy: the server does not lose memory
of the work already done even if the task is preempted (and the corresponding PN
transition disabled). When the task is enabled again the execution restarts from the
point it was interrupted.

Between the above introduced models only the PHSPN model fully supports
the age memory policy and then allows the modeller to represent in a natural way
prs interaction mechanisms. Moreover, if the random variables of the system to
be modelled are really of PH type, the PHSPN provides exact results. Otherwise, a
preliminary step is needed in which the random times of the system are approximated
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by PH random variables resorting to a suitable estimation technique [12, 14, 16]. The
DSPN model, on the other hand, combining constant times with exponential random
times, offers an innovative approach in many practical applications.

The main limitation of the DSPN and the MRSPN∗ models discussed in [3, 65,
27, 25, 24, 39, 26] is that the deterministic (or generally distributed) transitions
must be assigned a firing policy of enabling memory type [1]. The memory of the
underlying stochastic process cannot extend beyond a single cycle of enable/disable of
the non-exponential transition1. In the language of queueing systems this assumption
implies that the server should work on the job up to completion (the non-exponential
transition fires), or if the job is interrupted before completion (due, for instance, to
failure or preemption), the work already done is lost [37, 22].

The next chapter proposes a semantical generalization of the DSPN and the
MRSPN∗ models, by the consideration of the stochastic process between two con-
secutive RTPs to be more general than CTMC on one hand, and by including age
memory policy (which allows the modelling of preemptive resume mechanisms) on
the other hand. This modelling extension is crucial in connection with fault tolerant
and parallel computing systems, where a single task may be interrupted either during
a fault/recovery cycle or for the execution of a higher priority task, but when the
reason causing the interruption is ceased, the dormant task is resumed from the point
it was interrupted. Even if a prs execution policy is the main goal of a dependable
fault tolerant design, its analytical modelling was not possible in the framework of
the available DSPN and MRSPN∗ tools.

1The enabling memory assumption is relaxed in [27] where a deterministic transition can be
disabled in vanishing markings only. Since vanishing markings are transversed in zero time, this
assumption does not modify the behavior of the marking process versus time.
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Chapter 5

Analysis of Markov Regenerative
Stochastic Petri Nets

This chapter introduces a general class of the SPNs, called Markov Regenerative
SPN (MRSPN), which includes the former introduced classes (i.e.: Exponentially
Distributed SPN, Semi-Markov SPN, DSPN and MRSPN∗, except PHSPN), but
includes other subclasses which have not been studied before. We propose a new
approach to the analysis of MRSPNs, by which the analysis of further subclasses
(and the studied ones as well) becomes possible. Finally we discuss some restrictions
on the language of the SPNs which provide subclasses of MRSPNs that can be
analyzed by the proposed method.

5.1 Markov Regenerative Stochastic Petri Net

Choi et al. defined the general class of the Markov Regenerative Stochastic Petri
Nets in [24], as:

Definition 5.1 A SPN is called a Markov Regenerative Stochastic Petri Net
(MRSPN)1 if its marking process is a MRP.

The class of MRSPNs is indeed very large as it is mentioned in [24]2.
Based on the results introduced in Chapter 2 the transient and the steady state

analysis of MRSPN is possible by the completion of the following steps:

1. identification of the RTPs of the life time of the stochastic marking process;

2. characterization of the process between two consecutive RTPs (which provides
the element of the E(t) matrix);

3. characterization of the occurrence of the next RTP (which provides the element
of the K(t) matrix);

These steps are analyzed below.

1Based on the alternative name of the MRP, which is Semi Regenerative Process, the MRSPNs
are referred as Semi Regenerative SPNs (SR SPN) in [26].

2In the same paper the studied subclass of this general class is called MRSPN∗ which can result
confusion in the notations in the subsequent papers ([17]).
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5.2 Regenerative time points of MRSPNs

The introduction of the age variables associated to the transitions in Chapter 4 allows
us to give a natural definition of the RTPs of MRSPNs.

Definition 5.2 A regeneration time point Tn in the marking process ZT (t) is the
epoch of entrance in a tangible marking M(n) in which all the age variables ad; trd ∈
TR are equal to 0.

Let us denote by {Tn; n ≥ 0} the strictly monotone sequence of the regeneration
time points embedded into a realization R. The tangible marking M(n) entered
at a regeneration time point Tn is called a regeneration marking. The embedded
sequence of regeneration time points {Tn, M(n); n ≥ 0} is a (homogeneous) Markov
renewal sequence and the marking process ZT (t) is a Markov regenerative process
as discussed above and in [30, 24, 26, 18]. By the memoryless property of the MRPs
in the RTPs the analysis of a MRSPN can be divided into the analysis of evolution
between the consecutive RTPs, called regeneration periods.

The memory of a MRSPN is based on the values stored in the age variables and
a RTP is the epoch (of a state transition) in which the MRSPN resets its memory.

In accordance with Definition 5.2 the execution policy, that is composed by the
firing and the memory policy, can be interpreted as:

memory policies:

• A transition of resampling type restarts at every change in the marking,

• a transition of enabling type restarts if it becomes disable or fires,

• a transition of age type restarts only if it fires,

where the restart of transition trk means that its age variable ad is reset to 0
and its firing time wd is resampled from the same distribution.

race policy: At the entrance in a new tangible marking, the residual firing time is
computed for each enabled timed transition given its age variable ad and firing
time wd (the amount of work required to fire the transition), so that the next
marking is determined by the minimal residual firing time wd − ad among the
enabled transitions. The age variable ad is reset to 0 and the firing time wd is
resampled from the same distribution at each restart of transition trd.

Because of the memoryless property, the three mentioned policies are equivalent
if the firing distribution is exponential. Hence, for a transition trd with exponentially
distributed firing time, we assume, conventionally, that the corresponding memory
policy is of resampling type, so that the age variable ad is reset at each transition.

5.3 Characterization of the regeneration periods

of MRSPNs

The elaboration of the 2nd and 3rd step of the analysis process of MRSPNs requires
some further investigations on the stochastic process subordinated to a regeneration
period.
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Definition 5.3 The stochastic process subordinated to a regeneration marking i ∈
{M(n)} (denoted by Zi

T (t)) is the restriction of the marking process ZT (t) for t ≤ T1

given ZT (T0) = i; T0 = 0 :

Zi
T (t) = [ZT (t) : t ≤ T1, ZT (0) = i]

According to Definition 5.3, Zi
T (t) describes the evolution of the PN starting at the

RTP T0 = 0 in the regeneration marking i, up to the next regeneration time point T1.
Therefore, Zi

T (t) includes all the markings that can be reached from the regeneration
marking i before the next regeneration time point. The entries of the i-th row of the
matrix E(t) are determined by Zi

T (t) as:

Eij(t) = Pr{Zi
T (t) = j, T1 ≥ t |Zi

T (0) = i} (5.1)

Let us define the branching probability matrix of transition trd (∆d = {∆d
k`}) as

∆d
k` = Pr{next tangible marking is ` | trd fires in tangible marking k} .

The ∆d
k` element of the branching probability matrix describe the effect of the firing

of transition trd in marking k by defining the probability that the next tangible
marking is marking `.

Based on the semantics of the GDT SPNs described by the branching probability
matrices ∆d = {∆d

k`} the subordinated process Zi
T (t) also determines the entries of

the i-th row of the K(t) matrix, if the transition trd whose firing completes the
regeneration period is known. Denoting the event that the firing of transition trd

completes the regeneration by Ad the elements of the external kernel is defined as:

Kij(t) =
∑

trd∈TR

∑

k∈Ω

Pr
{
Zi
T (T−

1 ) = k, T1 ≥ t |Zi
T (0) = i, Ad

}
∆d

kj Pr {Ad } (5.2)

Equations (5.1) and (5.2) together with Equation (2.10) form a general framework
for the analysis of the MRSPNs.

5.4 Characterization of the life cycles of transi-

tions

The life time of a transition is naturally divided into intervals by its consecutive
resets. Inside these intervals there can be a period of time while the transition is not
enabled and its age variable is equal to 0 continuously. We will refer to the period of
time during which the age variable is greater than 0 as the life cycle of the transition.

The main features of the life cycles of a transition are affected by its memory
policy as summarized in Table 1. (The enabling subset of transition trd is the subset
of markings in which the transition is enabled.)
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Memory policy Resampling Enabling Age

end of the firing of firing or disabl. firing of the
life cycle any transition of the tagged tr. tagged tr.

during the no state moving inside the moving without
life cycle transition enabling subset restriction

age variable continuously continuously increasing or
inside the l.c. increasing increasing constant

Table 1. Features of the life cycle of transitions

In the life cycle of an age type transition the increase of the age variable of the
transition is marking dependent. It means that it is increasing in the markings in
which the transition is enabled, and it is constant in the markings in which the
transition is disabled. An indicator variable can be assigned to every marking to
indicate whether the accumulation is on or off. A variable of this kind is generally
called reward rate. Hence the stochastic process subordinated to a regeneration
period is a Stochastic Multi Reward Process with binary reward rates (rid =
0, 1; i ∈ Ω, d ∈ TR), where rid = 1 means that the transition trd is enabled in marking
Mi and rid = 0 means that the transition trd is disabled in marking Mi. The different
transitions have different effects on the accumulation process. There are as many
kinds of reward as many transitions have age variable. The reward accumulation
process and the lost of accumulated reward as well as the preemption type of the
state transitions can be different for the different kind of rewards. For example a
firing of a transition is of prd type for the reward, represent the age variable of the
transition.

The main problem in the analysis of the MRSPNs is the existence of transitions
whose life cycle overlap each other. Any transition with generally distributed firing
time (GEN)3 whose memory policy is of resampling type can not have overlapping
life cycles and since the transitions with exponentially distributed firing time (EXP)
are supposed to be resampling type, they can neither have overlapping periods.

In the following we discuss special cases in which the overlapping of the life cycles
of the transitions are excluded. In the next two subsections we consider regeneration
periods without internal transition and in the subsequent sections we discuss the
analysis of regeneration periods with internal transitions.

3Transitions with deterministic firing time (DET) are considered to be GEN transitions.
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5.4.1 Markovian regeneration period

If in the regeneration marking Mi only EXP transitions are enabled the next regen-
eration time point is the epoch of jump into any one of the immediately reachable
states. A regeneration period of this kind is referred to as Markovian regeneration
period.

Let Si be the set of transitions enabled in marking Mi (Si = {trd :
trd enabled in Mi} ), λd be the transition rate of transition trd ∈ Si, and λi =∑

trd∈Si λd.
The entry Kij(t) of the external kernel provides the probability of reaching the

successive regeneration state j before time t, while the entry Eij(t) of the internal
kernel gives the probability of jumping from i to j before the next regeneration time
point. Since, in this case, any firing provides a new regeneration time point, the only
nonzero entry of the i-th row of matrix E(t) corresponds to j = i. It follows:

Kij(t) =
∑

trd∈Si

λd

λi
(1 − e−λi t) ∆d

ij Eij(t) = δij e−λi t (5.3)

5.4.2 Semi-Markovian regeneration period

A regeneration period is called semi-Markovian, if any transition completes a tangible
marking completes the regeneration period as well. It may happens if:

• in the regeneration marking Mi only one transition is enabled,

• only resampling type transitions are enabled,

• the enabled transitions are enabling type and competitive (i.e. the firing of one
of them disables the others)

Let Si = {trd : trd enabled in Mi} be the set of enabled transitions, and Fe(t) the
probability distribution function of the firing time of transition tre.

Since, in this case, any firing provides a new regeneration time point, the only
nonzero entry of the i-th row of matrix E(t) corresponds to j = i and the transition
with minimal firing time completes the regeneration periods and provides the next
regeneration state. The distribution of the first firing time F i(t) is the minimum of
the firing time of the enabled transitions:

F i(t) = 1− ∏

tre∈Si

(1− Fe(t)) ,

and the elements of the i-th row of matrices K(t) and E(t) are:

Kij(t) =
∑

trd∈Si

∫ t

u=0

∏

tre∈Si;tre 6=trd

(1− Fe(t)) d F i(t) ∆d
ij

Eij(t) = δij (1− F i(t))

(5.4)
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5.5 Classification of regeneration periods with in-

ternal state transitions

The marking process of a SPN is indeed a discrete random walk on its reachability
graph according to the directed arcs. The first step of the analysis of a SPN is the gen-
eration of this graph for which standard software tools are available [23, 28, 70, 62].
The different realizations of the marking process mean different walks on the reach-
ability graph, and for the purpose of the analysis the value of the age variable has to
be evaluated for the possible realizations. In the following, we give some restrictions
for the number of the enabled GEN transitions4 and for the value of the age vari-
ables for all the possible realizations of the marking process between the consecutive
regeneration time points to exclude the opportunity of the overlapping life cycles of
transitions. These restrictions make it possible to evaluate the regeneration periods
by a single reward model.

Definition 5.4 A regeneration period of a MRSPN belongs to the Class A if in
any tangible marking, that can be reached during the given regeneration period, the
following conditions are imposed:

• at most one GEN transition is enabled,

• at most one disabled transition can have memory (i.e. age variable with positive
value),

• no GEN transition can be enabled while an other disabled transition has mem-
ory.

The subordinated process of a Class A type regeneration period is CTMC.

Definition 5.5 A regeneration period of a MRSPN belongs to the Class B if in
any tangible marking, that can be reached during the given regeneration period, the
following conditions are imposed:

• at most one GEN transition is enabled,

• at most one disabled transition can have memory,

• at most one exclusively enabled GEN transition can exist while another disabled
transition has memory.

The subordinated process of a Class B type regeneration period is SMP.

Definition 5.6 A regeneration period of a MRSPN belongs to the Class C if in
any tangible marking, that can be reached during the given regeneration period, the
following conditions are imposed:

4The restriction on the number GEN transitions do not mean any restiction on the number of
EXP transitions.
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Figure 5.1: Petri nets with Class C and D regeneration periods.

• at most one GEN transition is enabled,

• at most one disabled transition can have memory,

The subordinated process of a Class C type regeneration period is MRP whose
subordinated process is CTMC5. The regeneration period of the Petri net on Figure
5.1a starting from marking M = (1 1 1 0) is Class C type, when the GEN transitions
(tr2 and tr4) are age memory type.

A further generalization is the allowance of at most two GEN transitions to be
enabled in a tangible marking but in this case there is no simple way to describe the
restrictions against overlapping.

Definition 5.7 A regeneration period of a MRSPN belongs to the Class D if the
following conditions are imposed:

• in any tangible marking, that can be reached during the given regeneration
period, at most two GEN transitions can be enabled,

• in any tangible marking, that can be reached during the given regeneration
period, no disabled transition can have memory6

5Without the detailed study of this class we mention that the subordinated process fulfills the
restrictions discussed in subsection 3.1.2, hence the analysis of a regeneration period of this kind
can be performed based on the external kernel of the subordinated process by applying the same
series of steps as required for subordinated SMPs.

6This requirement practically means that the transitions are restricted to be enabling type or
different type but with the same effect as an enabling type transition has in the given environment.
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• there is no other transition enabled, in any tangible marking, that can be reached
during the given regeneration period, when two GEN transitions are enabled,

• there is no overlapping in the life cycles of the transitions,

• in every regeneration marking, at most one GEN transition is enabled.

The subordinated process of a Class D type regeneration period is SMP. The regen-
eration period of the Petri net on Figure 5.1b starting from marking M = (0 1 1 0)
is Class D type, when the GEN transitions (tr2 and tr4) are enabling memory type.
(#p4 means that the multiplicity of the input arc from p4 to tr2 equals to the number
of tokens in p4.)

To univocally relate the type of the published subclasses of MRSPNs to the classes
of the regeneration periods let us further define a restriction of Class A.

Definition 5.8 A regeneration period of a MRSPN belongs to the Class A1 if the
following conditions are imposed:

• in any tangible marking, at most one GEN transition is allowed to be enabled,

• in any tangible marking, no disabled transition can have memory.

The subordinated process of a Class A1 type regeneration period is CTMC.

5.6 Analysis of the reward SMP subordinated to

MRSPNs

The overlapping of transition life cycles is excluded in the above defined subclasses
of the MRSPNs every regeneration period can be related to the transition whose life
cycle coincides with the given regeneration period, hence Subclasses A - D can be
analyzed by single reward models.

The opportunity of exiting from the enabling subset of markings of an enabling
type transition can be considered as the existence of an absorbing group of markings.
A movement of the marking process into the absorbing subset of markings completes
the regeneration period.

The superscript i refers to the appropriate quantity of the regeneration period
starting from marking Mi, and from the point of view of the underlying stochastic
process marking Mi is referred to as state i. In this section, the analysis of the single
reward models of regeneration periods is elaborated supposing that the subordinated
processes are SMPs.

At t = T0 = 0 a single GEN transition trg (with age memory variable ag and dura-
tion wg) starts its firing process in marking Mi (ag = 0). The successive regeneration
time point is T1.

Let Ωi be the subset of the tangible markings (Ω) including the states of the
subordinated process Zi

T (t) (i.e. the markings reachable from Mi before T1). For
the rest of this chapter we take into consideration the MRSPNs without immediate
transitions, which means that all markings are tangible and we can avoid the handling
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of the evolution of the vanishing markings, which allows the application of simpler
notations. For notational convenience we do not renumber the markings in Ωi so
that all the subsequent matrix functions have the dimensions (#Ω×#Ω), but with
the significant entries located in position (k, `) only, with k, ` ∈ Ωi.

Let Zi
T (t) (t ≥ 0) be the SMP defined over Ωi, ri the corresponding binary reward

vector and Ri the subset of markings from which an exit to the complement subset
Ri c = Ω − Ri completes the regeneration period. The age variable ad increases at
a rate ri

j (which is equal to 0 or 1) when Zi
T (t) = j. The subordinated process

Zi
T (t) starts in marking Mi (Zi

T (0) = i), so that the initial probability vector is
V i

0 = [0, 0, . . . , 1i, . . . , 0] (a vector with all the entries equal to 0 but entry i equals
to 1).

Let Qi(t) = [Qi
k`(t)] be the kernel of the subordinated SMP (Zi

T (t)). We denote
by H the time duration until the first embedded time point in the SMP if it starts
from state k at time 0 ( Zi

T (0) = k ).
Let us introduce the following matrix functions: Pi(t, w), Fi(t, w) and Di(t, w)

so defined:

P i
k`(t, w) = Pr{Zi

T (t) = ` ∈ Ri , T1 > t |Zi
T (0) = k ∈ Ri , firing time = w} (5.5)

F i
k`(t, w) = Pr{Zi

T (T−
1 ) = ` ∈ Ri , T1 ≤ t, GEN tr. fires |Zi

T (0) = k ∈ Ri , fr. time = w}
(5.6)

Di
k`(t, w) = Pr{Zi

T (T1) = ` ∈ Ri c , T1 ≤ t |Zi
T (0) = k ∈ Ri , firing time = w}

(5.7)
and P i

k`(t, w), F i
k`(t, w) and Di

k`(t, w) are equal to 0 otherwise (i.e. P i
k`(t, w) and

F i
k`(t, w) are 0 if k ∈ Ω − Ri or ` ∈ Ω − Ri; and Di

k`(t, w) is 0 if k ∈ Ω − Ri or
` ∈ Ri ). In this definition the dependence on the GEN transition (trg) characterizes
regeneration period is neglected, and the firing time (i.e. the absorbing barrier) is
denoted by w in stead of wg.

P i
k`(t, w) is the probability of being in state ` ∈ Ri at time t before absorption

either at the barrier w or in the absorbing subset Ri c, starting in state k ∈ Ri at
t = 0. F i

k`(t, w) is the probability of firing of trd from state ` ∈ Ri (hitting the
absorbing barrier w in state `) before t starting in state k ∈ Ri at t = 0. Di

k`(t, w)
is the probability of leaving the state group Ri to state ` ∈ Ri c before hitting the
barrier w starting in state k ∈ Ri at t = 0.

From (5.5), (5.6) and (5.7), it follows for any t:
∑

`∈Ωi

[ P i
k`(t, w) + F i

k`(t, w) + Di
k`(t, w) ] = 1

Due to Equation (5.1) and (5.2) the elements of the i-th row of matrices K(t)
and E(t) can be expressed based on the matrices Pi(t, w), Fi(t, w) and Di(t, w) as
follows:

Kij(t) =
∑

k∈Ri

F i
ik(t, w) ∆i

kj + Di
ik(t, w)

Eij(t) = P i
ij(t, w)

(5.8)

In the definition of matrices P i
k`(t, w), F i

k`(t, w) and Di
k`(t, w) we maintain the

explicit dependence on the barrier level w, since this dependence will be exploited in
the subsequent analytical treatment.
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In order to avoid unnecessarily cumbersome notation in the following subsection,
we neglect the explicit dependence on the particular subordinated process Zi

T (t), by
eliminating the superscript (i). It is however tacitly intended, that all the quan-
tities r, Q(t), P(t, w), F(t, w), D(t, w), ∆, R and Rc refer to the specific process
subordinated to the regeneration period starting from state i.

5.6.1 Derivation of the matrix functions P(t, w), F(t, w) and
D(t, w)

These derivations follow the same pattern as appeared in Chapter 3 but the quantities
differ from the former ones due to their dependence not only on the starting state
but on the present (in case of matrix P(t)) or final (in case of matrices F(t) and
D(t)) states as well.

Theorem 5.9 For the firing probability Fk`(t, w) the following double transform
equation holds:

F∼∗
k` (s, v) = δk`

rk [1 − Q∼
k (s + v rk) ]

s + v rk

+
∑

u∈R

Q∼
ku(s + v rk) F∼∗

u` (s, v) (5.9)

Proof:
Conditioning on H = h , let us define:

Fk`(t, w |H = h) =





δk` U
(
t − w

rk

)
if : h rk ≥ w

∑

u∈R

dQku(h)

dQk(h)
· Fu`(t− h, w − hrk) if : h rk < w

(5.10)

In (5.10), two mutually exclusive events are identified. If rk 6= 0 and h rk ≥ w, a
sojourn time equals to w is accumulated before leaving state k, so that the firing time
(next regeneration time point) is T1 = w/rk . If h rk < w then a transition occurs to
state u with probability dQku(h)/dQk(h) and the residual service (w − hrk) should
be accomplished starting from state u at time (t − h). Taking the LST transform
with respect to t (denoting the transform variable by s), the LT transform with
respect to w (denoting the transform variable by v) of (5.10) and then evaluating
the mean of the conditional expression with respect to H, (5.10) becomes (5.9).

2

Corollary 5.10 The state probability Pk`(t, w) satisfies the following double trans-
form equation:

P∼∗
k` (s, v) = δk`

s [1 − Q∼
k (s + v rk) ]

v(s + v rk)
+

∑

u∈R

Q∼
ku(s + v rk) P∼∗

u` (s, v) (5.11)
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Proof: Conditioning on H = h , let us define:

Pk`(t, w |H = h) =





δk`

[
U(t) − U

(
t − w

rk

)]

if : h rk ≥ w

δk` [U(t)− U(t− h)] +
∑

u∈R

dQku(h)

dQk(h)
Pu`(t− h,w − hrk)

if : h rk < w
(5.12)

The derivation of the matrix function P(t, w) based on (5.12) follows the same
pattern as for the function F(t, w).

2

Corollary 5.11 The probability of entering to Rc (Dk`(t, w)) satisfies the following
double transform equation:

D∼∗
k` (s, v) =

1

v
Q∼

kl(s + v rk) +
∑

u∈R

Q∼
ku(s + v rk) D∼∗

u` (s, v) (5.13)

Proof: Conditioning on H = h , Dk`(t, w) can be defined us:

Dk`(t, w |H = h) =





0 if : h rk ≥ w

dQk`(h)

dQk(h)
U(t− h) +

∑

u∈R

dQku(h)

dQk(h)
Du`(t− h,w − hrk)

if : h rk < w
(5.14)

The derivation of the matrix function D(t, w) based on (5.14) follows the same
pattern as for the function F(t, w).

2

5.6.2 The subordinated process is a Reward CTMC

Let us consider the particular case in which the subordinated process ZT (t) is a
reward CTMC with infinitesimal generator A = {ak`}. Let us suppose that the
states numbered 1, 2, . . . , m belong to R (1, 2, . . . , m ∈ R) and the states numbered
m + 1,m + 2, . . . , n belong to Rc (m + 1,m + 2, . . . , n ∈ Rc). By this ordering of

states A can be partitioned into the following submatrices A =
B C
D E

where B

contains the intensity of the transitions inside R, and C contains the intensity of the
transitions from R to Rc, the other submatrices are irrelevant in our model.
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Corollary 5.12 The entries of the matrix functions (Pk`(t, w), Fk`(t, w) and
Dk`(t, w)) are as follows:

(s + vrk) F∼∗
k` (s, v) = δk` rk +

∑

u∈R

aku F∼∗
u` (s, v) (5.15)

(s + vrk) P∼∗
k` (s, v) = δk`

s

v
+

∑

u∈R

aku P∼∗
u` (s, v) (5.16)

and
(s + vrk) D∼∗

k` (s, v) =
ak`

v
+

∑

u∈R

aku D∼∗
u` (s, v) (5.17)

Proof: The entries of the matrix functions Pk`(t, w), Fk`(t, w) and Dk`(t, w) can be
obtained from (5.11), (5.9) and (5.13) by substituting the proper kernel describing
the given CTMC:

Qk`(t) =





ak`

−akk

(1 − eakk t) if : k 6= `

0 if : k = `

(5.18)

and in LST domain:

Q∼
k`(s) =





ak`

s − akk

if : k 6= `

0 if : k = `

(5.19)

Keeping in mind that akk = −∑
`∈Ω ak`

2

Equations (5.16), (5.15) and (5.17) can be rewritten in matrix form:

F∼∗(s, v) = (sI + vR−B)−1R

P∼∗(s, v) =
s

v
(sI + vR−B)−1

D∼∗(s, v) =
1

v
(sI + vR−B)−1C

where I is the identity matrix and R is the diagonal matrix of the reward rates (rk);
the dimension of I, R, B, F and P is (m × m), and the dimension of C and D is
(m× (n−m)).
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5.7 Subclasses of MRSPNs

An Exponentially Distributed SPN can have only Markovian regeneration periods,
and a Semi-Markov SPN can have only semi-Markovian regeneration periods. (The
second one naturally includes the Markovian case as well). The life time of a DSPN
and a MRSPN∗ can contain only Class A1 type regeneration periods ([25, 24]), and
Age Memory DSPN (defined and analyzed in [18]) can contain regeneration period
of Class A and B.

The above introduced method opens the possibility of the analysis of the regen-
eration periods of Class A, B, D, as well as of Class A1. In the definition of the
introduced classes of MRSPNs (Exponentially Distributed SPN, Semi-Markov SPN,
DSPN, MRSPN∗, Age memory DSPN) the restrictions are general for the whole life
time of the PNs, but due to the independence of the regeneration periods different
restrictions can be considered in different regeneration period.

A more general class of MRSPN can be defined and analyzed by restricting the
regeneration periods to belong to one of the mentioned classes.

Definition 5.13 A MRSPN is called Single Reward MRSPN if all of its regen-
eration period are one of the following type: Markovian, Semi-Markovian, Class A,
Class B, Class C, Class D, Class A1.

The analysis of a Single Reward MRSPN is composed by the analysis of its
regeneration periods.

The introduced classes of the regeneration periods can be divided basically into
two groups considering the type of the GEN transition whose life cycle coincides with
the regeneration period.

• In Class A, B, C the disabled GEN transition can have memory (positive value
stored in its age variable) This means that the GEN transition is age type.
In this case the subordinated process contains states, in which the age type
GEN transition is enabled (and the corresponding reward rate is 1) as well
as states in which it is disabled (and the corresponding reward rate is 0).
The completion of the life cycle of an age type GEN transition can occur
only when it fires. Hence the state space of the subordinated process does
not contain any absorbing state which could complete the regeneration period
without completion (#Ri = #Ωi).

• In Class D and A1 no disabled transition can have memory, thus the GEN
transition whose life cycle coincides with the regeneration period accumulates
reward in its age variable throughout the regeneration period, i.e. reward rate is
1 in every tangible marking of the subordinated process Ri. The regeneration
period of Class D, E can complete without the firing of the GEN transition
which refers to enabling and resampling type transitions. The opportunity of
completing the regeneration period without the firing of the GEN transition is
considered in our method by mean of absorbing states (#Ri ≤ #Ωi).
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Chapter 6

Example of application

6.1 Preemptive repair system - The M/D/1/2/2

preemptive queue

A PN model for the non-preemptive M/D/1/2/2 queue has been introduced in [3],
where the steady state solution was derived. The transient analysis for the same
system was carried on in [25]. In the following, we examine two different mecha-
nisms of preemptive service with a reliability interpretation of two machines and one
repairman1.
A. - Preemptive M/D/1/2/2 with identical machines.
The M/D/1/2/2 queue has a preemptive service with the same kind of machines.
The repair in execution is preempted as soon as a new demand for repair eventually
arrives to the repairman. The preempted repair is restarted as soon as the repairman
becomes free again. Two different recovery policies can be considered depending
on whether the repairman is able to remember the work already performed on the
machine before preemption or not. In the latter case, the prior work is lost due to the
interruption and the recovered repair must be repeated from scratch with a service
time resampled from the original cdf (prd policy). In the former case, the prior work
is not lost and the service time of the recovered repair equals the residual service
time given the work already executed before preemption (prs policy). Figure 6.1a
shows a PN which describes an M/D/1/2/2 system containing only two machines
and in which any new failure preempts the repair eventually in progress. Place p1

contains the machines working without failure, while place p2 contains the number of
failed machines (including the one under repair). Starting from the initial marking
M1 = (2 0 0 1) (Figure 6.1b), tr1 is the only enabled transition. Firing of tr1

represents the failure of the first machine and leads to state M2 = (1 1 1 0). In
M2 transitions tr2 and tr3 are competing. tr2 represents the repair of the failed
machine and its firing returns the system to the initial state M1. tr3 represents the
failure of the second machine and its firing disables tr2 by removing one token from
p3 (the first repair becomes dormant). In M3 = (0 2 0 1) one machine is under
repair and one repair is dormant, and the only enabled activity is the repair of the
actual machine. Firing of tr4 leads the system again in M2, where the dormant

1This problem was mentioned in Example 1.
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Figure 6.1: Preemptive M/D/1/2/2 queue with identical machines

repair is recovered. Assuming the failure time of both machines to be exponentially
distributed with parameter λ, tr1 is associated an exponential firing rate equal to
(2 λ) and tr3 a firing rate equal to λ. Deterministic repair time of duration w is
assigned to transitions tr2 and tr4.
A.1 - enabling memory policy is assigned to tr2 and tr3. - Each time tr2 is disabled
by the failure of the second machine (tr3 fires before tr2), the corresponding enabling
age variable a2 is reset. As soon as tr2 becomes enabled again (the second repair
completes and tr4 fires) no memory is kept of the prior service, and the execution
restarts from scratch. This behaviour corresponds to a prd service policy, and is
covered by the model definition in [25, 27].
A.2 - age memory policy is assigned to tr2 and tr3. - Each time tr2 is disabled without
firing (tr3 fires before tr2) the age variable a2 is not reset. Hence, as the second repair
completes (tr4 fires), the system returns to M2 keeping the value of a2, so that the
time to complete the interrupted repair can be evaluated as the residual service time
given a2. a2 counts the total time during which tr2 is enabled before firing, and is
equal to the cumulative sojourn time in M2. The assignment of the age memory
policy to tr2 realizes a prs service mechanism. This behavior is not compatible with
the definition of DSPN given in [25] and requires a new analysis methodology. The
regeneration time points in the marking process ZT (t) correspond to the epochs of
entrance to markings in which the age variables associated to all the transitions
are equal to zero. By inspecting Figure 6.1b, the regeneration time points result
to be the epochs of entering M1 and of entering M2 from M1. The process Z1

T (t)
subordinated to state M1 is a single step CTMC (being the only enabled transition
tr1 exponential) and includes the only immediately reachable state M2 (Markovian
regeneration period).

The process Z2
T (t) subordinated to state M2 includes all the states reachable from
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Figure 6.2: A possible realization of the subordinated marking process Z2
T (t)

M2 before firing of tr2: these states are M3, M2. Since M2 is the only state in which
tr2 is enabled, the corresponding reward rate vector is r2 = [0 1 0]. Firing of tr2 can
only occur from state M2 leading to state M1; it turns out that the only relevant
nonzero entry in the branching probability matrix is ∆2

21 = 1.
A possible realization of the subordinated marking process Z2

T (t) is shown in Fig-
ure 6.2. Notice that Z2

T (t) is semi-Markovian since tr4 is deterministic (Class B type
regeneration period). The age variable a2 growths whenever Z2

T (t) = M2, and the
firing of tr2 occurs when a2 reaches the value w (the deterministic duration assigned
to tr2). Considering w as an absorbing barrier for the accumulation functional repre-
sented by the age variable a2, the firing time of tr2 is determined by the first passage
time of a2 across the absorbing barrier w.

In the present example, M3 can never be a regeneration marking, since a2 is not
reset at the entrance to M3.
B. - Preemptive M/D/1/2/2 with different machines
The two machines are of different classes, and the failure of machine of class 2 (later
machine 2) preempts the repair of machine of class 1 (later machine 1) but not vice
versa. Two possible preemption policies are again possible depending whether the re-
pairman is able to remember the work done before the interruption. A PN modelling
the M/D/1/2/2 queue in which the failures of machine 2 have higher priority over the
repairs of machine 1 is reported in Figure 6.3a. Place p1 (p3) represents machine 1
(2) working without failure, while place p2 (p4) represent machine 1 (2) under repair.
Transition tr1 (tr3) means the failure of a machine 1 (2), while transition tr2 (tr4)
denotes the completion of repair of a machine 1 (2). The inhibitor arc from p4 to
tr2 models the described preemption mechanism: as soon as one machine 2 joins the
queue the machine 1 eventually under repair is interrupted. The reachability graph
of the PN of Figure 6.3a is in Figure 6.3b. Under prs repair policy, after completion
of the repair of machine 2, the interrupted repair of machine 1 is resumed continuing
the new service period from the point reached just before the last interruption. In
the PN of Figure 6.3a this service policy is realized by assigning to transitions tr2
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Figure 6.3: Preemptive M/D/1/2/2 queue with different machines

and tr4 an age memory policy. The failure times (transitions tr1 and tr3) are expo-
nentially distributed with parameters λ, while the repair times (transitions tr2 and
tr4) are deterministic with duration w.

From Figure 6.3b, it is easily recognized that M1, M2 and M3 can all be regenera-
tion states, while M4 can never be a regeneration state (in M4 a machine 2 is always
in execution so that its corresponding age variable a2 is never 0). Only exponential
transitions are enabled in M1 and the next regeneration states can be either M2 or
M3 depending whether tr1 or tr3 fires first (Markovian regeneration period). From
M2 the next regeneration state can be only M1, but multiple cycles (M2 - M4) can
occur depending whether machines 2 arrive to interrupt the repair of the machine 1
(Class B type regeneration period). From state M3 the next regeneration marking
can be either state M1 or M2 depending whether during the execution of the ma-
chine 2 a machine 1 does require repair (but remains blocked until completion of the
machine 2) or does not (Class A type regeneration period).

6.1.1 Numerical results

The closed form LST expressions of K(t) and E(t) for the two prs M/D/1/2/2 queu-
ing systems are derived in detail, applying the technique developed in the previous
chapter. The time domain values are obtained by performing an analytical inversion
with respect to the transform variable v, and a numerical inversion with respect to
the transform variable s.
A. - prs preemptive M/D/1/2/2 with identical machines - Let us build up the K∼(s)
and E∼(s) matrices row by row by considering separately all the states that can be
regeneration states and can originate a subordinated process. Since M3 can never
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be a regeneration state the third row of the above matrices is irrelevant. The fact
that M3 is not a regeneration marking, means that the process can stay in M3 only
between two successive regeneration time points (Figure 6.2).
A.1) - The starting regeneration state is M1 - (Markovian regeneration period) No
deterministic transition is enabled and the next regeneration state can only be state
M2. Applying equation (5.3) we obtain:

K∼
11(s) = 0 K∼

12(s) =
2λ

s + 2λ
K∼

13(s) = 0

and

E∼
11(s) =

s

s + 2λ
E∼

12(s) = 0 E∼
13(s) = 0

(6.1)

A.2) - The starting regeneration state is M2 - (Class B type regeneration period)
Transition tr2 is deterministic so that the next regeneration time point is the epoch
of firing of tr2. The subordinated process Z2

T (t) (Figure 6.2) comprises states M2

and M3 and is a SMP (since tr4 is deterministic) whose kernel is:

Q∼(s) =

∣∣∣∣∣∣∣∣∣∣

0 0 0

0 0
λ

s + λ
0 e−ws 0

∣∣∣∣∣∣∣∣∣∣

The reward vector is r2 = [0, 1, 0], and the only nonzero entry of the branching
probability matrix is ∆2

21 = 1. Applying Equations (5.9) and (5.11) we obtain the
following results for the nonzero entries:

F∼∗
22 (s, v) =

1

s + v + λ− λe−sw

P∼∗
22 (s, v) =

s/v

s + v + λ− λe−sw

P∼∗
23 (s, v) =

λ(1− e−sw)/v

s + v + λ− λe−sw

Applying (5.8), and after inverting the LT transform with respect to v, the LST
matrix functions K∼(s) and E∼(s) become:

K∼(s) =

∣∣∣∣∣∣∣∣∣∣∣

0
2λ

s + 2λ
0

e−w(s + λ−λe−ws) 0 0

0 0 0

∣∣∣∣∣∣∣∣∣∣∣

(6.2)

and
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Figure 6.4: Transient behavior of the state probabilities for the preemptive
M/D/1/2/2 system with identical machines.

E∼(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

s

s + 2λ
0 0

0
s[1− e−w(s + λ−λe−ws)]

s + λ− λe−ws

λ(1− e−ws) [1− e−w(s + λ−λe−ws)]

s + λ− λe−ws

0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
(6.3)

The LST of the state probabilities are obtained by solving (2.15). The time
domain probabilities are calculated by numerically inverting (2.15) by resorting to
the Jagerman method [50]. The plot of the state probabilities versus time for states
M1 and M3 is depicted in Figure 6.4, for w = 1 and for two different values of the
failure rate λ = 0.5 and λ = 2.
B. - prs preemptive M/D/1/2/2 with different machines - The reachability graph in
Figure 6.3b comprises 4 states. Let us build up the K∼(s) and E∼(s) matrices row
by row, taking into consideration that state M4 can never be a regeneration marking
since a machine 2 with nonzero age memory is always active.
B.1) - The starting regeneration state is M1 - (Markovian regeneration period) No
deterministic transitions are enabled: the state is markovian and the next regener-
ation state can be either state M2 or M3. The nonzero elements of the 1st row of
matrices K∼(s) and E∼(s) are from (5.3):

K∼
12(s) =

λ

s + 2λ
; K∼

13(s) =
λ

s + 2λ
; E∼

11(s) =
s

s + 2λ
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Figure 6.5: Transient behavior of the state probabilities for the preemptive
M/D/1/2/2 system with different machines.

B.2) - The starting regeneration state is M2 - (Class B type regeneration period)
The subordinated process coincides, in this case, with the subordinated process Z2

T (t)
of the previous example (see Figure 6.2), but with state M4 in Figure 6.3b, playing
the role of state M3 in Figure 6.1b. Thus, with an obvious permutation of pieces, we
can derive the nonzero entries K∼

21(s), E∼
22(s) and E∼

24(s) from the 2nd row in (6.2)
and (6.3), respectively.
B.3) - The starting regeneration state is M3 - (Class A type regeneration period)
The subordinated process is a CTMC, hence Equation 5.16 and 5.15 can be applied.
The infinitesimal generator of the CTMC is:

A =

∣∣∣∣∣∣∣∣∣

0 0 0 0
0 0 0 0
0 0 −λ λ
0 0 0 0

∣∣∣∣∣∣∣∣∣

and the reward vector is r3 = [0, 0, 1, 1]. The branching probabilities arising from
the firing of tr4 are ∆3

31 = 1 and ∆3
42 = 1. Applying (5.15), (5.16) and solving the

sets of equations, the nonzero entries take the form:

F∼∗
33 (s, v) =

1

s + λ + v
; F∼∗

34 (s, v) =
λ

(s + v)(s + λ + v)

P∼∗
33 (s, v) =

s

v(s + λ + v)
; P∼∗

34 (s, v) =
λs

v(s + v)(s + λ + v)

Inverting the above equations with respect to v, taking into account the branching
probabilities, yields:
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K∼
31(s) = e−w(s+λ) ; K∼

32(s) = e−ws(1− e−wλ)

E∼
33(s) =

s

s + λ
(1− e−w(s+λ)) ; E∼

34(s) =
λ

s + λ
− (1− s

s + λ
e−wλ)e−ws

Finally, the complete K∼(s) and E∼(s) matrices become:

K∼(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
λ

s + 2λ

λ

s + 2λ
0

e−w(s + λ−λe−ws) 0 0 0

e−w(s+λ) e−ws(1− e−wλ) 0 0

0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(6.4)

and

E∼(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s

s + 2λ
0 0 0

0
s[1− e−w(s + λ−λe−ws)]

s + λ− λe−ws
0

λ− λe−ws[1− e−w(s + λ−λe−ws)]
s + λ− λe−ws

0 0
s(1− e−w(s+λ))

s + λ

λ

s + λ
− (

s + λ− s e−wλ

s + λ
)e−ws

0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(6.5)

As in the previous example, the time domain probabilities are calculated by
numerically inverting (2.15). The plot of the state probabilities versus time for
states M1 and M4 is reported in Figure 6.5, for w = 1 and for two different values of
the failure rate λ = 0.5 and λ = 2.
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Chapter 7

Summary

The aim of this chapter is to summarize briefly the most important results and to
mention the potential further steps in the research fields of the study.

At first sight the main results of this study are related to the analysis of different
stochastic processes including the marking process of timed Petri nets, but they are
obviously close to the request of the applied reliability modelling and some other
research fields as well. Apart from the overviews of available results (Chapter 2 and
4) and the application example (Chapter 6) the new content of this study can be
divided into three groups:

• investigation of stochastic processes concerning the objectives of the considered
analysis problems (Chapter 2, Appendix B),

• analysis of stochastic reward models, (Chapter 3),

• analysis of Markov regenerative stochastic Petri nets. (Chapter 5),

Investigation of stochastic processes

This group of results is hopefully useful for understanding and probably new as
a uniform approach. Some results belongs to this group was mentioned by other
authors, and there are results which have been developed during this research work
independently, but their appearance in other works can not be excluded.

The main characteristic of this group of results seems to be the unified approach
in the introduction of stochastic processes by the definition of regeneration time
points and conditional equations; which is the same approach applied in deriving all
of the later results. The idea of the conditional Equation 2.11 appeared in [24], but
it was not elaborated there.

An other feature of this approach is that it requires the definition of the switching
probability conditioned on the switching time (pij(t)). The derivation published in
[61, 13] is not correct because of the absence of this switching probability.

There is an other shortage in the mentioned papers ([61, 13]), since both of them
supposed that the distribution of the sojourn time of a state is Qi(t), which is not
true in general, only if the diagonal of the kernel does not contain positive valued
functions. Appendix B shows how can be transformed a general kernel (with positive
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valued functions in the diagonal) to a canonical one (without positive valued function
in the diagonal). The derivation of [61, 13] are true only for SMPs given by canonical
kernels.

Analysis of stochastic reward models

In Chapter 3 homogeneous (regarding to the preemption policies) state spaces
with prs, prd and pri states are considered for the evaluation of reward measures
of MRPs, and the three main ideas the results are based on can be summarized as
follows.

Firstly, the reward analysis of MRPs with subordinated SMPs, can be performed
by the introduction of a supplementary variable which is the elapsed time from the
last RTP.

Secondly, a description of the stochastic processes with the opportunity of virtual
state transitions (i → i) in RTPs causes difficulties in the analysis of models with prd
and pri states. The analysis of these processes can be carried out by the introduction
of an additional supplementary variable which is the amount of the accumulated
reward of the process1.

Thirdly, the existence of an absorbing group of states is allowed where the con-
sidered life time of the examined processes is completed by reaching the work re-
quirement or by jumping into the absorbing group of states. Relevant measures are
introduced and evaluated for this kind of models.

Analysis of MRSPNs

Chapter 5 gives a general approach to the evaluation of MRSPN models, which
allows the analysis of more general classes of MRSPN. The three main elements of
this approach are

• the introduction of the age and firing time variables associated to every timed
transition, and the definition of the regenerative time points on this base,

• the definition of a general framework of the analysis of MRSPN by Equation
5.1 and 5.2,

• the recognition of the relation between the behaviour of MRSPNs with their
age and firing time variables and the stochastic multi reward processes2.

An important consequence of this general approach is that the semantical re-
quirements of Petri nets which provide the analysis of the model, have to be fulfilled

1This supplementary variable must be introduced for the analysis of SMPs given by a kernel with
at least one positive valued function in the diagonal without applying the canonical representation
of the process.

2The results of Chapter 5 are based one a continuous cooperation with Andrea Bobbio since
1991, hence it is very difficult and almost impossible to name the owner of each one. However, since
in this special situation the owner of the results is required to be defined, with the kind allowance of
Andrea Bobbio the results concerning the MRSPN analysis can be considered as the own results of
the author with the exception of this last and probably most important one. This result is declared
to be common with Andrea Bobbio.
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only regeneration period by regeneration period, not throughout the lifetime of the
process as defined in the former publications ([25, 24, 26]).

On the line of the general approach two further steps have been elaborated.
A classification of the regeneration periods is given by semantical restrictions

provided that the evolution of the subordinated process in a regeneration period
can be described by a single reward stochastic process with the allowed existence
of an absorbing group of states. Based on this classification the new class of Single
Reward MRSPNs is introduced. The class of Singe Reward MRSPNs contains the
former introduced classes of MRSPNs (DSPN, MRSPN∗, Age Memory DSPN) and
it contains other MRSPN whose analysis was not possible by the former published
methods. The matrix functions P(t, w), F(t, w) and D(t, w) are defined and evalu-
ated for the subordinated SMPs by which the regeneration periods can be described
by Equation 5.8.

Results are derived for a general single reward model and they can be used for the
evaluation of different kinds of regeneration periods (subordinated to either AGE or
ENABLING type GEN transitions) on the one hand, and they give the opportunity
of a more detailed analysis of SRMs which can be called state dependent analysis,
on the other hand. The introduction and the analysis of some new state dependent
measures of SRMs is probably a further new issue of this study, which hopefully
provides some more practically interesting measures. For example the state where
the task completion occurs can be evaluated in this manner and the former studied
measures such as the completion time can be derived by the sum of them.

Between the perceptible epilogue of the research work concluded in this study it
is worth mentioning that a very important fact will determine how useful this results
are. It is still an open question how the ideas can be implemented for automatic
evaluation of models by computer programs, and how complicated models can be
evaluated with acceptable computational complexity. An opportunity of less difficult
analysis seems to be for the cases when the work requirement or the firing time is
Phase type random variable.

70



Chapter 8

Acknowledgements

There are two mentors of mine without their support this study would have never
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Appendix A

Some important properties of the
Laplace-Stieltjes Transform

Let us consider a function with the following properties F (t) = 0 if t < 0, is

analytical at t = 0 and
∫ ∞

0−
|F (t)|e−ctdt < ∞ for all c > 0 from which follows

that lim
t→∞F (t) e−ct = 0 for all c > 0. The Laplace transform of F (t) is defined as

F ∗(s) =
∫ ∞

0−
F (t)e−stdt and its Laplace-Stieltjes transform as F∼(s) =

∫ ∞

0−
e−stdF (t).

Let us consider the following function:

Fm(t) =





dF (t)

dt
if : t > 0

lim
t→0+

dF (t)

dt
if : t = 0

0 if : t < 0

and its Laplace transform pair:

F ∗
m(s) =

∫ ∞

0−
Fm(t)e−stdt =

∫ ∞

0+

dF (t)

dt
e−stdt =

∫ ∞

0+
F (t) s e−stdt +

∫ ∞

0+

d (F (t) e−st)

dt
dt =

s
∫ ∞

0−
F (t) e−stdt +

∫ ∞

0+
d

(
F (t) e−st

)
= s F ∗(s)− F (0)

But on the other hand

F ∗
m(s) =

∫ ∞

0−
Fm(t)e−stdt =

∫ ∞

0+

dF (t)

dt
e−stdt =

∫ ∞

0+
e−stdF (t) =

∫ ∞

0−
e−stdF (t)−

∫ 0+

0−
e−stdF (t) = F∼(s)− F (0)

hence
F∼(s) = s F ∗(s)
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The most important advantage of the introduction of the Laplace-Stieltjes trans-
form is that it makes possible to handle the random variables in transform domain
without probability density function. In the practical application cases there are
deterministic or discrete delays very often, hence there can be probability masses in
the lifetime of the random process.

In the following table some important transform pairs and the main properties
of the Laplace and the Laplace-Stieltjes transforms are summarized.

Time domain LT domain LST domain

F (t), t ≥ 0 F ∗(s) =
∫ ∞

0−
F (t)e−stdt F∼(s) =

∫ ∞

0−
e−stdF (t)

aF (t) + bG(t) aF ∗(s) + bG∗(s) a F∼(s) + bG∼(s)

F (t/a) a > 0 aF ∗(as) F∼(as)

F (t− a) a > 0 e−as F ∗(s) e−as F∼(s)

∫ t

0−
F (τ) G(t− τ) dτ F ∗(s) G∗(s)

1

s
F∼(s) G∼(s)

∫ t

0−
G(t− τ) dF (τ) s F ∗(s) G∗(s) F∼(s) G∼(s)

dF (t)

dt
sF ∗(s)− F (0) s [F∼(s)− F (0)]

∫ ∞

0−
F (t)dt lim

s→0
F ∗(s) lim

s→0

1

s
F ∗(s)

∫ ∞

0−
dF (t) = lim

t→∞F (t) lim
s→0

sF ∗(s) lim
s→0

F∼(s)

lim
t→0

F (t) lim
s→∞ sF ∗(s) lim

s→∞F∼(s)
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Based on the general properties listed above the most important applications are
as follows:

Time domain LT domain LST domain

F (t), t ≥ 0 F ∗(s) =
∫ ∞

0−
F (t)e−stdt F∼(s) =

∫ ∞

0−
e−stdF (t)

U(t)
1

s
1

U(t− a)
e−as

s
e−as

δ(t) 1 s

δ(t− a) e−as s e−as

b e−at b

s + a

b s

s + a

1− e−at a

s(s + a)

a

s + a

where U(t) is the unit step function and δ(t) is the unit impulse (also referred Dirac
delta).

81



Appendix B

Canonical representation of
stochastic processes with
embedded Markov renewal
sequence

B.1 Canonical representation of semi-Markov

Processes

Let Ω (of cardinality n) be the state space of the Z(t) (t ≥ 0) (right continuous)1

time homogeneous semi-Markov process which is defined by its kernel Q(t) = [Qij(t)]
over Ω. We denote by H the time duration to the first embedded time point of the
semi-Markov process starting from state i at time 0 ( Z(0) = i ). The generic element
(for i, j ∈ Ω)

Qij(t) = Pr {H ≤ t, Z(H) = j|Z(0) = i}
is the distribution of H supposed that a transition from state i to state j took place
at the embedded time point.

The distribution of H is:

Qi(t) = Pr {H ≤ t|Z(0) = i} =
∑

j∈Ω

Qij(t) (i = 1, ..., n)

and, the probability of jumping from state i to state j at the first embedded time
point is:

pij = Pr {Z(H) = j|Z(0) = i} = lim
t→∞Qij(t)

Denoting by Hij(t) the distribution of the time duration to the first embedded
time point given that the semi-Markov process starts from state i at time 0 and
jumps to state j at the first embedded time point we have:

Hij(t) = Pr {H ≤ t|Z(H) = j, Z(0) = i} =
Qij(t)

pij

1The right continuity defines the state of the process at the state transition time points.
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With positive diagonal element in Q(t) a virtual transition from state i to state
i can occur in the embedded time points, and this fact has some disadvantageous
consequences:

• there is no physical meaning of the embedded time points,

• the simulation of the semi-Markov process based on Q(t) is not effective since
internal time points are calculated without any changes in the process,

• the representation of the semi-Markov process by its kernel Q(t) is not unique,
i.e. there can be different kernels which results the same semi-Markov process.

The different representation of a semi-Markov process by different kernels differ
only in the frequency of the embedded time points. From the above mentioned point
of views the representation with the rarest embedded time points (i.e. the time
points of the real state transitions) has a unique importance.

Let Qu(t) = [Qu
ij(t)] be the kernel of the same semi-Markov process with this

property. In this case the pertaining Hu gains the visual physical meaning, it becomes
the sojourn time in the initial state

Hu = min{t ≥ 0|Z(t) 6= Z(0)}
The discrete event simulation is the most effective in this case since the number

of the required time points to be calculated is the least.
By the above assumptions the kernel Qu(t) could be a good choice for canonical

representation of the semi-Markov process, but for this end we have to define the
way of the determination of Qu(t) by any Q(t).

Theorem B.1 The canonical representation Qu(t) of a semi-Markov process given
by its kernel Q(t) is defined as follows:

Qu∼
ij (s) =





Q∼
ij(s)

1−Q∼
ii(s)

if : i 6= j

0 if : i = j

(B.1)

Proof:
Let Xn r.v. is the time duration to the first transition out of state i given that it

is to state j (j 6= i) and there are n internal i → i transitions at the embedded time
points before leaving state i. By its definition Xn is the sum of n i.i.d. random vari-
ables with distribution Hii(t) plus and additional random variable with distribution
Hij(t).

Conditioning on the number of virtual transition N = n at the embedded time
points from state i to state i before leaving state i we can define the distribution
function of the sojourn time in state i in LST domain2 suppose that the next state
is state j (j 6= i):

2For independent random variables (X and Y ) the distribution of the sum of them can be
expressed as:

F∼X+Y (s) = F∼X (s)F∼Y (s)
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Hu∼
ij (s|N = n) = E

[
e−sXn

]
= H∼

ii (s)
nH∼

ij (s)

Unconditioning with respect to N, we get:

Hu∼
ij (s) =

∞∑

n=0

pn
ii(1− pii)H

∼
ii (s)

nH∼
ij (s) =

(1− pii)H
∼
ij (s)

1− piiH∼
ii (s)

=
1− pii

pij

Q∼
ij(s)

1−Q∼
ii(s)

Similarly [47]:

pu
ij =

∞∑

n=0

pn
iipij =

pij

1− pii

Hence the canonical representation of a semi-Markov process Qu(t) is given by
(B.1).

2

B.1.1 Example for different representations of a semi-
Markov Process

As a very simple example let us consider the different semi-Markov representations
of a CTMC with infinitesimal generator A = {aij}. The distribution of the sojourn
time in state i jumping to any other state j (j 6= i) is

Hu
ij(t) = 1− eaiit Hu∼

ij (s) =
−aii

s− aii

and the probability of the transition to state j (j 6= i) after staying in state i is

pu
ij =

aij

−aii

hence the kernel in LST domain is

Qu∼
ij (s) =





aij

s− aii

if : i 6= j

0 if : i = j

By the mean of the randomization technique we can define a different kernel for
the same process. A CTMC can be divided into two independent random processes
which are a Poisson arrival process with intensity a ≥ maxi,j |aij| and a Markov chain
with one step state transition matrix P = A/a + I. The time durations between the
embedded time points of this case are exponentially distributed with parameter a
(independent of the state of the process)

H∼
ij (s) =

a

s + a
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and the state transition probabilities are given by the P matrix. The kernel of
this representation is:

Q∼
ij(s) =

(
aij

a
+ δij

)
a

s + a
=





aij

s + a
if : i 6= j

aij + a

s + a
if : i = j

Let us generate the canonical representation of the process by (B.1) for j 6= i
elements:

Qu∼
ij (s) =

Q∼
ij(s)

1−Q∼
ii(s)

=

aij

s + a

1− aii + a

s + a

=
aij

s− aii

B.2 Canonical representation of Markov Regener-

ative Processes

The lifetime of a MRP given by its external and internal kernels (K(t) and E(t))
contains a sequence of time points (RTPs) in which the process is defined, and inter-
vals between them in which the process is not determined, but the state probabilities
are known.

The level of the uncertainty depends on the frequency of the regenerative time
points. A MRP can be defined by different external and internal kernels and the one
which defines the most frequent series of the regeneration time points gives the most
information on the process.

But there can be situations in which an external kernel with positive diagonal
element does not meet the purposes of the analysis. In this case the canonical
representation of the MRP is possible by Ku(t) and Eu(t), but this representation
defines less RTPs than the original one. For this end let us define the following
quantities. Let H (Hu) be the time duration to the first RTP of the MRP defined
by K(t) (Ku(t)) and E(t) (Eu(t)) starting from state i at time 0 ( Z(0) = i ). Let

Ki(t) =
∑

j∈Ω

Kij(t) and Ku
i (t) =

∑

j∈Ω

Ku
ij(t) (i = 1, ..., n)

similarly to the former SMP case. And let

Gij(t) = Pr {Z(H) = j|H > t, Z(0) = i} =
Eij(t)

1−Ki(t)
and

Gu
ij(t) = Pr {Z(Hu) = j|Hu > t, Z(0) = i} =

Eu
ij(t)

1−Ku
i (t)

the probability of being in state j at time t supposing that there was no RTP since
the process started from state i at time 0.
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Theorem B.2 The elements of the external kernel of the canonical representation
can be defined as:

Ku∼
ij (s) =





K∼
ij (s)

1−K∼
ii (s)

if : i 6= j

0 if : i = j

(B.2)

and Eu
ij(t) satisfies the following equation:

Eu
ij(t) = Gu

ij(t)(1−Ku
i (t)) (B.3)

where

Gu∼
ij (s) =

E∼
ij (s)

1−Ku∼
i (s)

(B.4)

and

Ku∼
i (s) =

K∼
i (s)−K∼

ii (s)

1−K∼
ii (s)

(B.5)

Proof:
The elements of the external kernel of the canonical representation can be simi-

larly defined as a canonical kernel of a SMP by (B.1).

The derivation of the internal kernel of the canonical representation is a more
complicated problem. Conditioning on Hu = h we can define:

Gu
ij(t |Hu = h) =





Gij(t) h > t

Gu
ij(t− h) h ≤ t

(B.6)

In (B.6) two mutually exclusive events are defined: if h > t then Gij(t) equals
to Gu

ij(t) since the process does not reach the first RTP; if h ≤ t then we have a
regeneration time point in (0, t) and the state probabilities are defined from that
time. Evaluating the mean with respect to Hu (B.6) becomes:

Gu
ij(t) = Eij(t) +

∫ t

h=0
Gu

ij(t− h)dKi(h)

After Laplace-Stieltjes transforming with respect to t we have (B.4).
Since Ku∼

i (s) is defined by

Ku∼
i (s) =

∑

j∈Ω

Ku∼
ij (s) =

∑

j∈Ω,j 6=i

K∼
ij (s)

1−K∼
ii (s)

=
K∼

i (s)−K∼
ii (s)

1−K∼
ii (s)

Eu
ij(t) is calculated as the product of these two functions.

2
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Appendix C

Accumulated reward and
completion time

The equation (2.20) defines the relation between the distribution of the accumulated
reward and the completion time when the states of the structure-state process are
of prs type. We discuss the consequences of this relation, considering prs states. A
simple example is introduced.

Let B(t, w) = Pr(B(t) ≤ w) be the distribution of the accumulated reward up
to t and C(t, w) = Pr(C(w) ≤ t) the distribution of the completion time.

Considering prs states by (2.20) we have:

B(t, w) + C(t, w) ≡ 1 for ∀ t, w. (C.1)

Let us suppose that the state probabilities of the structure state process are Vi(t)
and the reward rates are ri.

To get closer to the relation of the accumulated reward and the completion time
let us study the following questions to have an impression about them.

• How much is a discrete state continuous time stochastic process defined by the
functions of the state probabilities versus time?

• How much do the state probabilities define the amount of the accumulated
reward?

• What can be said about the mean of the completion time based on the mean
of the accumulated reward (which is defined by the state probabilities)?

These questions gain significant importance when the stochastic process is a MRP
defined by its external and internal kernel, since, in this case, the process is defined
by the state probabilities between the consecutive RTPs.

A stochastic process is not defined only by the knowledge of the state probabilities.
Let us consider the following two processes with the same state probability functions.

Process A:
is a 2 state CTMC with initial probabilities V1(0) = 1/2, V2(0) = 1/2 and with
exponentially distributed state transitions (with parameter λ) from State 1 to State
2 and vice-versa.
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Process B:
is basically the same 2 state stochastic process with initial probabilities V1(0) = 1/2,
V2(0) = 1/2 and with exponentially distributed state transition (with parameter λ)
from State 1 to State 2 and vice-versa, but this process can have only one state
transition. If the process starts from State 1 then State 2 is absorbing, and if the
process starts from State 2 then State 1 is absorbing.
Let r1 = 1 and r2 = 0 for both processes.

The two processes have the same state probability functions:

V1(t) ≡ V2(t) ≡ 1/2

This examples are to enlighten that different stochastic processes can have the
same state probability functions hence a stochastic process is not defined only by the
knowledge of the state probabilities.

Based on the state probabilities the distribution of the accumulated reward can
not be evaluated, only its mean:

E [ B(t) ] = E

[∑

i∈Ω

ri ti

]
=

∑

i∈Ω

ri E [ti] =
∑

i∈Ω

ri E
[∫ t

0
I{Z(τ)=i}dτ

]
=

∑

i∈Ω

ri

∫ t

0
E

[
I{Z(τ)=i}

]
dτ =

∑

i∈Ω

ri

∫ t

τ=0
Vi(τ) dτ

(C.2)

where ti is the time the process spent in state i in (0, t) and I{Z(τ)=i} is the indicator
of being in state i.

One of the important differences between the accumulated reward and the com-
pletion time is characterized by the above questions. While the state probabilities
define the mean of the former one, nothing can be said about the latter. For example
in Process A the mean of C(w) is finite for all bounded w but in Process B it is ∞
for all positive w.
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Appendix D

The applied numerical inverse
transform method

The following MATHEMATICA source provided the results of Figure 6.4:

(* ++++++++++++++++++++++++++++++++++++++++++++++ *)

(* M/D/1/2/2 preemptive queue, PRS memory policy *)

(* SAME KIND OF USERS !! *)

(* K and E matrixes *)

x1[s_] := Exp[- tau (s + lambda)] Exp[lambda tau Exp[- tau s] ]

x2[s_] := 1 / (s + lambda - lambda Exp[- tau s])

ks = {{0, (1/s - 1/(s+2 lambda)), 0},

{1/s x1[s], 0, 0},

{0, 0, 0}

};

es = { {1/(s+2 lambda), 0, 0},

{0, x2[s] (1 - x1[s]), (1/s - x2[s]) (1 - x1[s])},

{0, 0, 0}

};

i = DiagonalMatrix[{1, 1, 1}];

(* Steady state probabilities *)

ps = Inverse[ i - s ks ] . es;

ps11[s_] = Part[ Inverse[ i - s ks ] . es, 1,1] ;

ps12[s_] = Part[ Inverse[ i - s ks ] . es, 1,2] ;

ps13[s_] = Part[ Inverse[ i - s ks ] . es, 1,3] ;
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(*-------------------------------------------*)

lambda = 0.5

tau = 1.

(* Jagerman numerical method *)

ee[q_, x_] := Exp[ I 2 Pi x / q ] ;

fnt[n_, t_, q_, r_] :=

((n+1) / (t q r^n) *

Sum[ ee[q, -n j] ps11[ (n+1) / t (1 - r ee[q, j]) ], {j, 1, q}])

ont[n_, t_, q_, r_] := (2+1/n) fnt[2n,t,q,r] - (1+1/n) fnt[n,t,q,r]

Do [ pp = ont[50, xx, 251, .8] //N ; Print[{xx, Re[pp]}],

{xx, 0.1, 4, 0.1}]
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Appendix E

List of notations

H Holding time of a regeneration period, r.v.

Ω Finite state space of the structure state process

R Up subset of states, R ⊂ Ω

Rc Down subset of states, Rc ⊂ Ω

Z(t) Continuous time finite state stochastic process

ri Reward rate in state i

W Work requirement, r.v.

C Completion time of the (random) work requirement W , r.v.

Ĉ(t) Distribution of the completion time of the work requirement
W

Ĉ(t) = Pr {C ≤ t}

C(w) Completion time of the deterministic work requirement w, r.v.

C(t, w) Distribution of C(w)
C(t, w) = Pr {C(w) ≤ t}

W (w) Distribution of the work requirement W

W (w) = Pr {W ≤ w}
(
Ĉ(t) =

∫ ∞

a=0
C(t, w)dW (w)

)
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B(t) Collected reward up to t, r.v.

B(t, w) Distribution of B(t)
B(t, w) = Pr {B(t) ≤ w}

V(t) = {Vij(t)} State transition probability matrix
Vij(t) = Pr {Z(t) = j|Z(0) = i}

V 0 Initial state probability vector

V ST Steady state probability vector

V (t) = {Vi(t)} State probability vector at time t

A = {aij} Infinitesimal operator of continuous time Markov chains

aii = − ∑

j∈Ω,j 6=i

aij

Q(t) = {Qij(t)} Kernel of semi-Markov process
Qij(t) = Pr {H ≤ t, Z(H) = j|Z(0) = i}

K(t) = {Kij(t)} External kernel of Markov regenerative process
Kij(t) = Pr {H ≤ t, Z(H) = j|Z(0) = i}

E(t) = {Eij(t)} Internal kernel of Markov regenerative process
Eij(t) = Pr {H > t, Z(t) = j|Z(0) = i}

H(t) = {Hij(t)} Distribution of the next regeneration time point starting from
state i suppose that the next regenerative state is state j

Hij(t) = Pr {H ≤ t|Z(t) = j, Z(0) = i} =
Kij(t)

pij

Π = {pij} One step state transition probability matrix of the embedded
Markov chain
pij = Pr {Z(H) = j|Z(0) = i}

G(t) = {Gij(t)} State transition probability matrix inside a regeneration period

Gij(t) = Pr {Z(t) = j|H > t, Z(0) = i} =
Eij(t)

1−Ki(t)
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Petri net analysis

Ω Finite state space of the marking process

R Enabling subset of states

F(t) = {Fij(t)} State dependent firing time
Fij(t) = Pr {firing in state j at H ≤ t|Z(0) = i}

P(t) = {Pij(t)} State probabilities before firing
Pij(t) = Pr {Z(t) = j, firing time > t|Z(0) = i}

D(t) = {Dij(t)} Probabilities of disabling states
Dij(t) = Pr {Z(t) = j ∈ Rc|Z(0) = i}
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Abbreviations

RTP regeneration time point

CTMC continuous time Markov chain

SMP semi-Markov process

MRP Markov regenerative process

SRM stochastic reward model

prs preemptive resume

prt preemptive repeat

prd preemptive repeat different

pri preemptive repeat identical

PN Petri net

TPN timed Petri net

SPN stochastic Petri net

GDT SPN generally distributed transition stochastic Petri net

DSPN deterministic and stochastic Petri net

PHSPN Phase type stochastic Petri net

PH Phase type (distribution)

MRSPN Markov regenerative stochastic Petri net
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