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Abstract

A phase-type distribution is the distribution of hitting time in a
finite-state Markov chain. A phase-type distribution is triangular if
there exist an upper triangular markovian representation. We introduce
in this paper an extension of the triangular phase-type distributions,
which we call monocyclic distributions. They are convolutions of Erlang
and feedback Erlang distributions. We will show that any phase-type
distribution can be represented as a mixture of these simple sparse
distributions.

Key words. phase-type distributions, Markov chain, monocyclic phase-
type distribution.

1 Introduction

A phase-type distribution is the distribution of absorption time in a finite-state

Markov chain. The first unified approach to the standard parametrization of

phase-type distributions, and some closure properties, were presented in [8j.

Some other closure properties are given in ([2, 7]). A caracterization theorem

was formulated in [11] and a remarkable property of the coefficient of variation

was given by Aldous and Shepp [1]. However, detailed characterizations of
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phase type distributions are given only in the particular case of phase-type
distributions whose transforms have only real poles, also called Conan or
triangular distributions ([4, 5, 6, 12, 13]). Some open problems concerning
phase-type distributions are described in [14].

Our goal is to find a simple extension of the Coxian distribution which can
parametrize the entire class of phase-type distributions and preserves most of
the remarkable properties of the Coxian distributions.

In Section 2 below we review some basic notions concerning phase-type dis
tributións. In Section 3 we define the extension of the triangular distributions
that we call monocyclic distributions. Section 4 is concerned with the rep
resentation theorem that will show that any phase-type distribution can be
expressed as a mixture of such highly sparse distributions. The last section
contains some applications of the representation theorem, and we discuss some
conjectures from [14]

2 Basic notions and definitions

Definition 1 A probability distribution F(.) over [0, oo) is a phase-type dis
tribution (PH-distribution) if it is the distribution of the time to absorption

in a finite-state Markov chain, characterized by the vector of initial probabil
ity distribution and the transition matrix T. The pair (, T) is called a
representation of F(.).

The order of a representation (, T) is defined as the order of the genera
tor T. We use the notation PH(, T) to denote the phase-type distribution
whose representation is (, T). By PH(T) we denote the set of all phase-type
distributions having a representation whose generator is T. We denote by e a
vector of adequate dimension, whose entries are all equal to one.

A PH distribution assigns a mass 1 — to 0 and the absolutely continuous
part of its density and its Laplace-Stieljes transform are given by:

f(t) etT(_T), f(s) = (sI — T)’(—T), (1)

where I is the identity matrix.

The degree of the denominator of the irreducible form of the Laplace-Stieljes
transform is called the algebraic degree of the distribution.

2



We are concerned with signed Bore! measures on [0, oo) with finite total
variation [16] and rational Laplace-Stieljes transform (RLST). Let Z be the
vector space of such measures and let p. be an element of RLST C Z. Addi
tionally we suppose that p. E PH, so p. satisfies the necessary and sufficient
conditions of the characterization theorem [111

Theorem 1 A probability distribution on [0, oo) with is not the point mass at
zero is of phase-type if and only if

a) it has a rational Laplace-Stieljes transform with a unique pole of maximal
real part, and

b) the continuous density of its absolutely continuous part is positive every
where on [0,oo).

Some important sets will be used in the following. The terminology is the
same as in [11].

POS denotes the set of elements of Z wich assign no mass to zero.

PM denotes the set of elements of Z wich are probability measures.
UTM denotes the set of elements of Z with unit total mass.
PH denotes the set of phase-type distributions.

We define, following [11], the residual life operators R, t > 0 on

Rp.({0}) = p.([0, t]), Rp(E) = p(E + t). (2)

where E is a Bore! subset of [0, oo) and E + t denotes its translate by t units
to the right. Thus if p. has the absolutely continuous part of its density equal
to f(x), the absolutely continuous part of Rep. has density f(x + t) and the
mass assigned to zero will be:

p.({0}) +ff(x)dx.

We define the space generated by the measures Rep., t 0:

Span(p.) = span{Rp. : t 0}

= {aiRti: a e (—oo,oo),t E [0,oo),i = 1,2,.. .,l = 1,2,. ..} .(3)

It is easy to check the relation RR = R3+, so the family {R : t 0} has a
semi-group structure and so it possesses a generator I’ defined by:

Pp. =1.Rp.— p.
(4)
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with R = et1’ on Span(p). The semi-group property of R involves that:

Rp = TRIp. (5)

If (, G) is a representation of a phase-type distribution, then the application

of the operators R and I’ is described by:

RPH(, G) = PH(etG , G), t 0, (6)

rPH(, G) = DIST(G, G), (7)

where DIST(v, G) is an element in UTM with v not necessarily sub-stochastic

(as G is generally not sub-stochastic).

For a detailed description and properties of the operators R and 1’ see

[11, 12, 13].

The goal of this paper is to find a representation (, A) for a phase-type

probability measure p, with a sparse generator A having a quasi-bi-diagonal

structure. A certain number of elements in the lower triangular part are non

zero; equivalently, the associated Markov chain graph has a certain number of

backward transitions.

The idea is to establish a link between the number of cycles and the number

of complex pairs of poles. This fact is made explicit in Section 3.

The construction technique for this kind of representations is as follows: we

define a generator e with such a quasi-bi-diagonal structure, in order that the

poles of the Laplace-Stieljes transform of p are among the eigenvalues of this

generator 0:

poles(i(s)) ç u(0),

where u(.) is the spectrum of a matrix. Then, we prove that we can always

find a representation (in the general case non-Markovian) for p:

p = DIST(, 0), E r. (8)

Then we apply the O’Cinneide’s invariant polytope technique [11, 121 and

we augment the polytope PH(0) such that we obtain a certain R-invariant

polytope containing p. Then we deduce that there is a generator A with the

required structure, such that:

p € PH(A).
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The details of this method are given in Section 4.

We recall some notions from convex analysis, required in the next sections.

The following definitions are detailed in [15].

In the following the n-dimensional Euclidian space is denoted by Ez. We

will denote the convex hull of S C E” by co(S).

Definition 2 The affine hull of a subset $ C is the intersection of all
affine sets in E containing S.

Definition 3 A set that is the convex hull of a finite number of points {b0, b1,
b} is called a polytope. VVV

If the set {b0, b1, ..., b, } is affinely independent then its convex hull is

called an n-dimensional simplex.

Definition 4 The relative interior ri(S) of a convex set S C E is the interior
of S relative to the affine hull of S. VVV

3 Cyclic representations

The elementary fact, that the presence of complex poles in the Laplace

Stieljes transform implies the presence of backward transitions in the asso

ciated Markov chain suggests the search for sparse cyclic representations for

general phase-type distributions. Some workers were already interested in the

study of representations that present a single backward transition (the feed
back Erlang distributions [14, 3], or with multiple backward transitions from
the last state only [14]. We propose another particular case of cyclic repre
sentations, called monocyclic representations. They are characterized by the

fact that every state can belong at most to one cycle of the representation.

The idea is to associate one cycle of the representation to each pair of complex
poles.

However, there is an indeterminacy in the choice of the parameters for each
cycle. The fact that, in the general case, we cannot find a representation of
dimension equal to the algebraic degree ([12]), such that the set of complex
poles of the Laplace-Stieljes transform equals the set of eigenvalues of the
generator, makes difficult the use of general monocyclic representations. To
see that consider the simple example of a phase-type distribution of algebraic
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degree three with a single pair of complex poles

1
f(s)=18 \f s \f S

+1)1 . +1
\A I \a+zb I

It was shown [12, 3] that if and only if the poles satisfy the condition

a_Act3, (9)

one can find an order three representation (,T3), with

f—Ai A1 0
‘

Ts—l 0 —A2 A2 , (10)
‘pA3 0 —A3)

where

A E [ (2a + A — 2/(a — A)2 — 3bi) , (2a + A + 2,/(a — A)2 — 3b2)],

A2=(2a+A—Ai—5?+2Ai(2a+A)A(4a—A)—4i), (11)

A3 = (2a + A — A1 + + 2Ai(2a + A)A(4a — A) — 4b2),

—1—
(a2+b2)A

— A1(a2+ b2 + (A1 — A)(A1 — 2a))

Clearly there is an infinity of solutions as A1 ranges between its minimal and

maximal value. To avoid this kind of indeterminacy in the choice of parameters

we will refine the definition of monocyclic representation and finally we will
define a canonical basis of the representation.

Giving a closer look at equations (11) we see that the solution of the system

is uniquely determined if the quantity (a — A)2 — 3b2 is equal to 0. Then

A1 = A2 = A3 = (2a + A), and the representation is unique. This fact

corresponds to equality in (9). Indeed the equality occurs in (9) only if the
elements on the first diagonal of T3 are equal. This simple observation is a
consequence of the extremality of the feedback Erlang distribution with respect
to the result of Theorem 3.1 of [12].

One hint to find a uniquely determined representation of the given phase

type distribution is to consider a non-minimal fourth order representation

(,T’), where:

T’

= (_A

-
A (12)

0 pA1 0 —A1
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= (ai a2 0 0).

with )i a+bVand a2 = , a = 1— a2.

This fact suggests the definition of a canonical representation for phase-

type distributions, such that the parameters of the representation are uniquely

determined. Even if such a representation is not minimal by construction, in

the sense of the order of the generator, the representation is sparse and the

number of parameters is low. In the previous example for both representations

we have the same number of parameters.

A closer study of the eigenvalues localizations is needed for the definition

of the canonical representation basis.

3.1 Eigenvalues localization.

Definition 5 We define the relative order of a complex pair of poles =

a ± ib, w.r.t the maximal pole —), as the smallest integer m such that:

a — A > btan —.

m

An example of the geometric interpretation of the relative order is depicted

in Figure 1

a + bi

a — bi

Figure 1: The positioning of a complex pair of poles of relative order m

We consider a particular case of monocyclic representations, the feedback



Erlang distributions (Figure 2):

—A A 0 ... 0 0
o —A A ... 0 0

(13)

o o 0 ... —A A
zA 0 0 ... 0 A

Figure 2: Feedback Erlang distribution

The eigenvalues of such a generator can be obtained by a simple transfor

mation on the n-order roots of unity.

— (l_Z( cos2(k1)K)A+i(Z(Sin2(I 1)lr)A

Proposition 1 Given a complex pair of poles a ± ib there is a unique feedback
Erlang distribution, of a given order n, such that the complex pair of poles is
an eigenvalues pair of the generator of the representation. The parameters of
that representation are uniquely determined by:

1/ ‘ir
A=—i2a—btan—+bcot—j (14)

2 n nJ
1 2(a—btan)

1—z= . (15)
2a — btan + bcotn n

vvv
Proof. From a geometric point of view, the transition rate A is the center

of the circle circumscribed about the regular polygon with the three rightmost

vertices given by the two complex poles and the point A where A = a—b tan

The center of this circle is uniquely determined by (14). The nth root of the

probability of the backward transition z is the radius of the same circle (Figure

3). It will be uniquely determined by (15). The feedback Erlang distribution

of order n is uniquely determined by these two parameters. 0
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a + bi

Figure 3: Geometric relations between the poles and the parameters of the
feedback Erlang distribution

The eigenvalue )4 of maximal real part of the feedback Erlang generator is

equal to the product —)(1 — z*).

Remark lIfn= 3, a; if n=4 then =a andforn> 4, A>a (see
FiguTe 4).

a + bi

6

a-bi

Figure 4: )‘s positioning for n = 3, 4, 5

3.2 The canonical basis

In the following we define the canonical representation basis. The goal is
to provide a simple representation basis for general phase-type distributions

whose elements are formed by convolutions of Erlang and feedback Erlang
distributions (13).

a-bi

I a+bi

a+

a-bi a—
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We will provide a method to compute the transition rates and the initial

probability vector.

We consider the set of poles of the Laplace-Stieljes transform of a phase-

type distribution. The idea is to identify each complex pair of poies with an

eigenvalue pair of a feedback Erlang representation.

Let A = C C be the set of the n (real and complex conjugate)

poles of the Laplace-Stieljes transform of a phase-type distribution. Let —. E

R be the element of maximal real part from A. For every complex conjugate

pair of poles (A.,, X3) we define a feedback Erlang representation for which

they are a conjugate pair of eigenvalues. The order of the feedback Erlang

representation is the relative order of the pair.

Following Proposition 1, each such representation is uniquely determined.

For the remaining real poles we consider the corresponding exponential and

Erlang distributions.

Eventually, we obtain the generator by the convolution of all the above

defined generators. For a uniqueness purpose we order the components of

the convolution in order of increasing Perron-Frobenius eigenvalues. If these

eigenvalues are equal then we consider the order of the transition rates and,

if the equality occurs also for transition rates, we consider the orders of the

transition matrices. Then the set of the distributions is described by a set of

ordered triplets:

A’ = {(5,z2,nj}. (16)

where A is the transition rate, z2 is the weight of the backward transition

(z = 0 for the exponential and Erlang distributions) and n is the order of the

distribution.

After convolution we obtain a monocyclic generator e. The order of this

generator is the sum of relative orders of all the complex pairs of poles and

the number of real poles. Note that, by construction, an Erlang component

of order k is associated to the pole of maximal real part A1, where k is the

multiplicity of that pole, and no other component has A as eigenvalue. The

canonical basis is the set of the distributions (e2, ), where e are the vectors

having the ith entry equal to 1, all the others being 0. Notice also that 0 is

simple as defined in [10].
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Example.

A {A1, A2, a + ib, a — ib, c + id, c — id}

We assume that both complex pairs of poles are of relative order 3.
We suppose that after the construction we obtain the ordered set of param

eters for the convolving distributions:

A’ = {(A1,0, 1), (Aa, Za, 3), (A, Z,, 3), (A2,0, i)}

The corresponding generator is:

—A1 A1 0 0 0 0 0 0
o Aa Aa 0 0 0 0 0
o 0 Aa Aa 0 0 0 0
o ZaAa 0 Aa (1

— Za)Ac 0 0 0
17o 0 0 0 —A A 0 0

o 0 0 0 0 —A A 0
o 0 0 0 zA 0 —A (1 — z)A
o 0 0 0 0 0 0 —A2

For convenience, the distributions (, 0) will be called monocycic gen
eralized Erlang distributions, in what follows.

In Figure 5 we depict the cyclic graph corresponding to a monocyclic Erlang
distribution.

€ C

Figure 5: Monocyclic generalized Erlang distribution

Two particular classes of phase-type distributions naturally arise from the
definition of monocycic generalized Erlang distributions.

Definition 6 We define the class MME (mixture of monocyclic generalized
Erlang) of PH distributions, the phase-type distributions that can be repre
sented as (, 9) where 0 is a monocyclic generator and is a sub-stochastic
vector. VVV
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The graph of the generator of a MME distribution has the same generator

as the monocyclic generalized Erlang distribution, but the initial probability

distribution vector may have more than one non-zero entry.
The reverse time representations of the MME distributions are the analo

gous of the Coxian distributions (see Figure 6).

Definition 7 We define the class MCox (monocyclic Coxian) of PH distribu
tions, the phase-type distributions that have a monocyclic bidiagonal represen
tation where the output rates of the stages in the same cycle are not necessary
are.

Figure 6: Bidiagonal monocyclic representation

It is useful to remark that if we set n = 1 for all the cycles then we find the

Erlang and Cox distributions. In that sense the monocyclic representations

are a generalization of the case of real poles.

It can be shown that every phase-type distribution has a monocyclic (in the

general with a non-stochastic initial distribution vector) representation.

Proposition 2 Let ji be a probability measure of phase-type . We can al
ways find a representation for t DIST(, ) , E R’ with e a monocyclic
generator. VVV

The proof is given in appendix.

4 The representation theorem

Theorem 2 Every phase-type distribution has a MME representation.

Proof. The proof follows the same steps as the proof of Theorem 4.1 in

[12j. For conformity we will preserve, if possible, the same notations as in [12].

z
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Let i be a probability measure of phase-type and suppose that u does not

assign a mass to 0, being absolutely continuous. Let A = {—A}=1..c C be

the pole set of i and let 0 be the monocyclic generator defined over A’.

We will construct a certain R-invariant polytope containing p, and we apply

Lemma 2.1 from [12] to deduce that there is a generator A such that the

polytope is included in PH(A). The polytope is constructed by augmenting

the polytope PH(0) with the convex hull of the measures obtained by solving

the differential equations system (5) by Euler’s method. The final polytope will

have all the extreme points absolutely continuous except for . Choosing the

increments sufficiently small in Euler’s method will ensure that the polytope

is R-invariant. We construct a first series of Euler’s approximants from i to

/c+i E ri(Span(IA) n PM).

Following Lemma 5.4B [11] a measure ii E Span(i)flPM is in ri(Span() n
PM) if and only if it satisfies the conditions:

(1) v gives positive mass to 0,

(2) v has a continuous positive density on [0, oo),

(3) i has an order k pole at ).

The probability measure i is in Span() flPM, but is not an interior point,

since (0) = 0.

Using Lemma 5.5 (B and C) [11] if v E Span(p) fl PM and if it satisfies

the conditions

(i) v has a continuous positive density on (0, oo),

(ii) i has an order k pole at ),

then for all E sufficiently small (I + el’)v = ii + Fv is in Span() fl PM and

satisfies (i) and (ii). To bring to satisfy the conditions (1) — (3), and then

to be in ri(Span(1u)fl PM), i must assign a positive mass to 0. The effect of

the 1’ operator is such that if f is the density of the measure t, the density

of Fj.t will be f’. Then the absolutely continuous part of (I + eP)L is f + Ef’

and, for some positive e, we can reduce the order of the zero of f at 0 by 1.

Let c be the order of the zero of f at 0. One can choose e, e2, ..., Ec+1 such
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that the measures:

p1 = (I+EiI’),u, 112 = (I+e2flpl,. .. ,/-Lc+i = (I+iI’)p, (18)

are in Span(p) fl PM and also satisfy the conditions (i), (ii). The absolutely

continuous part of p will be strictly positive at 0, as the order of the zero of

f, reduces by one unit at each step. We again use the description of the 1’

operator, and it follows that Pc+i gives a positive mass to 0. So i’c+i satisfies

the conditions (1) — (3) and thus is in ri(Span(p) n PM).

We will show now that RTPC+1 E ri(PH(9)) for T sufficiently large. As

A C spec(e), Span(p) fl UTM C DIST(j, ), E R’ (Proposition 2). More

precisely:

Span(p) fl UTM= {DIST(il, e) I (spec(O) —A)czero(LST(DIST(v’, e)), ‘E R}.

where LST(.) means the Laplace-Stieljes transform and zero(p(s)) is the set

of zeros of p(s).

Let DIST(v’, ) be a (non-Markovian) representation of Pc+i In order to
prove that RTp+1 = DIST(/(T), ) E ri(PH(O)) for T sufficiently large, it

is enough to prove that i/(T) becomes sub-stochastic for such a T and that is

equivalent, following (6), to proving that 2/(T) = vIeTO > 0.

That can be proved from computation of the matrix (sI — s)—’ by cofactor

expansion.

In order to illustrate the sense of the generalization of the triangular repre

sentations, we will provide an alternate probabilistic proof.

We will examine the matrix eTO. As follows from the construction algorithm

we can partition e as

(19)

where A1 is an Erlang generator with transition rate ) and whose dimension

k is the multiplicity of ). A2 is a monocyclic generator of dimension n — k
whose eigenvalue of maximal real part is strictly less than —). The connexion

matrix A12 has an unique non-zero element A12[kl] = A1.

Clearly the structure of etO is similar to that of e:
tA1 B

etO
= (e

etA2 )• (20)
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It follows that on the columns of ete the elements (i, i) > k will decay

with faster rates than ). In order to determine the structure of the elements

(i, i k we invoke some probabilistic considerations. Let X, i = 1, 2,. . . n

be the exponential random variables which describe the sojourn time in the

states of the Markov chain whose generator is 9. They may be classified

in communicating classes. We write Y1, I = 1 . . . L for the communicating

classes, where L is the number of cycles. Then, if X11 E Y and X2 E

Y12, I 12, X1 and X1 are independent. We denote by P(XjY > t) the

conditional probability P(XZIXZU . . . X1, > t) with {X2,X .. . X1,} Y1. Of

course P(XIY > t) = P(XZ > t) if Y = {X}. Then the process stays in state

i of class Y for a time XY before moving to the state i+ 1 which either is in

the same class or is the first state of the next class. State n + 1 is absorbing.

The functioning of the process is similar to the triangular case but instead

of moving from a state to another in a sequence it will move from a class of

states to another one.

With these conventions the entry (i,j), i k, j > i of ete is P(X, + ... +

X,1’ > t) — P(X + ... +X3_11Y1’ > t). Then using the fact that the first

k random variables X are independent and of the same transition rate .A

it follows that apart from a positive constant factor the (i, j) entries, i k,

j > i, of ete behave as t1_te_1t for j k and as for j <k.

It follows that all the rows of ete decay to 0 faster than the first row,

as t —+ oo. This means that in /iC = DIST(v, 9) the first element of v’

must be strictly positive. It cannot be strictly negative as 1c+i is a prob

ability measure and cannot be 0 as ii+i(s) has a pole of order k at —Ar.

The positivity of the first element of ‘ and the asymptotic behavior of etO

imply that for T sufficiently large, eTe becomes sub-stochastic and then

RT/I+1 = DIST(/(T), 9) e ri(PH(9)). Let T be chosen this way.

With jt in ri(Span() fl PM), it is easy to prove that Rqt+1 is also in

ri(Span(,u) fl PM) for t 0. We construct the Euler’s approximants to the

solution of the differential equation:

= (21)

on the interval [0, T] and with an integration step e = TIN> 0. We obtain



the approximants

p =(I+eF)p_1=(I+eF)’p1,j = 1,2,...,N (22)

to the exact values R,. The trajectory t —* Rtpi and its approximants lie all
in Span(p)flPM. For e sufficiently small the approximants are uniformly close
to the trajectory and so we can ensure that they lie in ri(Span(p) nPM). We
have also proved that RTp+1 is in ri(PH(e)) which is open in Span(p)flPM.

With e sufficiently small we can also ensure that i4 = (I + eF)Np1 is in
ri(PH(8)).

Then we construct the polytope:

P = co{6o,p,pi,.. .,pc,pc+i,g,.. .,7i,PH(1,O),...,PH(,e)}, (23)

where the measures 71 are formed from p by removing the mass at 0 and

rescaling so that 71 is in UTM:

— —

—
IL—

1—p({O})

Except for 6 all the extreme points of P are absolutely continuous. In order

to apply the invariant polytope Lemma (Lemma 2.1 [12]) we will prove that

P is R-invariant. For that we show that I’ points inward to P at each of its
extreme points and then apply Lemma 2.2 [12]. Obviously r points inward to
P at öo. That is also true for p’,. . .

,p1 as the left-hand sides of (18) and
(22) are in P. From Lemma 2.2 [12] follows the same property for PH(2,e),
i = 1. . . n, PH(S) being R-invariant and PH(S) ç P. is an interior

point of PH(S) so it does not need to be checked. It follows from Lemma

2.2 [12] that P is R-invariant. Lemma 2.2 [12] also implies that there exists a
generator A such that P = PH(A). Consequently from the same Lemma 2.2

[12] the relation between the elements of A and the extreme points v, of P are

given by:

Fvz = >gzj(vj — v) +g(6 — vj. (24)
ji

We will write down explicitly the generator A in that manner.

With the notation f2 for the continuous part of the density ofp2,i = 0, 1 . . . c
and J for the density of71, i = 0,1.. .N— 1, let (,e), = (a1,a2,...

be the representation of in PH(e).
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With the remark that for i’ 6 in RLST n PM, and i’ = v + jFv, we

have:

Pu= (25)

where is the continuous density of j7• We use this for the construction of the

generator as in (24). We obtain:

1
= — = 0, 1, . . . , — 1;

= (- — f(0)) ( — pc) + fc(6o — Pc);
T=(_J(o))(m+1_iz)+J(0)(o0_z), i=O,1,...,N—1;

= ( — J_(o)) (PH(, 8)
—

j,_1)+Th_1(°)(0—
is not the last state of a cycle;

FPH(, 8) = A2((1 — z)PH(1,8) + zPH(_1,8) — PH(, 9)),

if i is the last state of a j-order cycle;

FPH(, 9) = )(ö0 — PH(, 9)).

We write down the corresponding generator following (24):

—E11 E1

E1E21

—Ei ‘ — f(O)
—ern’ e’—f0(O)

—E1 e_1_T(O)

—E1 —j(O))

8

Now we use the properties of the TPH generators and we replace the upper

part of A by a bidiagonal block. Then p is MME. D

5 Final comments and perspectives

The representation theorem is a generalization of the result concerning the

case of real poles and then offers the possibility to use sparse representations
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for modeling general phase-type distributions. Qualitative analysis of their
properties is significantly simplified.

An important property is the characterization of extremal phase-type distri
butions. Because every phase-type distribution can be expressed as a mixture

of monocyclic Erlang distributions, then the last ones are the extremal distri
butions. This remark is the equivalent of the Conjecture 2 in [14].

The representation theorem seems also to be of some help in the proof of

other properties. One of these properties of interest is the Conjecture 1 in [14].

Conjecture 1 Let f be the density of a phase-type distribution of order ii

with mean p> 0 and coefficient of variation c. Then with A n/p

f(t) e2’
(n — l)!e =e’2’8,A(t), t 0. (26)

Here (t) is the Erlang distribution of order n and transition rate A.

The conjecture in true in the case of real poles (see [14] for proof). Looking

at the comments following the conjecture in [14] the conjecture seems to be true

also for the feedback Erlang distribution. If it is the case, then, as every phase-
type distribution can be represented as MME, the representation theorem can
be of use for the proof in the case of complex poles.

Another problem of interest for which the representation theorem could be
of some help is the step increasing conjecture [14]:

Conjecture 2 For any phase-type density of order ii, f(t)/t’ is non-increa
sing fort> 0.

Because the conjecture is true again in the case of real poles, and a phase-
type distribution with real pole has a bidiagonal representation we can use
the following stochastic argument in favor of the conjecture: adding backward
transitions on the graph of a Markov chain will slow down the absorption
process. Then the graph of the distribution function will be smother than the
“original” function.

A question of interest concerning the monocyclic representations is their
dimensions. Even if the state number of such a representation can be very
large compared with the algebraic degree, the number of parameters is nearly
the same. However, in some applications, the dimension of the Markov chain
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could be important. There are some possible ways to reduce the number of

states of a monocyclic representation.

One way is to relax the strict inequality in the definition of relative order,

and also to consider the possibility to have more than one pair of complex poles

of the Laplace-Stieljes transform among the eigenvalues of the same feedback

Erlang distribution (note that the actual construction algorithm provides a

bijection between the number of complex pairs of poles and the number of

cycles): That will give the possibility to decrease the number of cycles. On

the other hand, the relaxation of the inequality in Definition 5 gives the possi

bility to reduce the dimensions of the generated feedback Erlang distributions.

An immediate implication of that fact is that we will “distribute” the maxi

mal eigenvalue ) in some monocyclic blocks. Then the first Erlang block of

transition rate A1 can disappear. In such a case the proof of representation

theorem becomes more complicated in that the asymptotic characterization of

the trajectories Rt+1 is more difficult. Authors have proved this character

ization using a property of semi-stable matrices ([9],[17]). The proof is quite

intricate and is not provided here.

Another direction for further study that seems to be of interest is to define

the “monocyclic order” previously suggested by the definition of the mono-

cyclic Coxian distributions (MCox). It seems to be a natural extension of the

triangular order. We can look at the Coxian distributions as a particular case

of monocyclic Coxian distributions, when all the diagonal blocks (cycles) are

of dimension 1.

The study of such “block-triangular” distributions is justified by the fact

that the MME distributions are in the general case non-minimal by construc

tion even if we accept the above relaxations on the definition of the relative

order and on the construction method.

Then the study of the monocyclic Coxian distributions can provide an issue

against the (possible) huge dimension of MME representations. It could pro

vide a smaller dimension representations, preserving the tractability offered by

the structural properties. The authors investigations in the class of monocyclic

triangular and monocyclic bidiagonal distributions show that they look to be

an issue between preserving the tractability of the triangular representations

and the generality of use of the phase-type distributions with complex poles.
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Appendix.

Proof of Proposition 2.

Let

j.(s)
=

(A.1)

be the Laplace-Stieljes transform of p and let A E C be the set of poles of
lEt(s). We construct the canonical representation basis as in Section 2.3 and we
write the nth order monocyclic generator. Then we try to solve

= v(sI — e)—’(—e). (A.2)

If the system (A.2) has a solution, it will be an unit element sum vector as the
left and right members in (A.2) are in UTM

We compute the vector:

X(s) = (sI — e)-’(—e). (A.3)

Obviously, each element x (s) of K(s) is in fact the Laplace-Stieljes transform
of the distribution (, e).

The difference between the algebraic degree of z (s) and the degree of its
numerator equals n — i + 1. This is a consequence of the following theorem [3]:

Theorem 3 In any representation of a phase-type distribution the minimal
number of transient states which are visited before absorption is equal to the
difference between the degrees of the numerator and the denominator of the
Laplace-Stieljes transform of the distribution.

The first element x1 (s) of K(s) is equal to:

xi(s) =
det(sI—8)’

(A.4)

with 1,0 some constant equal to the product of eigenvalues of a
For each other distribution (, ) the corresponding element of of K(s) is:

xe(s)
= det(sI — ) (A.5)

with pi(S) some polynomial of degree i — 1. Finally we obtain that:

K(s)
= det(sI

— 9)5) (A.6)
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where Y(s) is a vector of polynomials with degrees strictly increasing from 0
to n — 1.

As the poles of j(s) are among the eigenvalues of 8, Q(s) divides det(sI —

8). Let R.(s) be the quotient of the division of det(sI — 0) by Q(s).
Then the equation (A.2) becomes:

P(s)R(s) = Y(s), (A.7)

with the observation that because deg(P(s)) is strictly lower than the degree
of Q(s) and 1?(s) is of degree n — deg(Q(s)), then the product P(s)1Z(s) is at
most of degree n — 1.

Using the notation for the coefficient of 8k in y3 (s) and bIC for the coeffi
cient of 8k in the product P(s)fl(s) we can rewrite the system (A.7) as

1 ‘Sa0 10

aa b1
= (A.8)

a a_1 b1

The system is equivalent to

vA=b

with A lower triangular with non-zero diagonal entries. It follows that there
exists a unique solution v E R’ to that system, equivalently, we can always
express u as DIST(, 0).
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