Risk analysis and management

Telek Miklós BME

October 24, 2023

Risk analysis

Telek Miklós

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Monte Carlo simulation
Ornstein-Uhlenbeck model
Autoregressive model
Model identification
Binomial Options Pricing Model
Black-Scholes Options Pricing M

Test problems

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Theory – practice

- Theory: Miklós Telek
 I.L.117, phone: 2084, or telek@hit.bme.hu.
- Practice: András Mészáros
 I.B.115, phone: 3219, or meszarosa@hit.bme.hu.

Risk analysis

Telek Miklós BME

Administration

Prob. theory

Cash-flow management

Portfolio opt.

Aean reverting

Option pricing

Next lesson

Test

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Books

Finance and insurance industries build on involved mathematical models

Business Analysis for

Practitioners

Quantitative Methods for Business

Quantitative Analysis for Management

for Business

Risk Analysis -

A Quantitative

Risk Analysis

Quantitative Analysis

for Management (13th

Risk Analysis: A Quantitative ...

Quantitative Methods

(日) (國) (王) (王) (王)

Telek Miklós Administration

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Monte Carlo simulation
Ornstein-Uhlenbeck model
Autoregressive model
Model identification
Binomial Options Pricing Model
Black-Scholes Options Pricing Mo

Test problems

Risk analysis

Telek Miklós BME

Administration

Lin. algebra

rob. theory

Cash-flow management

Portfolio opt.

Mean reverting

Next lesson

Tes

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Monte Carlo simulation
Ornstein-Uhlenbeck model
Autoregressive model
Model identification
Binomial Options Pricing Mod
Black-Scholes Options Pricing

Next lesson

Test problems

Risk analysis

Telek Miklós BME

Administration

Lin. algebra

Prob. theory

Cash-flow management

Portfolio opt.

Mean reverting

Next lesson

Tes

Summary of Linear algebra

- System of linear equations
 - ▶ 0, 1, or infinitely many solutions.
- Vectors, matrices
- ▶ Singular value decomposition (SVD),
 - solution of Ax = b with the SVD of A.
- ▶ Spectral decomposition,
 - iterative procedure for finding the dominant eigenvalue and eigenvector.

Risk analysis

Telek Miklós BME

Administration

Lin. algebra

Prob. theory

Cash-flow management

Portfolio opt.

Mean reverting

Option pricing

Next lesson

Test

<ロ> <0<0</p>

Summary of Linear algebra

- Commutativity of matrices
- Sylvester equation
 - vec operator, Kronecker product (\otimes),
 - $\blacktriangleright vec(\hat{\mathbf{ABC}}) = (\mathbf{C}^T \otimes \mathbf{A}) vec(\mathbf{B}),$
- Matrix functions
 - ▶ definition,
 - spectral decomposition based interpretation.

Risk analysis

Telek Miklós BME

Administration

Lin. algebra

Prob. theory

Cash-flow management

Portfolio opt.

Aean reverting

Option pricing

Next lesson

Test

< □ > < 個 > < 目 > < 目 > < 目 > < 0 < 0

Linear equation

Scalar linear equation: ax = b

$$b = 0 \longrightarrow \text{ infinite solutions: } x \in \mathbb{R},$$

•
$$b \neq 0 \longrightarrow$$
 no solution.

BME Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing

Next lessor

Tes

Risk analysis

System of linear equations

System of linear equations:

$$a_{11}x_1 + a_{12}x_2 = b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$

$$a_{31}x_1 + a_{32}x_2 = b_3$$

That is

$$Ax = b$$

with

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

Scalar description of the matrix equation:

$$\sum_{j=1}^{2} a_{ij} x_j = b_i, \quad \text{for } i = 1, 2, 3.$$

Risk analysis Telek Miklós BME Administration Lin. algebra

rob. theory

Cash-flow management

Portfolio opt.

1ean reverting Option pricing

Next lesson

Tes

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Monte Carlo simulation
Ornstein-Uhlenbeck model
Autoregressive model
Model identification
Binomial Options Pricing Model
Black-Scholes Options Pricing M

Test problems

Risk analysis

Telek Miklós BME

Administration

Lin. algebra

rob. theory

Cash-flow management

Portfolio opt.

Mean reverting

Next lesson

Tes

Matrix properties

Matrix properties

- ► size,
- ▶ rank (number of independent rows/columns)
- singular values (numerically stable)

Square matrix properties

- ▶ determinant,
- ▶ eigenvalues, eigenvectors (numerically sensitive),
- ▶ inverse exists:
 - ▶ invertible, full rank, independent rows/columns, non-zero determinant, non-singular, ...

Risk analysis

Telek Miklós BME

Administration

Lin. algebra

Prob. theory

Cash-flow management

Portfolio opt.

Mean reverting

Option pricing

Next lesson

Test

Special matrices

Identity matrix: $\mathbf{I} = \{\delta_{ij}\},\$

where
$$\delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j, \end{cases}$$
 is the Kronecker delta.

Diagonal matrix: $\mathbf{D} = \operatorname{diag}\{d_1, \ldots, d_n\},\$

Unitary matrix: $\mathbf{U}^T \mathbf{U} = \mathbf{U} \mathbf{U}^T = \mathbf{I}$ (if \mathbf{U} is real)

For complex U: $\mathbf{U}^{H}\mathbf{U} = \mathbf{U}\mathbf{U}^{H} = \mathbf{I}$, where H is the conjugate transpose operator.

Risk analysis

Telek Miklós BME

Lin. algebra

Prob. theory

Cash-flow management

Portfolio opt.

Mean reverting

Option pricing

Next lesson

Test

うりつ 川 (山) (山) (山) (山) (山) (山) (山)

Commuting matrices

Commonly, $AB \neq BA$,

as a consequence several scalar identity fails for matrices, e.g.:

$$(\mathbf{A} + \mathbf{B})^{2} = \mathbf{A}^{2} + \mathbf{A}\mathbf{B} + \mathbf{B}\mathbf{A} + \mathbf{B}^{2} \neq \mathbf{A}^{2} + 2\mathbf{A}\mathbf{B} + \mathbf{B}^{2}$$
$$\frac{d}{dx}(\mathbf{A} + x\mathbf{B})^{2} = \mathbf{B}(\mathbf{A} + x\mathbf{B}) + (\mathbf{A} + x\mathbf{B})\mathbf{B} \neq 2(\mathbf{A} + x\mathbf{B})\mathbf{B}$$

Exceptions:

A, **I**, \mathbf{A}^{-1} , \mathbf{A}^{n} for $n \in \mathbb{N}$ and all of their linear combinations, $\sum_{n=-\infty}^{\infty} c^{n} \mathbf{A}^{n}$, always commute.

The usual scalar identities hold for commuting matrices.

Risk analysis

Telek Miklós BME

dministration

Lin. algebra

Prob. theory

Cash-flow management

Portfolio opt.

Aean reverting Option pricing

Test

Singular value decomposition (SVD)

$$\left[\begin{array}{c}\mathbf{A}\end{array}\right]_{n\times m} = \left[\begin{array}{c}\mathbf{U}\end{array}\right]_{n\times n} \left[\begin{array}{c}\Psi\end{array}\right]_{n\times m} \left[\begin{array}{c}\mathbf{V}\end{array}\right]_{m\times m}$$

where \mathbf{U} and \mathbf{V} are unitary matrices,

is a matrix whose diagonal elements are the $\sigma_i \geq 0$ singular values.

 Ψ is assumed to be ordered such that $\sigma_1 \geq \sigma_2 \geq \ldots$.

The r non-zero singular value form diagonal matrix **S** of size $r \times r$, where $r \leq \min(m, n)$.

For the number of non-zero singular values we have

 $r = \mathrm{rank} \mathbf{A} = \mathrm{number}$ of independent rows/columns of \mathbf{A}

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Singular value decomposition (SVD)

Graphical demonstration

(from https://en.wikipedia.org/wiki/Singular_value_decomposition)

Risk analysis

Telek Miklós BME

Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Linear equations

 $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution

if \mathbf{b} is a linear combination of the columns of \mathbf{A} .

That is

$$\operatorname{rank} \left[\begin{array}{c|c} \mathbf{A} \end{array} \right] = \operatorname{rank} \left[\begin{array}{c|c} \mathbf{A} \end{array} \right] \mathbf{b}$$

Risk analysis

Telek Miklós BME

Administration

Lin. algebra

Prob. theory

Cash-flow management

Portfolio opt.

Aean reverting

Option pricing

Next lesson

Test

▲□▶ ▲御▶ ★臣▶ ★臣▶ ―臣 _ のへで

Linear equations

If $\mathbf{A} = \mathbf{U}\Psi\mathbf{V}$ is the SVD of \mathbf{A} then

$$\mathbf{A}_{n \times m} \mathbf{x}_{m \times 1} = \mathbf{b}_{n \times 1} \mid \cdot \mathbf{U}^T$$
 from left

can be written as

$$\mathbf{U}^T \mathbf{A} \mathbf{x} = \mathbf{U}^T \mathbf{b}$$
$$\underbrace{\mathbf{U}^T \mathbf{U}}_{\mathbf{I}} \Psi \underbrace{\mathbf{V} \mathbf{x}}_{\mathbf{x}'} = \underbrace{\mathbf{U}^T \mathbf{b}}_{\mathbf{b}'}$$

that gives a transformed linear equation

$$\begin{array}{c} \Psi_{n \times m} \quad \mathbf{x'}_{m \times 1} = \mathbf{b'}_{n \times 1} \\ \hline \mathbf{S} \\ \\ \end{array} \\ \hline \\ \mathbf{S} \\ \end{array} \\ \left[\begin{array}{c} \mathbf{x'}_1 \\ \mathbf{x'}_2 \end{array} \right] = \begin{bmatrix} \mathbf{b'}_1 \\ \mathbf{b'}_2 \\ \\ \end{array} \\ \end{bmatrix}$$

with $\mathbf{x}' = \mathbf{V}\mathbf{x}$, $\mathbf{b}' = \mathbf{U}^T \mathbf{b}$ and block sizes $\mathbf{S}_{r \times r}$, $\mathbf{x}'_{1r \times 1}$, $\mathbf{x}'_{2m-r \times 1}$, $\mathbf{b}'_{1r \times 1}$, $\mathbf{b}'_{2n-r \times 1}$.

Risk analysis

Telek Miklós BME

Administration Lin, algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Linear matrix equations

The block decomposed version of the a transformed linear equation

$$\left[\begin{array}{c|c} S & 0 \\ \hline 0 & 0 \end{array} \right] \cdot \left[\begin{array}{c} x_1' \\ \hline x_2' \end{array} \right] = \left[\begin{array}{c} b_1' \\ \hline b_2' \end{array} \right]$$

is

$$\begin{aligned} \mathbf{Sx_1'} + \mathbf{0x_2'_{m-r\times 1}} &= \mathbf{b_1'} \\ \mathbf{0x_1'} + \mathbf{0x_2'} &= \mathbf{b_2'_{n-r\times 1}} \end{aligned}$$

- If n r > 0 and $\mathbf{b'_2} \neq \mathbf{0}$ then no solution.
- If $\mathbf{b'_2} = \mathbf{0}$ and m r = 0 then the single solution is $\mathbf{x} = \mathbf{V}^T \mathbf{S}^{-1} \mathbf{b'_1}$.
- If b₂ = 0 and m − r > 0 then there are infinite solutions of dimension m − r.

Risk analysis

Telek Miklós BME

Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Linear matrix equations

In some cases, a matrix of unknowns \mathbf{X} and some matrices of coefficients form a linear matrix equation.

E.g., $\mathbf{AX} = \mathbf{B}$.

If $\exists \mathbf{A}^{-1}$ then $\mathbf{X} = \mathbf{A}^{-1}\mathbf{B}$ is the solution.

If $\not\exists A^{-1}$ then AX = B needs to be transformed into standard linear equation form using

- ▶ *vec* operator,
- Kronecker product (\otimes) ,

$$\blacktriangleright vec(\mathbf{ABC}) = \left(\mathbf{C}^T \otimes \mathbf{A}\right) vec(\mathbf{B}),$$

$$vec(\mathbf{AX}) = vec(\mathbf{C})$$
$$vec(\mathbf{AXI}) = vec(\mathbf{C})$$
$$\underbrace{\mathbf{I} \otimes \mathbf{A}}_{\mathbf{A}'} \underbrace{vec(\mathbf{X})}_{\mathbf{X}'} = \underbrace{vec(\mathbf{C})}_{\mathbf{b}'}$$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Text

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへの

Linear matrix equations

In case of the Sylvester equation

AX + XB = C

the same approach has to be applied also when $\exists \mathbf{A}^{-1}$ and $\exists \mathbf{B}^{-1} \colon$

$$\begin{aligned} vec(\mathbf{A}\mathbf{X} + \mathbf{X}\mathbf{B}) &= vec(\mathbf{C}) \\ vec(\mathbf{A}\mathbf{X}\mathbf{I} + \mathbf{I}\mathbf{X}\mathbf{B}) &= vec(\mathbf{C}) \\ \underbrace{(\mathbf{I}\otimes\mathbf{A} + \mathbf{B}^T\otimes\mathbf{I})}_{\mathbf{A}'}\underbrace{vec(\mathbf{X})}_{\mathbf{x}'} &= \underbrace{vec(\mathbf{C})}_{\mathbf{b}'} \end{aligned}$$

Risk analysis

Telek Miklós BME

Administration

Lin. algebra

Prob. theory

Cash-flow management

Portfolio opt.

lean reverting

Next losson

Test

Spectral decomposition

 $A = U\Lambda V$ is the spectral decomposition of A when $U^{-1} = V$ and Λ is a block diagonal matrix composed of Jordan blocks J_i

$$\Lambda = \begin{bmatrix} \mathbf{J_1} & & & \\ & \mathbf{J_2} & & \\ & & \ddots & \\ & & & \ddots & \\ & & & \mathbf{J}_{\#\lambda} \end{bmatrix}_{n \times n} , \mathbf{J_i} = \begin{bmatrix} \lambda_i & 1 & & \\ & \ddots & \ddots & \\ & & & \lambda_i & 1 \\ & & & & \lambda_i \end{bmatrix}_{\#\lambda_i \times \#\lambda_i}$$

If all Jordan blocks are of size one then $\#\lambda = n$,

$$\Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

and **A** is said to be *diagonalizable*.

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Spectral decomposition

If ${\bf A}$ is diagonalizable then

$$\mathbf{A} = \mathbf{U} \Lambda \mathbf{V} = \sum_{i=1}^{n} \mathbf{u}_{i} \lambda_{i} \mathbf{v}_{i}$$

where $\mathbf{u}_{\mathbf{i}}$ is the *i*th column of **U** and $\mathbf{v}_{\mathbf{i}}$ is the *i*th row of **V**.

Computing the spectral decomposition

- Solve the order *n* polynomial equation $det(\mathbf{A} \lambda \mathbf{I}) = 0$ $\lambda_1, \dots, \lambda_n$ are its roots,
- for i = 1, ..., n solve the linear equation $(\mathbf{A} \lambda_i \mathbf{I})\mathbf{u}_i = \mathbf{0}$,
- obtain $\mathbf{v_i}$ from $\mathbf{V} = \mathbf{U}^{-1}$.

Note that $\mathbf{v_i}\mathbf{u_j} = \delta_{ij}$ due to $\mathbf{VU} = \mathbf{I}$.

Risk analysis Telek Miklós

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Iterative procedure for computing λ^* and u^*

The dominant eigenvalue, λ^* , and the related eigenvector u^* of **A** can be computed using the summation vector **s** and initial vector **u**_{init} as follows

Input: $\mathbf{u}_{init}, \mathbf{A}, \mathbf{s};$ $\mathbf{u} = \mathbf{u}_{init};$ repeat $\mathbf{u}_{old} = \mathbf{u};$ $c = \mathbf{s}^T \mathbf{u};$ $\mathbf{u} = \mathbf{A}\mathbf{u}/c;$ until $|\mathbf{u}_{old} - \mathbf{u}| < \epsilon;$ return : $c, \mathbf{u};$

A potential initial setting is $\mathbf{s}^T = \{1, 1, \dots, 1\}$ and $\mathbf{u_{init}}^T = \{1, 0, \dots, 0\}.$

Evaluate the conditions when the procedure converges.

Risk analysis

Telek Miklós BME

Administration Lin, algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson

のとの 川田 (川田) (川田) (日)

Matrix functions

If **A** is a square matrix and f(x) is a scalar function with Taylor series $f(x) = \sum_{i=0}^{\infty} c_i x^i$ then

$$f\left(\mathbf{A}\right) \stackrel{\triangle}{=} \sum_{i=0}^{\infty} c_i \mathbf{A}^i$$

-

If **A** is diagonalizable and $\mathbf{A} = \mathbf{U} \Lambda \mathbf{V}$ is its spectral decomposition then

.

$$f(\mathbf{A}) = \sum_{i=0}^{\infty} c_i \mathbf{A}^i = \sum_{i=0}^{\infty} c_i \left(\mathbf{U}\Lambda\mathbf{V}\right)^i = \sum_{i=0}^{\infty} c_i \mathbf{U}\Lambda^i \mathbf{V}$$
$$= \mathbf{U} \sum_{i=0}^{\infty} c_i \begin{bmatrix} \lambda_1^i \\ \lambda_2^i \\ \vdots \\ \vdots \\ \lambda_n^i \end{bmatrix} \mathbf{V} = \mathbf{U} \begin{bmatrix} f(\lambda_1) \\ f(\lambda_2) \\ \vdots \\ f(\lambda_n) \end{bmatrix} \mathbf{V}$$

Risk analysis

Telek Miklós BME

Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson

うりつ 川 (山) (山) (山) (山) (山) (山) (山)

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Monte Carlo simulation Stratified sampling Portfolio optimization Mean reverting portfolio Ornstein-Uhlenbeck model Autoregressive model Model identification Option pricing Binomial Options Pricing Mod

Black-Scholes Options Pricing Model

Next lesson

Test problems

Risk analysis

Telek Miklós BME

Administration Lin. algebra **Prob. theory** Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

<ロ>

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Sampling methods Monte Carlo simulation Stratified sampling

Portfolio optimization

Mean reverting portfolio

Ornstein-Uhlenbeck model

Autoregressive model

Model identification

Option pricing

Binomial Options Pricing Model Black-Scholes Options Pricing Model

Next lesson

Test problems

Risk analysis

Telek Miklós BME

Administration Lin. algebra **Prob. theory** Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Random variables

Independent random variables (RV)

- cumulated distribution function (CDF) $F_X(x) = Pr(X < x)$
 - discrete RV: probability mass function (PMF) $p_i = Pr(X = x_i)$
 - continuous RV: probability density function (PDF) $f_X(x) = \frac{d}{dx} F_X(x)$
- moments: $E(X^n)$
- ▶ and their descendants (e.g., variance (2nd cumulant): $\sigma_X^2 = E(X^2) - E(X)^2$, *n*th cumulant κ_X^n)
- ▶ The cumulants sums up: $\kappa_{X+Y}^n = \kappa_X^n + \kappa_Y^n$

Risk analysis

Telek Miklós BME

Administration Lin. algebra **Prob. theory** Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

のとの 川田 (川田) (川田) (日)

Law of total probability

Law of total probability (LTP)

►
$$Pr(A) = \sum_{i} Pr(A|B_i) Pr(B_i),$$

discrete condition:

$$Pr(A) = \sum_{i} Pr(A|X = x_i)Pr(X = x_i)$$
$$= \sum_{i} Pr(A|X = x_i)p_i$$

► continuous condition:

$$Pr(A) = \int_{x} Pr(A|X = x) f_X(x) dx$$

• $E(Y) = \sum_{i} E(Y|B_i) Pr(B_i).$

Danger: $Pr(A|X = x) \rightarrow \lim_{\delta \to 0} Pr(A|x \le X < x + \delta)$

Risk analysis

Telek Miklós BME

Administration Lin. algebra **Prob. theory** Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Law of total probability

Application

$$\blacktriangleright E(g(Y)) = \sum_{i} E(g(Y)|B_i) Pr(B_i),$$

discrete condition:

$$E(g(Y)) = \sum_{i} E(g(Y)|X = x_i)p_i$$

continuous condition:

$$E(g(Y)) = \int_{x} E(g(Y)|X = x) f_X(x) dx$$

If $g(x) = x^n$ and Y = X then $E(g(Y)) = E(X^n)$.

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson

Test

うりつ 川 (山) (山) (山) (山) (山) (山) (山)

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Sampling method

Monte Carlo simulation

Stratified sampling

Portfolio optimization

Mean reverting portfolio

Ornstein-Uhlenbeck model

Autoregressive model

Model identification

Option pricing

Binomial Options Pricing Model Black-Scholes Options Pricing Mode

Next lesson

Test problems

Risk analysis

Telek Miklós BME

Administration Lin. algebra **Prob. theory** Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Distributions

One-parameter

- ▶ Discrete
 - ▶ Bernoulli (on {0,1})
 - ▶ Geometric
 - Poisson
- Continuous
 - Exponential

Two-parameter

- ▶ Discrete
 - ▶ Uniform
 - Binomial
- ► Continuous
 - Uniform
 - Normal

Risk analysis

Telek Miklós BME

dministration

Prob. theory

Cash-flow management

Portfolio opt.

Mean reverting

Option pricing

Next lesson

Test

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Transforms

Transforms:

- Characteristic function $\phi(t) = E(e^{itX}), t \in R$
- Moment generating function $M(t) = E(e^{tX}), t \in R$
- ▶ Cumulant generating function $K(t) = log(E(e^{tX})), t \in R$
- ▶ Probability generating function $G(z) = E(z^X), z \in C$
- ▶ Laplace transform $L(s) = E(e^{-sX}), s \in C$

Advantages:

- analytically tractable (due to convolution, linear operations)
- direct computation of moments
- ▶ inverse transformation (symbolic/numeric)

Risk analysis Telek Miklós BME Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting

Option pricing

Next lesson

Tes

Dependent random variables

Dependent random variables (X, Y)

- cumulative distribution function (CDF) $F_{X,Y}(x,y) = Pr(X < x, Y < y)$
 - ► discrete RV: probability mass function (PMF) $p_{ij} = Pr(X = x_i, Y = y_j)$
 - continuous RV: probability density function (PDF) $f_{X,Y}(x,y) = \frac{\partial}{\partial x} \frac{\partial}{\partial y} F_{X,Y}(x,y)$

marginal distribution:

$$F_X(x) = \lim_{y \to \infty} F_{X,Y}(x,y)$$
$$= \lim_{y \to \infty} \Pr(X < x, Y < y) = \Pr(X < x)$$

A ロ ト 4 間 ト 4 目 ト 4 目 ト 9 Q Q

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson

Tes

Dependent random variables

Dependent random variables (X, Y)

- conditional distribution Pr(X < x | Y = y)
 - discrete RV: $Pr(X = x_i | Y = y_j) = \frac{Pr(X = x_i, Y = y_j)}{Pr(Y = y_j)} = \frac{p_{ij}}{p_j}$

- continuous RV: $f_{X|Y=y}(x) = \frac{f_{X,Y}(x,y)}{\int_z f_{X,Y}(z,y)dz}$
- ▶ joint moments: $E(X^nY^m) = \int_x \int_y x^n y^m f_{X,Y}(x,y) dy dx$
- ▶ and their descendants (e.g., covariance: E(XY) E(X)E(Y), correlation)

Telek Miklós BME Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson

Risk analysis

Test

Normal distribution

PDF of normal distribution with (μ, σ^2) :

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

If X is normal distributed with (μ, σ^2) , then $\hat{X} = \frac{X-\mu}{\sigma}$ is standard normal distributed.

PDF and CDF of standard normal distribution with $(\mu=0,\sigma^2=1)$:

$$f_{\hat{X}}(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \quad \Phi_{\hat{X}}(x) = \int_{y=-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy.$$

CDF of normal distribution with (μ, σ^2) :

$$Pr(X < x) = \Phi_{\hat{X}}\left(\frac{x-\mu}{\sigma}\right).$$

Risk analysis

Telek Miklós BME Administration Lin. algebra **Prob. theory** Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで
Multivariate normal distribution

Probability density function

• $\mathbf{X} = \{X_1, \dots, X_k\}^T$ is multivariate normal with *location* $\boldsymbol{\mu} = \{\mu_1, \dots, \mu_k\}^T$ and *covariance matrix* $\boldsymbol{\Sigma} = \{\sigma_{ij}\}$ if its PDF is

$$f_{\mathbf{X}}(\mathbf{x}) = (2\pi)^{-k/2} \det(\mathbf{\Sigma})^{-1/2} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \mathbf{\Sigma}(\mathbf{x}-\boldsymbol{\mu})}$$

where $E(X_i) = \mu_i$ and $E(X_iX_j) - E(X_i)E(X_j) = \sigma_{ij}$, that is $\sigma_{ii} = E(X_iX_i) - E(X_i)E(X_i) = Var(X_i)$.

In matrix form, $E(\mathbf{X}) = \boldsymbol{\mu}$ and $E(\mathbf{X}\mathbf{X}^T) - E(\mathbf{X})E(\mathbf{X}^T) = \boldsymbol{\Sigma}$.

 $\Sigma = \{\sigma_{ij}\}$ is symmetric, positive definite matrix (with positive eigenvalues).

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

◆□ → ◆昼 → ◆臣 → ◆臣 → ○○ ●

Multivariate normal distribution

Construction of multivariate normal distribution

• Let $\mathbf{Z} = \{Z_1, \dots, Z_k\}^T$ be composed of i.i.d. standard normal distributed RVs. That is $E(Z_i) = 0$, $Var(Z_i) = 1$, and $E(Z_iZ_j) = E(Z_i)E(Z_j)$ for $i \neq j$.

In matrix form $E(\mathbf{Z}) = \mathbf{0}$ and $E(\mathbf{Z}\mathbf{Z}^T) - E(\mathbf{Z})E(\mathbf{Z}^T) = \mathbf{I}$, because for $i \neq j$, $E(Z_iZ_j) - E(Z_i)E(Z_j) = 0$ and $E(Z_iZ_i) - E(Z_i)E(Z_i) = Var(Z_i) = 1$.

Risk analysis

Telek Miklós

Prob. theory

Multivariate normal distribution

Construction of multivariate normal distribution

• Let $\mathbf{X} = \boldsymbol{\mu} + \mathbf{A}\mathbf{Z}$.

X is multivariate normal distributed with *location* $\boldsymbol{\mu}$ and *covariance matrix* $\boldsymbol{\Sigma}$ with $\boldsymbol{\Sigma} = \mathbf{A}\mathbf{A}^T$, because

$$E(\mathbf{X}) = E(\boldsymbol{\mu} + \mathbf{A}\mathbf{Z}) = \boldsymbol{\mu} + \mathbf{A}\underbrace{E(\mathbf{Z})}_{\mathbf{0}} = \boldsymbol{\mu}$$

and

$$\begin{split} \boldsymbol{\Sigma} &= E(\mathbf{X}\mathbf{X}^T) - E(\mathbf{X})E(\mathbf{X}^T) \\ &= E((\boldsymbol{\mu} + \mathbf{A}\mathbf{Z})(\boldsymbol{\mu} + \mathbf{A}\mathbf{Z})^T) - \boldsymbol{\mu}\boldsymbol{\mu}^T \\ &= E(\boldsymbol{\mu}\boldsymbol{\mu}^T) + E(\boldsymbol{\mu}(\mathbf{A}\mathbf{Z})^T) + E(\mathbf{A}\mathbf{Z}\boldsymbol{\mu}^T) + E(\mathbf{A}\mathbf{Z}(\mathbf{A}\mathbf{Z})^T) - \boldsymbol{\mu}\boldsymbol{\mu}^T \\ &= \boldsymbol{\mu}\boldsymbol{\mu}^T + \boldsymbol{\mu}(\mathbf{A}\underbrace{E(\mathbf{Z})}_{\mathbf{0}})^T + \mathbf{A}\underbrace{E(\mathbf{Z})}_{\mathbf{0}}\boldsymbol{\mu}^T + E(\mathbf{A}\mathbf{Z}\mathbf{Z}^T\mathbf{A}^T) - \boldsymbol{\mu}\boldsymbol{\mu}^T \\ &= \mathbf{A}\underbrace{E(\mathbf{Z}\mathbf{Z}^T)}_{\mathbf{I}}\mathbf{A}^T = \mathbf{A}\mathbf{A}^T. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ●□ のへで

Risk analysis

Telek Miklós BME

Administration Lin. algebra **Prob. theory** Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Sampling methods Monte Carlo simulation Stratified sampling ortfolio optimization

Mean reverting portfolio

Ornstein-Uhlenbeck model

Autoregressive model

Model identification

Option pricing

Binomial Options Pricing Model Black-Scholes Options Pricing Model

Next lesson

Test problems

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting

Next lesson

Tes

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Monte Carlo simulation Stratified sampling Portfolio optimization Mean reverting portfolio Ornstein-Uhlenbeck model Autoregressive model Model identification Option pricing Binomial Options Pricing Mode Black-Scholes Options Pricing M

Next lesson

Test problems

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Problem formulation

There is financial institution S (system) with C resources (currency) and N customers (investors).

The customers can request h_1, h_2, \ldots, h_N resource with probability p_1, p_2, \ldots, p_N , respectively.

The system risk is defined as

Pr(aggregate request exceeds the resources) = Pr(aggregate request

sources) =
$$Pr\left(\sum_{i=1}^{N} Y_i h_i > C\right)$$

(日) (雪) (日) (日) (日) (日)

where Y_i is a Bernoulli RV with $Pr(Y_i = 1) = p_i$.

Risk analysis

Telek Miklós BME

Administration

Prob theory

Cash-flow management

Portfolio opt.

Mean reverting Option pricing Next lesson

Test

The main challenge and solution methods

The main challenge

- ▶ Timely response (real-time)
- \blacktriangleright Scaling: N is fairly large
- Computational complexity provided by the $\mathcal{O}(2^N)$ cases needs to be reduced.

Solution methods:

- ► Brute-force
- Large Deviation Theory (based on on-line tail approximation methods)
- ▶ Central limit theorem
- Statistical sampling
- ▶ Adaptive approximation

Risk analysis

Telek Miklós BME

dministration

rob. theory

Cash-flow management

Portfolio opt.

Mean reverting Option pricing Next lesson

Test

Problem variants

Problem variants:

Risk analysis

Telek Miklós BME

Lin. algebra Prob. theory Cash-flow management

Portfolio opt.

Detion pricing Vext lesson

Test

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Monte Carlo simulation Stratified sampling Portfolio optimization Mean reverting portfolio Ornstein-Uhlenbeck model Autoregressive model Model identification Option pricing Binomial Options Pricing Model Black-Scholes Options Pricing Mode Next lesson

(日) (四) (王) (王) (王)

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Brute force solution

Brute force solution: LTP completely eliminating the randomness

$$Pr\left(\sum_{i=1}^{N} Y_{i}h_{i} > C\right)$$

$$= \sum_{y_{1}=0}^{1} \dots \sum_{y_{N}=0}^{1} \prod_{j=1}^{N} Pr(Y_{j} = y_{j})$$

$$\cdot Pr\left(\sum_{i=1}^{N} Y_{i}h_{i} > C \mid Y_{1} = y_{1}, \dots, Y_{N} = y_{N}\right)$$

$$= \sum_{\forall \mathbf{y} \in \{0,1\}^{N}} Pr(\mathbf{y}) \cdot \underbrace{Pr\left(\mathbf{yh}^{T} > C\right)}_{0 \text{ or } 1},$$

where $\mathbf{y} = \{y_1, ..., y_N\}$ and $\mathbf{h} = \{h_1, ..., h_N\}.$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory **Cash-flow management** Portfolio opt. Mean reverting

Next lesson

Test

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 → のへで

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Sampling methods Monte Carlo simulation Stratified sampling Portfolio optimization Mean reverting portfolio Ornstein-Uhlenbeck model Autoregressive model Model identification Option pricing Binomial Options Pricing Mode Black-Scholes Options Pricing 1

Next lesson

Test problems

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Markov inequality

Markov inequality:

$$Pr(X \ge a) \le \frac{E(X)}{a}$$

where X is non-negative RV.

The distribution satisfying the equality is

$$\hat{X} = \begin{cases} 0 & \text{with probability } 1 - \frac{E(X)}{a}, \\ a & \text{with probability } \frac{E(X)}{a}. \end{cases}$$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow

management Portfolio opt. Mean reverting

Next lesson

Test

Markov inequality

Proof for continuous non-negative X:

$$E(X) = \int_0^\infty x f_X(x) dx \ge \int_a^\infty x f_X(x) dx$$
$$\ge \int_a^\infty a f_X(x) dx = a \int_a^\infty f_X(x) dx$$
$$= a Pr(X \ge a)$$

Proof for general non-negative X:

$$E(X) = \int_0^\infty x dF_X(x) \ge \int_a^\infty x dF_X(x)$$
$$\ge \int_a^\infty a dF_X(x) = a \int_a^\infty dF_X(x)$$
$$= a(F_X(\infty) - F_X(a)) = aPr(X \ge a)$$

Telek Miklós BME dministration in. algebra

Risk analysis

Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson

Test

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Chebysev inequality

Chebysev inequality $(X \in \mathbb{R}, b \in \mathbb{R}^+)$

$$Pr(|X - E(X)| \ge b) \le \frac{\sigma_X^2}{b^2}$$

Proof:

Let $Y = (X - E(X))^2$ and apply the Markov inequality for Y at b^2

$$Pr(Y \ge b^2) \le \frac{E(Y)}{b^2}$$
$$Pr((X - E(X))^2 \ge b^2) \le \frac{E((X - E(X))^2)}{b^2}$$
$$Pr(|X - E(X)| \ge b) \le \frac{\sigma_X^2}{b^2}$$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Markov related inequalities

g(x) is non-negative, monotone increasing for x > a, then

$$Pr(X \ge a) \le \frac{E(g(X))}{g(a)}$$

Proof for continuous X:

$$E(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx \xrightarrow{\text{non-neg.}} \int_a^{\infty} g(x) f_X(x) dx$$
$$\xrightarrow{\text{non. inc.}} \int_a^{\infty} g(a) f_X(x) dx = g(a) \int_a^{\infty} f_X(x) dx$$
$$= g(a) Pr(X \ge a)$$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson

Tes

Moment inequalities

If $g(x) = x^n$ and $X \in \mathbb{R}^+$ then

$$Pr(X \ge a) \le \frac{E(X^n)}{a^n}$$

If all $E(X^n)$ moments are known, then

$$Pr(X \ge a) \le \min_{n \in \mathbb{N}^+} \frac{E(X^n)}{a^n}$$

If $g(x) = x^u$ with $u \in \mathbb{R}^+$ then

$$Pr(X \ge a) \le \min_{u \in \mathbb{R}^+} \frac{E(X^u)}{a^u}$$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting

Option pricing

Next lesson

Test

Central moment inequalities

If $g(x) = |x - \mu|^n$, $\mu = E(X)$ and $a > \mu$ then g(x) is monotone increasing for x > a and

$$Pr(X \ge a) \le \frac{E(|X - E(X)|^n)}{|a - \mu|^n} = \frac{E(|X - E(X)|^n)}{(a - \mu)^n}$$

where $E(|X - E(X)|^n)$ is the *n*th central moment of X. If all central moments are known then

$$Pr(X \ge a) \le \min_{n \in \mathbb{N}^+} \frac{E(|X - E(X)|^n)}{(a - \mu)^n}$$

Similarly, if $g(x) = |x - \mu|^u$ with $u \in \mathbb{R}^+$ and $a > \mu$ then

$$Pr(X \ge a) \le \min_{u \in \mathbb{R}^+} \frac{E(|X - E(X)|^u)}{(a - \mu)^u}$$

Telek Miklós BME Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson

Risk analysis

Tes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Chernoff bound

If $g(x) = e^{sx}$ and s > 0 then

$$Pr(X \ge a) \le \frac{E(e^{sX})}{e^{sa}},$$

where $M_X(s) = E(e^{sX})$ is the moment generating function. If $M_X(s)$ is known then

$$Pr(X \ge a) \le \min_{s \in \mathbb{R}^+} \frac{M_X(s)}{e^{sa}} = \frac{M_X(s^*)}{e^{s^*a}},$$

where $s^* = \operatorname{argmin}_{s \in \mathbb{R}^+} \frac{M_X(s)}{e^{sa}}$.

Risk analysis

Telek Miklós BME

Lin. algebra Prob. theory Cash-flow <u>management</u>

Portfolio opt.

Mean reverting Option pricing Next lesson

Tes

Chernoff versus moment bounds

Let
$$B_C(a,s) = \frac{E(e^{sX})}{e^{sa}}$$
 and $B_M(a,u) = \frac{E(X^u)}{a^u}$ then
 $B_C(a,s) = \frac{E(e^{sX})}{e^{sa}} = e^{-sa}E\left(\sum_{n=0}^{\infty} \frac{s^n}{n!}X^n\right)$
 $= e^{-sa}\sum_{n=0}^{\infty} \frac{s^n}{n!}E(X^n) = \sum_{n=0}^{\infty} \frac{(sa)^n}{n!}e^{-sa}\frac{E(X^n)}{a^n}$
 $= \sum_{n=0}^{\infty} \underbrace{\frac{(sa)^n}{n!}e^{-sa}}_{\text{Poisson}(sa) \text{ weights}} B_M(a,n)$

→ the best moment bound is at $n^* = \lfloor s^*a + 0.5 \rfloor$ and $B_M(a, n^*) < B_C(a, s^*)$.

 \rightarrow the tightest moment-like bound is $B_M(a, s^*a)$.

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Cantelli's inequality

For $a \in \mathbb{R}^+$ and $X \in \mathbb{R}$

$$Pr(X - E(X) \ge a) \le \frac{\sigma_X^2}{\sigma_X^2 + a^2}$$

Proof

Let
$$Y = X - E(X)$$
, $u = \frac{\sigma_X^2}{a}$ and $\sigma_X^2 = E(X^2) - E(X)^2$
then $E(Y) = 0$, $E(Y^2) = \sigma_X^2$ and

$$\begin{aligned} \Pr(Y \ge a) &= \Pr(Y + u \ge a + u) \le \Pr((Y + u)^2 \ge (a + u)^2) \\ &\leq \frac{Markov}{(a + u)^2} = \frac{E(Y^2 + 2uY + u^2)}{(a + u)^2} \\ &= \frac{\sigma_X^2 + u^2}{(a + u)^2} \Big|_{u = \frac{\sigma_X^2}{a}} = \frac{\sigma_X^2}{\sigma_X^2 + a} \end{aligned}$$

Exercise: Which g(x) provides the Cantelli's inequality?

Telek Miklós BME Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Risk analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

Example

X is Binomial(n, p) with p = 1/4.

$$P(X \ge 3n/4) = ???$$

Method	order	opt	bound	n = 100
Markov	1	-	$\frac{1}{3}$	0.333
Moment	2	-	$\frac{3n+n^2}{9n^2}$	0.114
All moments	∞	+	010	$1.11 \cdot 10^{-24}$
Chebyshev	2	-	$\frac{3}{4n}$	0.0075
Cent. mom.	3	-	$\frac{3}{4n^2}$	0.000075
All cent. mom.	∞	+		$1.03 \cdot 10^{-24}$
Chernoff	∞	+	$3^{-\frac{n}{2}}$	$1.39 \cdot 10^{-24}$

For n = 100, E(X) = np = 25 and

$$P(X \ge 3n/4) = P(X \ge 75) = 1.4 \cdot 10^{-25}$$

Risk analysis

Telek Miklós BME

dministration

Prob. theory

Cash-flow management

Portfolio opt.

Mean reverting Option pricing Next lesson

Test

Markov related inequalities

 $\check{g}(x)$ is non-negative, monotone decreasing for x < a and $X \in \mathbb{R}$ then

$$Pr(X \leq a) \leq \frac{E(\check{g}(X))}{\check{g}(a)}$$

Proof for continuous X:

$$E(\check{g}(X)) = \int_{-\infty}^{\infty} \check{g}(x) f_X(x) dx \xrightarrow{\text{non-neg.}} \int_{-\infty}^{a} \check{g}(x) f_X(x) dx$$
$$\xrightarrow{\text{mon. dec.}} \int_{-\infty}^{a} \check{g}(a) f_X(x) dx = \check{g}(a) \int_{-\infty}^{a} f_X(x) dx$$
$$= \check{g}(a) Pr(X \le a)$$

(日) (四) (日) (日) (日)

Risk analysis

Telek Miklós BME

dministration

in. aigebia

rob. theory

Cash-flow management

Portfolio opt.

Mean reverting Option pricing Next lesson

Test

Chernoff lower bound

If $g(x) = e^{-sx}$ and s > 0 then

$$Pr(X \le a) \le \frac{E(e^{-sX})}{e^{-sa}},$$

where $L_X(s) = E(e^{-sX})$ is the Laplace transform of X. If $L_X(s)$ is known then

$$Pr(X \le a) \le \min_{s \in \mathbb{R}^+} \frac{L_X(s)}{e^{-sa}},$$

Risk analysis

Telek Miklós BME

in. algebra

Prob. theory

Cash-flow management

Portfolio opt.

Mean reverting Option pricing Next lesson

Test

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Sampling methods Monte Carlo simulation Stratified sampling Portfolio optimization Mean reverting portfolio Ornstein-Uhlenbeck model Autoregressive model Model identification Option pricing Binomial Options Pricing Mod

Black-Scholes Options Pricing Model

Next lesson

Test problems

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Central limit theorem (CLT)

"sum of i.i.d. rv-s converges to normal distribution"

Sample average:

$$S_n = \frac{X_1 + \ldots + X_n}{n} = \sum_{i=1}^n \frac{X_i}{n}$$

It converges to
$$\lim_{n \to \infty} S_n = E(X)$$
.

But how fast does it converge?

How many samples needed to approximate E(X). Variance of S_n :

$$Var(S_n) = \sum_{i=1}^{n} Var\left(\frac{X_i}{n}\right) = \sum_{i=1}^{n} \frac{Var(X_i)}{n^2} = \frac{Var(X)}{n}$$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Central limit theorem (CLT)

$$\lim_{n \to \infty} S_n - E(X) = 0$$

$$\lim_{n \to \infty} n(S_n - E(X)) = ??$$

$$\lim_{n \to \infty} \sqrt{n} (S_n - E(X)) \stackrel{d}{=} N(0, \sigma_X^2)$$

Equivalently

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(\sum_{i=1}^n X_i - nE(X) \right) \stackrel{d}{=} N(0, \sigma_X^2)$$

Risk analysis Telek Miklós BME dministration

and there

Cash-flow management

Portfolio opt.

Mean reverting Option pricing Next lesson

Test

Lyapunov's Central limit theorem (LCLT)

Generalization of the CLT:

The sum of independent but *differently* distributed rv-s, $\sum_{i=1}^{n} X_i$, also converges to normal distribution with mean $\sum_{i=1}^{n} E(X_i)$ and variance $\sum_{i=1}^{n} Var(X_i)$, if

$$\lim_{n \to \infty} \left(\sum_{i=1}^n \sigma_i^2 \right)^{-\delta} \sum_{i=1}^n E(|X_i - \mu_i|^{2+\delta}) = 0$$

for $\forall \delta > 0$, where $E(X_i) = \mu_i$ and $Var(X_i) = \sigma_i^2$.

Hard to check condition, hard to predict convergence speed.

A D > 4 日 > 4 日 > 4 日 > 4 日 > 9 Q Q

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt.

Mean reverting Option pricing Next lesson

Application of LCLT

Application of LCLT for the cash-flow problem:

• Let
$$X = \sum_{i=1}^{N} Y_i h_i$$
, than $E(X) = \sum_{i=1}^{N} p_i h_i$ and

$$Var(X) = \sum_{i=1}^{N} Var(Y_i)h_i^2 = \sum_{i=1}^{N} (p_i - p_i^2)h_i^2.$$

• Let Z is normal distributed with mean $\mu = E(X)$ and variance $\sigma^2 = Var(X)$.

• Let $\hat{Z} = \frac{Z - \mu}{\sigma}$, i.e. \hat{Z} is standard normal distributed.

Than

$$Pr\left(\sum_{i=1}^{N} Y_i h_i > C\right) = Pr(X > C) \approx Pr(Z > C)$$
$$= Pr\left(\hat{Z} > \frac{C - \mu}{\sigma}\right) = 1 - \Phi\left(\frac{C - \mu}{\sigma}\right).$$

(ロト (個) (E) (E) (E) (E) のQC

Risk analysis

Telek Miklós BME Administration Lin. algebra Prob. theory Cash-flow

management Portfolio opt. Mean reverting Option pricing

Next lessor

Tes

Example

 B_i is Bernoulli with p = 1/4.

$$X = \sum_{i=1}^{n} B_i$$
 is Binomial (n, p) with $p = 1/4$.

$$P(X \ge 3n/4) = ???$$

For n = 100, E(X) = np = 25 and

$$Var(X) = 100 Var(B) = 100 \left(\frac{1}{4} - \frac{1}{16}\right)$$

$$P(X \ge 75) \approx 1 - \Phi\left(\frac{75 - E(X)}{\sqrt{Var(X)}}\right) = 1.34 \cdot 10^{-25}$$

while the exact results is

$$P(X \ge 3n/4) = P(X \ge 75) = 1.4 \cdot 10^{-25}.$$

In this case the CLT underestimates the risk!!! $\langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Sampling methods

Monte Carlo simulation Stratified sampling ortfolio optimization ean reverting portfolio Ornstein-Uhlenbeck model Autoregressive model Model identification ption pricing Binomial Options Pricing M

Black-Scholes Options Pricing Model

Next lesson

Test problems

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting

ption pricing

Test

Sampling

The complexity of the risk analysis problem is $\mathcal{O}(2^N)$.

Shall we approximate the result based on partial information (sampling)?

Risk analysis

Cash-flow management

$$\operatorname{risk} = Pr\left(\sum_{i=1}^{N} Y_{i}h_{i} > C\right) = Pr\left(\mathbf{Y}\mathbf{h}^{T} > C\right)$$
$$= \sum_{\forall \mathbf{y} \in \{0,1\}^{N}} Pr(\mathbf{y}) \cdot Pr\left(\mathbf{y}\mathbf{h}^{T} > C\right)$$
$$= \sum_{\forall \mathbf{y} \in \mathcal{C}} Pr(\mathbf{y}) \cdot Pr\left(\mathbf{y}\mathbf{h}^{T} > C\right) + \sum_{\forall \mathbf{y} \in \mathcal{C}} Pr(\mathbf{y}) \cdot \underbrace{Pr\left(\mathbf{y}\mathbf{h}^{T} > C\right)}_{0 \le \cdot \le 1},$$
where $\mathbf{y} = \{y_{1}, \dots, y_{N}\} \in \{0, 1\}^{N}$ and $\mathcal{C} \subset \{0, 1\}^{N}$.
$$\sum_{\forall \mathbf{y} \in \mathcal{C}} Pr(\mathbf{y}) \cdot Pr\left(\mathbf{y}\mathbf{h}^{T} > C\right) \le \operatorname{risk}$$
$$\leq \sum_{\forall \mathbf{y} \in \mathcal{C}} Pr(\mathbf{y}) \cdot Pr\left(\mathbf{y}\mathbf{h}^{T} > C\right) + 1 - \sum_{\forall \mathbf{y} \in \mathcal{C}} Pr(\mathbf{y}).$$

Li-Silvester method

Li, V. and J. Silvester. "Performance Analysis of Networks with Unreliable Components." IEEE Trans. Commun. 32 (1984): 1105-1110.

For a given complexity, $c = |\mathcal{C}|$, the tightest bounds are obtained when $\sum_{\forall \mathbf{y} \in \mathcal{C}} Pr(\mathbf{y})$ is maximal.

Order the **y** vectors with decreasing probabilities:

 $Pr(\mathbf{y}^{(1)}) \ge Pr(\mathbf{y}^{(2)}) \ge \ldots \ge Pr(\mathbf{y}^{(c)}) \ge \ldots \ge Pr(\mathbf{y}^{(2^N)})$ and bound the risk based on the *c* most probable samples

$$\sum_{i=1}^{c} Pr(\mathbf{y}^{(i)}) \cdot Pr\left(\mathbf{y}^{(i)}\mathbf{h}^{T} > C\right) \le \text{risk}$$
$$\le \sum_{i=1}^{c} Pr(\mathbf{y}^{(i)}) \cdot Pr\left(\mathbf{y}^{(i)}\mathbf{h}^{T} > C\right) + 1 - \sum_{i=1}^{c} Pr(\mathbf{y}^{(i)}).$$

Problem: Efficient generation of the ordered y vectors.

<ロ> <0</p>

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow

management Portfolio opt. Mean reverting

Vort losson

Tes

Example

Same as before: N = 100, p = 1/4

The difference between the lower and upper bounds by the Li-Silvester method is $\Delta = 1 - \sum_{\forall y \in C} Pr(y)$

(independent of \mathbf{h} and C)

	p = 1/4		p = 1/100
samples	Δ	$1-\Delta$	Δ
1	~ 1	$3.2 \cdot 10^{-13}$	0.63
101	~ 1	$1.1 \cdot 10^{-11}$	0.26
5051	~ 1	$1.9 \cdot 10^{-10}$	0.079
166751	~ 1	$2.1 \cdot 10^{-9}$	0.018
:			

Still very slow convergence.

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory **Cash-flow** management Portfolio opt. Mean reverting Option pricing

Test

◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ → 圖 → のへで

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Sampling methods

Monte Carlo simulation Stratified sampling rtfolio optimization can reverting portfolio Ornstein-Uhlenbeck model Autoregressive model Model identification otion pricing

Binomial Options Pricing Model Black-Scholes Options Pricing Model et lesson

Test problems

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing

Test

<□> <@> < E> < E> E のQ(

Random sampling

Monte Carlo simulation:

Generate random ${\bf y}$ samples according to the distribution of ${\bf y}$ and check if ${\bf y}{\bf h}^T>C$

If the generated samples are $\mathbf{y}_{rnd}^{(1)}, \mathbf{y}_{rnd}^{(2)}, \dots, \mathbf{y}_{rnd}^{(S)}$ then

risk
$$\approx \eta = \frac{1}{S} \sum_{s=1}^{S} \underbrace{\mathcal{I}\left(\mathbf{y}_{rnd}^{(s)}\mathbf{h}^{T} > C\right)}_{B_{s}}.$$

 η is the sample average of S i.i.d. rv: $B_s = \begin{cases} 1 & \text{risk} \\ 0 & 1 - \text{risk} \end{cases}$

As discussed with CLT:

$$E(\eta) = E(B_s) = \text{risk},$$
$$Var(\eta) = \sum_{s=1}^{S} Var\left(\frac{B_s}{S}\right) = \sum_{s=1}^{S} \frac{Var(B_s)}{S^2} = \frac{Var(B)}{S},$$

with $Var(B) = risk - risk^2$.

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory **Cash-flow management** Portfolio opt. Mean reverting Option pricing Next lesson Test

Monte Carlo simulation

Algorithm:

- ▶ Sample generation
 - Generate S samples such that the elements of $\mathbf{y}_{rnd}^{(s)}$ are independent and $Pr(\mathbf{y}_{rnd}^{(s)}\mathbf{e_i}^T = 1) = p_i$ for all $i \leq N$ and $s \leq S$
- Risk estimation

risk
$$\approx \eta = \frac{1}{S} \sum_{s=1}^{S} \mathcal{I}\left(\mathbf{y}_{rnd}^{(s)} \mathbf{h}^{T} > C\right).$$

Risk analysis

Telek Miklós BME

dministration

Prob. theory

Cash-flow management

Portfolio opt.

Mean reverting Option pricing Next lesson
Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Sampling methods Monte Carlo simulation Stratified sampling ortfolio optimization lean reverting portfolio Ornstein-Uhlenbeck me

Autoregressive model

Model identification

Option pricing

Binomial Options Pricing Model Black-Scholes Options Pricing Model et lesson

Test problems

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory **Cash-flow management** Portfolio opt. Mean reverting Option pricing Next lesson Test

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ · □ · つへ(

We need to explore $\{0, 1\}^N$.

Decompose $\{0,1\}^N$ to I disjoint subsets $\mathcal{C}_1, \ldots, \mathcal{C}_I$ (that is $\bigcup_{i=1}^{I} \mathcal{C}_i = \{0,1\}^N$ and $\mathcal{C}_i \cap \mathcal{C}_j = \emptyset$ for $i \neq j$). Than by the LTP

risk =
$$Pr(\mathbf{y}\mathbf{h}^T > C)$$

= $\sum_{i=1}^{I} Pr(\mathbf{y}\mathbf{h}^T > C | \mathbf{y} \in C_i) Pr(\mathbf{y} \in C_i) = \sum_{i=1}^{I} risk_i p_i,$

where
$$p_i = Pr(\mathbf{y} \in \mathcal{C}_i) = \sum_{\forall \mathbf{y} \in \mathcal{C}_i} Pr(\mathbf{y})$$
 and
risk_i = $Pr(\mathbf{y}\mathbf{h}^T > C | \mathbf{y} \in \mathcal{C}_i)$ is the risk in set \mathcal{C}_i .

Sample allocation scheme S_1, \ldots, S_I $(\sum_{i=1}^I S_i = S)$ then risk_i is approximated based on the series of random samples $\mathbf{y}_{rnd_i}^{(s)} \in \mathcal{C}_i, s = 1, \ldots, S_i$ as

$$\operatorname{risk}_{i} \approx \eta_{i} = \frac{1}{S_{i}} \sum_{s=1}^{S_{i}} \mathcal{I}\left(\mathbf{y}_{rnd_{i}}^{(s)} \mathbf{h}^{T} > C\right).$$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory **Cash-flow** management Portfolio opt. Mean reverting

Next lesso:

Tes

◆□ → ◆昼 → ◆臣 → ◆臣 → ○○ ●

Simple Algorithm:

- ▶ Sample generation
 - For $i = 1, \ldots, I$, generate S_i samples such that $\mathbf{y} \in C_i$
- Risk estimation

$$\operatorname{risk} \approx \eta = \sum_{i=1}^{I} p_i \eta_i = \sum_{i=1}^{I} p_i \underbrace{\frac{1}{S_i} \sum_{s=1}^{S_i} \mathcal{I}\left(\mathbf{y}_{rnd_i}^{(s)} \mathbf{h}^T > C\right)}_{\operatorname{sample average in } \mathcal{C}_i}.$$

Risk analysis

Telek Miklós BME

dministration

Cash-flow management

Portfolio opt.

Mean reverting Option pricing Next lesson

Sampling in layers:

Let $\#\mathbf{y}$ be the number of ones in \mathbf{y} and $C_i = {\mathbf{y} : \#\mathbf{y} = i}.$

Layer 0:

$$Pr(\mathbf{y} = \mathbf{0}) = \prod_{j=1}^{N} (1 - p_j)$$
$$p_{\mathbf{0}}^{(0)} = Pr(\mathbf{y} = \mathbf{0} | \mathbf{y} \in \mathcal{C}_0) = 1$$

Layer 1:

$$Pr(\mathbf{y} = e_i) = \frac{p_i}{1 - p_i} \prod_{j=1}^N (1 - p_j)$$
$$p_i^{(1)} = Pr(\mathbf{y} = e_i | \mathbf{y} \in \mathcal{C}_1) = \frac{\frac{p_i}{1 - p_i} \prod_{j=1}^N (1 - p_j)}{\sum_{k=1}^N \frac{p_k}{1 - p_k} \prod_{j=1}^N (1 - p_j)} = \frac{\frac{p_i}{1 - p_i}}{\sum_{k=1}^N \frac{p_k}{1 - p_k}}$$

Sample generation in C_1 according to $p_i^{(1)}$

Task: Compute the sample distribution in C_2

Risk analysis

Telek Miklós

Cash-flow management

Approximating the error of stratified sampling

 η_i is the sample average of S_i i.i.d. rv: $B_s^{(i)} = \begin{cases} 1 & \text{risk}_i \\ 0 & 1 - \text{risk}_i \end{cases}$

That is $\eta_i = \frac{\sum_{s=1}^{S_i} B_s^{(i)}}{S_i}$, where $E(B_s^{(i)}) = \operatorname{risk}_i$ and $\operatorname{Var}\left(B_s^{(i)}\right) = E(B_s^{(i)}) - E(B_s^{(i)})^2 = \operatorname{risk}_i - \operatorname{risk}_i^2$.

$$\begin{split} E(\eta_i) &= \frac{1}{S_i} \sum_{s=1}^{S_i} E(B_s^{(i)}) = \frac{1}{S_i} \sum_{s=1}^{S_i} \operatorname{risk}_i = \operatorname{risk}_i, \\ Var(\eta_i) &= Var\left(\frac{\sum_{s=1}^{S_i} B_s^{(i)}}{S_i}\right) = \frac{1}{S_i^2} \sum_{s=1}^{S_i} Var(B_s^{(i)}) \\ &= \frac{1}{S_i^2} \sum_{s=1}^{S_i} \operatorname{risk}_i - \operatorname{risk}_i^2 = \frac{\operatorname{risk}_i - \operatorname{risk}_i^2}{S_i}. \end{split}$$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory **Cash-flow** management Portfolio opt. Mean reverting Option pricing Next lesson Test

Using the data of the strata and $\eta = \sum_{i=1}^{I} p_i \eta_i$ we can compute the mean and variance of η .

$$\begin{split} E(\eta) &= E\left(\sum_{i=1}^{I} p_i \eta_i\right) = \sum_{i=1}^{I} p_i E(\eta_i) = \sum_{i=1}^{I} p_i \operatorname{risk}_i = \operatorname{risk},\\ Var\left(\eta\right) &= Var\left(\sum_{i=1}^{I} p_i \eta_i\right) = \sum_{i=1}^{I} p_i^2 Var\left(\eta_i\right) = \sum_{i=1}^{I} p_i^2 \frac{\operatorname{risk}_i - \operatorname{risk}_i^2}{S_i} \end{split}$$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory **Cash-flow** management Portfolio opt. Mean reverting Option pricing Next lesson Test

Optimal sample allocation

$$Var_{S} = \min_{\substack{S_{1},...,S_{I}\\\sum_{i=1}^{I} S_{i}=S}} Var(\eta) = \min_{\substack{S_{1},...,S_{I}\\\sum_{i=1}^{I} S_{i}=S}} \sum_{i=1}^{I} p_{i}^{2} \frac{\operatorname{risk}_{i} - \operatorname{risk}_{i}^{2}}{S_{i}}.$$

For
$$I = 2$$
 and $s_i = \frac{S_i}{S}$, $c_i = \frac{p_i^2(\operatorname{risk}_i - \operatorname{risk}_i^2)}{S}$ for $i = 1, 2,$

$$Var_{S} = \min_{\substack{s_{1}, s_{2} \\ s_{1} + s_{2} = 1}} \frac{c_{1}}{s_{1}} + \frac{c_{2}}{s_{2}}$$

Its minimum is obtained at $\frac{\sqrt{c_1}}{s_1} = \frac{\sqrt{c_2}}{s_2}$ that is $s_i = \frac{\sqrt{c_i}}{\sqrt{c_1} + \sqrt{c_2}}$.

Interpretation of c_i : $\underbrace{p_i^2}_{\text{importance}} \underbrace{(\text{risk}_i - \text{risk}_i^2)}_{\text{uncertainty}}$

<□> <@> < E> < E> < E> < E < のQC</p>

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Optimal sample allocation

$$Var_{S} = \min_{\substack{S_{1},...,S_{I} \\ \sum_{i=1}^{I} S_{i} = S}} Var(\eta) = \min_{\substack{S_{1},...,S_{I} \\ \sum_{i=1}^{I} S_{i} = S}} \sum_{i=1}^{I} p_{i}^{2} \frac{\operatorname{risk}_{i} - \operatorname{risk}_{i}^{2}}{S_{i}}.$$

Let
$$s_i = \frac{S_i}{S}$$
, $c_i = \frac{p_i^2(\operatorname{risk}_i - \operatorname{risk}_i^2)}{S}$ for $i = 1, \dots, I$, then

$$Var_{S} = \min_{\substack{s_{1}, \dots, s_{I} \\ \sum_{i=1}^{I} s_{i}=1}} \sum_{i=1}^{I} \frac{c_{i}}{s_{i}}.$$

т

Its minimum is obtained at $\frac{\sqrt{c_1}}{s_1} = \ldots = \frac{\sqrt{c_I}}{s_I}$ that is

$$s_i = \frac{\sqrt{c_i}}{\sum_{j=1}^{I} \sqrt{c_j}}.$$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Approaches when the variance is not known.

- variance free: $s_i = p_i$
- estimation/processing:
 approximate the variance based on the first S* samples
- ▶ adaptive method: start with $s_i = p_i$ in each step maintain $E(B^{(i)})$, $Var(B^{(i)})$, and update s_i .

Risk analysis

Telek Miklós BME

dministration

Prob. theory

Cash-flow management

Portfolio opt.

Mean reverting Option pricing

Test

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ う へ の ・

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Sampling methods Monte Carlo simulatio Stratified sampling

Portfolio optimization

Mean reverting portfolio

Ornstein-Uhlenbeck model

Autoregressive model

Model identification

Option pricing

Binomial Options Pricing Model Black-Scholes Options Pricing Model

. .

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management **Portfolio opt.** Mean reverting Option pricing Next lesson

Tes

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ · □ · つへ(

Portfolio

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management **Portfolio opt.** Mean reverting Option pricing Next lesson Test

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Portfolio

Which one to buy?

Portfolio: [-0.043, 0.24, 0.29, -0.42]

Risk analysis

Telek Miklós BME

in. algebra Prob. theory

Cash-flow management

Portfolio opt.

Mean reverting Option pricing Next lesson

Test

・ロ・・西・・田・・日・・日・

Portfolio

Possible answers:

- ▶ the one with the highest expected increase,
- ▶ the one with the least risk,

▶ combine income and risk:

- e.g., minimize the risk for a given expected income,
- e.g., maximize the income with a given risk level.

Telek Miklós BME

dministration

in. algebra

Prob. theory

Cash-flow management

Portfolio opt.

Mean reverting Option pricing Next lesson

Test

Model

• $s_i(t)$ - the price of asset *i* at time *t*,

▶ $r_i(t) = s_i(t) - s_i(t-1)$ - the profit of asset *i* at time *t*,

Assumption:

 $\mathbf{r}(t) = \{r_1(t), \ldots, r_N(t)\}^T$ is time stationary, multi-dimensional normal distributed with location $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$.

To recap:

$$E(r_i(t)) = \mu_i$$
 and $E((r_i(t) - \mu_i)(r_j(t) - \mu_j)) = \sigma_{ij}$ for $\forall t$.

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management **Portfolio opt.** Mean reverting Option pricing Next lesson Test

・ロト ・個ト ・ヨト ・ヨト ヨー のへの

Model

Portfolio:

- w_i amount of asset i, $\mathbf{w} = \{w_1, \dots, w_N\}^T$.
 - market value at time t: $p(t) = \sum_{i=1}^{N} w_i s_i(t) = \mathbf{w}^T \mathbf{s}(t)$
 - income at time t: $x(t) = \sum_{i=1}^{N} w_i r_i(t)$

• expected income at time t (independent of t):

$$E(x(t)) = E\left(\sum_{i=1}^{N} w_i r_i(t)\right) = \sum_{i=1}^{N} w_i \mu_i = \mathbf{w}^T \boldsymbol{\mu}$$

► risk at time t (independent of t): variance of x(t).

Risk analysis Telek Miklós BME Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Ontion pricing

Next lesson

Tes

Model

Risk at time t:

$$\sigma^{2}(t) = E\left(\left(x(t) - E(x(t))\right)^{2}\right) = E\left(\left(\sum_{i=1}^{N} w_{i}\left(r_{i}(t) - \mu_{i}\right)\right)^{2}\right)$$
$$= E\left(\left(\sum_{i=1}^{N} w_{i}\left(r_{i}(t) - \mu_{i}\right)\right)\left(\sum_{j=1}^{N} w_{j}\left(r_{j}(t) - \mu_{j}\right)\right)\right)$$
$$= \sum_{i=1}^{N} \sum_{j=1}^{N} w_{i}E\left(\left(r_{i}(t) - \mu_{i}\right)\left(r_{j}(t) - \mu_{j}\right)\right)w_{j}$$
$$= \sum_{i=1}^{N} \sum_{j=1}^{N} w_{i}\sigma_{ij}w_{j} = \mathbf{w}^{T}\mathbf{\Sigma}\mathbf{w}$$

It is independent of t.

Risk analysis

Felek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management **Portfolio opt.** Mean reverting Option pricing Next lesson Test

Portfolio optimization

Minimize the risk for a given expected income (b):

$$\mathbf{w}_{opt} = \operatorname*{argmin}_{\mathbf{w}: \mathbf{w}^T \boldsymbol{\mu} = b} \mathbf{w}^T \boldsymbol{\Sigma} \mathbf{w}$$

Let $\Sigma = \sum_{i=1}^{N} \lambda_i \mathbf{x}_i \mathbf{x}_i^T$ be the spectral decomposition of Σ (symmetric), such that $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_N$ and $\mathbf{x}_i^T \mathbf{x}_j = \delta_{ij}$.

$$\mathbf{w}^{T}\boldsymbol{\mu} = \sum_{i=1}^{N} \underbrace{\mathbf{w}^{T}\mathbf{x}_{i}}_{v_{i}} \underbrace{\mathbf{x}_{i}^{T}\boldsymbol{\mu}}_{\hat{\mu}_{i}} = \sum_{i=1}^{N} v_{i}\hat{\mu}_{i} = \mathbf{v}^{T}\hat{\boldsymbol{\mu}}$$
$$\mathbf{w}^{T}\boldsymbol{\Sigma}\mathbf{w} = \sum_{i=1}^{N} \mathbf{w}^{T}\mathbf{x}_{i}\lambda_{i}\mathbf{x}_{i}^{T}\mathbf{w} = \sum_{i=1}^{N} v_{i}\lambda_{i}v_{i} = \mathbf{v}^{T}\boldsymbol{\Lambda}\mathbf{v}$$

Transformed problem (quadratic optimization with linear constraint):

$$\mathbf{v}_{opt} = \underset{\mathbf{v}: \mathbf{v}^T \hat{\boldsymbol{\mu}} = b}{\operatorname{argmin}} \mathbf{v}^T \mathbf{\Lambda} \mathbf{v} = \underset{\mathbf{v}: \sum_{i=1}^N v_i \hat{\mu}_i = b}{\operatorname{argmin}} \sum_{i=1}^N \lambda_i v_i^2$$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management **Portfolio opt.** Mean reverting Option pricing Next lesson Test

Portfolio optimization

Reverse problem definition:

Maximize the expected income for a given risk (r):

$$\mathbf{w}_{opt} = \operatorname*{argmax}_{\mathbf{w}: \mathbf{w}^T \mathbf{\Sigma} \mathbf{w} = r} \mathbf{w}^T \boldsymbol{\mu}$$

Transformed problem (linear optimization with quadratic constraint):

$$\mathbf{v}_{opt} = \operatorname*{argmax}_{\mathbf{v}: \mathbf{v}^T \mathbf{\Lambda} \mathbf{v} = r} \mathbf{v}^T \hat{\boldsymbol{\mu}} = \operatorname*{argmax}_{\mathbf{v}: \sum_{i=1}^N \lambda_i v_i^2 = r} \sum_{i=1}^N v_i \hat{\mu}_i$$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management **Portfolio opt**. Mean reverting

Jption pricin

Test

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

ΔŢ

Portfolio optimization

Modified optimization problem:

$$\mathbf{w}_{opt} = \operatorname*{argmin}_{\mathbf{w}: ||\mathbf{w}||_2 = 1} \mathbf{w}^T \boldsymbol{\Sigma} \mathbf{w}$$

where $||\mathbf{w}||_2 = \sqrt{\sum_{i=1}^N w_i^2} = \sqrt{\mathbf{w}^T \mathbf{w}}.$

$$\mathbf{w}^T \mathbf{w} = \sum_{i=1}^N \underbrace{\mathbf{w}^T \mathbf{x}_i}_{v_i} \underbrace{\mathbf{x}_i^T \mathbf{w}}_{v_i} = \sum_{i=1}^N v_i v_i = \mathbf{v}^T \mathbf{v}$$

Transformed problem (linear optimization in v_i^2):

$$\mathbf{v}_{opt} = \operatorname*{argmin}_{\mathbf{v}: \mathbf{v}^T \mathbf{v} = 1} \mathbf{v}^T \mathbf{\Lambda} \mathbf{v} = \operatorname*{argmin}_{\mathbf{v}: \sum_{i=1}^{N} v_i^2 = 1} \sum_{i=1}^{N} \lambda_i v_i^2$$

Optimal solution is $\mathbf{v}_{opt}^T = \{1, 0, \dots, 0\}, \, \mathbf{w}_{opt} = \mathbf{x}_1.$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management **Portfolio opt**. Mean reverting Option pricing

Tes

Obtaining $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$

Form the samples

s_i(t) - the price of asset i at time t,
r_i(t) = s_i(t) − s_i(t − 1) - the profit of asset i at time t,

the sample mean vector and sample covariance matrix are

$$\tilde{\boldsymbol{\mu}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{r}(t),$$
$$\tilde{\boldsymbol{\Sigma}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{r}(t) \mathbf{r}(t)^{T} - \tilde{\boldsymbol{\mu}} \tilde{\boldsymbol{\mu}}^{T}.$$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management **Portfolio opt.** Mean reverting Option pricing Next lesson

Computing the required eigenvector

How to obtain \mathbf{x}_1 , the eigenvector of the minimal eigenvalue of $\boldsymbol{\Sigma}$ by the iterative procedure providing the maximal eigenvalue/eigenvector?

- Apply the iterative procedure for Σ^{-1} .
- \blacktriangleright In 2 steps:
 - compute λ_N by the iterative procedure for Σ ,

• apply the iterative procedure for $\lambda_N \mathbf{I} - \boldsymbol{\Sigma}$.

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management **Portfolio opt.** Mean reverting Option pricing

ivext le

Tes

On the fly approximation

Form the $\mathbf{r}(t) = \{r_1(t), \ldots, r_N(t)\}^T$ time stationary, multi-dimensional normal distributed samples for $t = 1, 2, \ldots, T$ with location $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$, compute

Input:
$$\mathbf{w}_{init}, \mathbf{r}(t), T, \eta; (\eta - \text{convergence speed})$$

 $\mathbf{w} = \mathbf{w}_{init}; \mathbf{s} = \mathbf{0}; y_s = 0$
for $t = 1$ to T do
 $\mathbf{s} = \mathbf{s} + \mathbf{r}(t);$
 $\mathbf{v} = \mathbf{r}(t) - \mathbf{s}/t;$
 $y = \mathbf{w}^T \mathbf{v};$
 $y_s = y_s + y^2;$
 $\mathbf{w} = \mathbf{w} + \eta y (\mathbf{v} - y \mathbf{w});$
end for
return : $\mathbf{s}/T, y_s/T, \mathbf{w};$

where

- ▶ \mathbf{s}/T approximates the mean $\boldsymbol{\mu}$,
- ▶ y_s/T approximates the dominant eigenvalue of Σ ,
- w approximates the dominant eigenvector of Σ .

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management **Portfolio opt**. Mean reverting Option pricing

On the fly approximation

Assuming, $\mathbf{v} = \mathbf{r}(t) - \boldsymbol{\mu}$ and using $y = \mathbf{w}^T \mathbf{v} = \mathbf{v}^T \mathbf{w}$, the expected change of \mathbf{w} is

$$\begin{split} E\left(\eta y(\mathbf{v} - y\mathbf{w})\right) &= \eta E\left(\mathbf{v} \underbrace{\mathbf{v}}_{y}^{T} \mathbf{w} - \underbrace{\mathbf{w}}_{y}^{T} \mathbf{v} \underbrace{\mathbf{v}}_{y}^{T} \mathbf{w}}_{y} \mathbf{w}\right) \\ &= \eta \underbrace{E\left((\mathbf{r}(t) - \boldsymbol{\mu})(\mathbf{r}(t) - \boldsymbol{\mu})^{T}\right)}_{\mathbf{\Sigma}} \mathbf{w} \\ &- \eta \mathbf{w}^{T} \underbrace{E\left((\mathbf{r}(t) - \boldsymbol{\mu})(\mathbf{r}(t) - \boldsymbol{\mu})^{T}\right)}_{\mathbf{\Sigma}} \mathbf{w} \mathbf{w} \\ &= \eta \mathbf{\Sigma} \mathbf{w} - \eta \underbrace{\mathbf{w}}_{c:\,\text{scalar}}^{T} \mathbf{\Sigma} \mathbf{w}}_{c:\,\text{scalar}} \mathbf{w} \\ &= \eta \left(\mathbf{\Sigma} \mathbf{w} - c\mathbf{w}\right). \end{split}$$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management **Portfolio opt.** Mean reverting Option pricing Next lesson

On the fly approximation

A necessary condition for the convergence of the iteration is that the expected change of \mathbf{w} converges to $\mathbf{0}$.

It holds when

$$\Sigma \mathbf{w} - c\mathbf{w} = 0,$$

that is c and w are eigenvalue and eigenvector pair of Σ and $\mathbf{w}^T \mathbf{w} = 1$.

 $\mathbf{w}^T \mathbf{w} = 1$, because

$$c = \mathbf{w}^T \underbrace{\mathbf{\Sigma} \mathbf{w}}_{c\mathbf{w}} = c \mathbf{w}^T \mathbf{w}$$

(日) (四) (日) (日) (日)

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management **Portfolio opt.** Mean reverting Option pricing Next lesson

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Monte Carlo simulation
Mean reverting portfolio
Ornstein-Uhlenbeck model
Autoregressive model
Model identification
Binomial Options Pricing M

Black-Scholes Options Pricing Model

Next lesson

Test problems

Risk analysis

Telek Miklós BME

Administration

Prob. theory

Cash-flow management

Portfolio opt.

Mean reverting Option pricing Next lesson

Mean reversion

The tendency of a market variable (such as an interest rate) to revert back to some long-run average level.

A potential economic explanation for interest rate:

- ▶ increased interest rate,
- ▶ economic slowdown,
- ▶ low demand for funds,
- ▶ interest rates decreases.

Risk analysis

Telek Miklós BME

Administration

Prob. theory

Cash-flow management

Portfolio opt.

Mean reverting Option pricing Next lesson

Test

Trade with the mean reverting portfolio

Risk analysis

Telek Miklós

- ▶ far above/below mean: sell/buy
- ▶ back to mean from above/below: buy/sell

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Monte Carlo simulation
Mean reverting portfolio
Ornstein-Uhlenbeck model
Autoregressive model

Model identification

Option pricing

Binomial Options Pricing Model Black–Scholes Options Pricing Mode

(日) (四) (日) (日) (日)

Next lesson

Test problems

Risk analysis

Telek Miklós BME

Administration

Prob. theory

Cash-flow management

Portfolio opt.

Mean reverting Option pricing Next lesson

Ornstein-Uhlenbeck model

Assume

- $s_i(t)$: the price of asset *i* at time *t*,
- w_i : amount of asset i,
- ▶ p(t) market value at time t: $p(t) = \sum_{i=1}^{N} w_i s_i(t) = \mathbf{w}^T \mathbf{s}(t)$.

Mathematical model for continuous time behaviour (described by a stochastic differential equation)

$$dp(t) = \lambda(\mu - p(t))dt + \sigma dW(t),$$

where

- μ : is the mean (long time average),
- λ: mean reversion coefficient (the force to return to the mean),
- W(t): Wiener process (normalized noise),
- σ : volatility (volume of noise).

Wiener process:

- ▶ independent increments,
- ► $W(t + \Delta) W(t)$ is $N(0, \Delta)$ normal distributed.

Risk analysis

Telek Miklós BME Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson

Test

Ornstein-Uhlenbeck model

Integrating the stochastic differential equation:

$$p(t) = p(0)e^{-\lambda t} + \mu(1 - e^{-\lambda t}) + \int_{s=0}^{t} \sigma e^{-\lambda(t-s)} dW(s).$$

From which

$$E(p(t)) = p(0)e^{-\lambda t} + \mu(1 - e^{-\lambda t}).$$

I.e. E(p(t)) exponentially converges to the mean with rate λ .

Limiting behaviour:

$$\lim_{t \to \infty} p(t) \sim N(\mu, \frac{\sigma^2}{2\lambda}).$$

~

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Ornstein-Uhlenbeck model

1

Relation of the integral and differential forms:

$$p(t) = p(0)e^{-\lambda t} + \mu(1 - e^{-\lambda t}) + e^{-\lambda t} \int_{s=0}^{t} \sigma e^{\lambda s} \frac{dW(s)}{ds} ds$$

$$\frac{d}{dt}p(t) = -\lambda p(0)e^{-\lambda t} + \lambda \mu e^{-\lambda t} - \lambda e^{-\lambda t} \int_{s=0}^{t} \sigma e^{\lambda s} \frac{dW(s)}{ds} ds$$

$$+ e^{-\lambda t} \sigma e^{\lambda t} \frac{dW(t)}{dt}$$

$$= \underbrace{-\lambda p(0)e^{-\lambda t} - \lambda \mu(1 - e^{-\lambda t}) - \lambda e^{-\lambda t} \int_{s=0}^{t} \sigma e^{\lambda s} \frac{dW(s)}{ds} ds}_{-\lambda p(t)}$$

$$+ \sigma \frac{dW(t)}{dt} + \lambda \mu$$

Risk analysis

Felek Miklós BME

Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing

T--+

▲□▶ ▲御▶ ★臣▶ ★臣▶ ―臣 _ のへで

Table of content

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Monte Carlo simulatio

Mean reverting portfolio

Ornstein-Uhlenbeck model

Autoregressive model

Model identification

Option pricing

Binomial Options Pricing Model Black-Scholes Options Pricing Mode

IVEXT TESSOII

Test problems

Risk analysis

Telek Miklós BME

Administration

Cash-flow

Portfolio opt.

Mean reverting Option pricing Next lesson

Autoregressive model

Assume $s_i(t)$ is the price of asset *i* at time step *t*.

Mathematical model for asset prices in discrete time instants:

$$\begin{split} \mathbf{s}(t) - \boldsymbol{\mu} &= \mathbf{A}(\mathbf{s}(t-1) - \boldsymbol{\mu}) + \boldsymbol{\omega}(t) & \text{evolution} \\ \mathbf{s}(t) - \mathbf{s}(t-1) &= (\mathbf{I} - \mathbf{A})(\boldsymbol{\mu} - \mathbf{s}(t-1)) + \boldsymbol{\omega}(t) & \text{OU diff. form} \\ \mathbf{s}(t) &= \mathbf{A}\mathbf{s}(t-1) + (\mathbf{I} - \mathbf{A})\boldsymbol{\mu} + \boldsymbol{\omega}(t) & \text{AR}(1) \text{ form} \end{split}$$

where

- ▶ A: modification of prices in one time step.
- $\boldsymbol{\omega}(t)$: noise in time step t.

AR(1) model, because only $\mathbf{s}(t-1)$ affects $\mathbf{s}(t)$ (directly).

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Autoregressive model

Assumptions

- ► $\mathbf{s}(t)$ is stationary, with mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$, i.e., $E((\mathbf{s}(t) \boldsymbol{\mu})(\mathbf{s}(t) \boldsymbol{\mu})^T) = \boldsymbol{\Sigma}$ for $\forall t$.
- $\boldsymbol{\omega}(t)$ is multivariate normal with mean **0** and covariance $\boldsymbol{\Theta}$

Condition of stability: $sp(\mathbf{A}) < 1$

Covariance relation based on the evolution form:

$$Var (\mathbf{s}(t) - \boldsymbol{\mu}) = Var (\mathbf{A}(\mathbf{s}(t-1) - \boldsymbol{\mu})) + Var (\boldsymbol{\omega}(t))$$
$$E((\mathbf{s}(t) - \boldsymbol{\mu})(\mathbf{s}(t) - \boldsymbol{\mu})^T) = \mathbf{A}E((\mathbf{s}(t-1) - \boldsymbol{\mu})(\mathbf{s}(t-1) - \boldsymbol{\mu})^T)\mathbf{A}^T$$
$$+ E(\boldsymbol{\omega}(t)\boldsymbol{\omega}(t)^T)$$
$$\boldsymbol{\Sigma} = \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T + \boldsymbol{\Theta}$$

◆□ → ◆昼 → ◆臣 → ◆臣 → ○○ ●

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing

Tes

Autoregressive model

Market value of portfolio \mathbf{w} at time step t:

$$p(t) = \mathbf{w}^T \mathbf{s}(t).$$

Mean of portfolio \mathbf{w} (independent of t):

$$\mu = E(p(t)) = \mathbf{w}^T E(\mathbf{s}(t)) = \mathbf{w}^T \boldsymbol{\mu}.$$

Market value of the autoregressive model

$$p(t) = \mathbf{w}^T \mathbf{s}(t) = \underbrace{\mathbf{w}^T \mathbf{A} \mathbf{s}(t-1)}_{\text{past effect}} + \underbrace{\mathbf{w}^T (\mathbf{I} - \mathbf{A}) \boldsymbol{\mu}}_{\text{constant}} + \underbrace{\mathbf{w}^T \boldsymbol{\omega}(t)}_{\text{noise}},$$

and its variance

$$Var(p(t)) = \underbrace{Var(\mathbf{w}^T \mathbf{s}(t))}_{\sigma} = E\left((\mathbf{w}^T(\mathbf{s}(t) - \boldsymbol{\mu}))^2\right)$$
$$= \underbrace{Var(\mathbf{w}^T \mathbf{As}(t-1))}_{\sigma_{past}} + \underbrace{Var(\mathbf{w}^T \boldsymbol{\omega}(t))}_{\sigma_{noise}}$$
$$= E\left((\mathbf{w}^T \mathbf{A}(\mathbf{s}(t-1) - \boldsymbol{\mu}))^2\right) + \sigma_{noise}.$$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt.

Mean reverting Option pricing Next lesson Test

Optimal portfolio

Predictability factor of portfolio ${\bf w}$

$$\begin{split} \upsilon(\mathbf{w}) &= \frac{\sigma_{past}}{\sigma} = \frac{\sigma_{past}}{\sigma_{past} + \sigma_{noise}} = \frac{Var(\mathbf{w}^T \mathbf{A} \mathbf{s}(t-1))}{Var(\mathbf{w}^T \mathbf{s}(t))} \\ &= \frac{E(\mathbf{w}^T \mathbf{A} (\mathbf{s}(t-1) - \boldsymbol{\mu}) (\mathbf{s}(t-1) - \boldsymbol{\mu})^T \mathbf{A}^T \mathbf{w})}{E(\mathbf{w}^T (\mathbf{s}(t) - \boldsymbol{\mu}) (\mathbf{s}(t) - \boldsymbol{\mu})^T \mathbf{w})} \\ &= \frac{\mathbf{w}^T \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^T \mathbf{w}}{\mathbf{w}^T \boldsymbol{\Sigma} \mathbf{w}} \end{split}$$

Optimal portfolio:

$$\mathbf{w}_{opt} = \operatorname*{argmax}_{\mathbf{w}} v(\mathbf{w}) = \operatorname*{argmax}_{\mathbf{w}} \frac{\mathbf{w}^T \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^T \mathbf{w}}{\mathbf{w}^T \boldsymbol{\Sigma} \mathbf{w}}$$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson
Optimal portfolio

$$\mathbf{w}_{opt} = \operatorname*{argmax}_{\mathbf{w}} \frac{\mathbf{w}^T \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^T \mathbf{w}}{\mathbf{w}^T \boldsymbol{\Sigma} \mathbf{w}}$$

Let $\Sigma = \mathbf{B}^T \Lambda \mathbf{B}$ be the spectral decomposition of Σ (symmetric), such that $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_N$.

$$\mathbf{w}^{T} \boldsymbol{\Sigma} \mathbf{w} = \underbrace{\mathbf{w}^{T} \mathbf{B}^{T} \boldsymbol{\Lambda}^{1/2}}_{\mathbf{v}^{T}} \underbrace{\mathbf{\Lambda}^{1/2} \mathbf{B} \mathbf{w}}_{\mathbf{v}} = \mathbf{v}^{T} \mathbf{v}$$
$$\mathbf{w}^{T} \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{T} \mathbf{w} = \underbrace{\mathbf{w}^{T} \mathbf{B}^{T} \boldsymbol{\Lambda}^{1/2}}_{\mathbf{v}^{T}} \underbrace{\mathbf{\Lambda}^{-1/2} \mathbf{B} \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{T} \mathbf{B}^{T} \boldsymbol{\Lambda}^{-1/2}}_{\hat{\mathbf{A}}} \underbrace{\mathbf{\Lambda}^{1/2} \mathbf{B} \mathbf{w}}_{\mathbf{v}}$$
$$= \mathbf{v}^{T} \hat{\mathbf{A}} \mathbf{v}$$

Transformed problem with $\mathbf{v} = \mathbf{\Lambda}^{1/2} \mathbf{B} \mathbf{w}$:

$$\mathbf{v}_{opt} = \operatorname*{argmax}_{\mathbf{v}} \frac{\mathbf{v}^T \hat{\mathbf{A}} \mathbf{v}}{\mathbf{v}^T \mathbf{v}} = \operatorname*{argmax}_{\mathbf{v}: ||\mathbf{v}||_2 = 1} \mathbf{v}^T \hat{\mathbf{A}} \mathbf{v}$$

Risk analysis

Telek Miklós BME

Administration

Jin. aigebra

Prob. theory

Cash-flow management

Portfolio opt.

Mean reverting Option pricing Next lesson

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Sampling methods Monte Carlo simulatio Stratified sampling

Portfolio optimization

Mean reverting portfolio

Ornstein-Uhlenbeck model

Autoregressive model

Model identification

Option pricing

Binomial Options Pricing Model Black-Scholes Options Pricing Model

Risk analysis

Telek Miklós BME

Administration

rob. theory

Cash-flow management

Portfolio opt.

Mean reverting Option pricing Next lesson

Model identification

Model:
$$\mathbf{s}(t) - \boldsymbol{\mu} = \mathbf{A}(\mathbf{s}(t-1) - \boldsymbol{\mu}) + \boldsymbol{\omega}(t),$$

with $\mathbf{s}(t) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\boldsymbol{\omega}(t) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Theta})$

Auto covariance matrix:

$$\mathbf{R}(k) = E((\mathbf{s}(t) - \boldsymbol{\mu})(\mathbf{s}(t - k) - \boldsymbol{\mu})^T)$$

is asymmetric in general $(\mathbf{R}(k) = \mathbf{R}(-k)^T)$, but $\mathbf{R}(0) = \boldsymbol{\Sigma}$ is symmetric.

One step auto covariance matrix:

$$\mathbf{R} = \mathbf{R}(1) = E((\mathbf{s}(t) - \boldsymbol{\mu})(\mathbf{s}(t-1) - \boldsymbol{\mu})^T)$$

= $E((\mathbf{A}(\mathbf{s}(t-1) - \boldsymbol{\mu}) + \boldsymbol{\omega}(t))(\mathbf{s}(t-1) - \boldsymbol{\mu})^T)$
= $E(((\mathbf{A}(\mathbf{s}(t-1) - \boldsymbol{\mu}))(\mathbf{s}(t-1) - \boldsymbol{\mu})^T) + E(\boldsymbol{\omega}(t)(\mathbf{s}(t-1) - \boldsymbol{\mu})^T)$
= $\mathbf{A}E((\mathbf{s}(t-1) - \boldsymbol{\mu})(\mathbf{s}(t-1) - \boldsymbol{\mu})^T) + \mathbf{0}$
= $\mathbf{A}\Sigma$

Risk analysis

Telek Miklós BME

Administration

Prob. theory

Cash-flow management

Portfolio opt.

Mean reverting Option pricing Next lesson

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 臣 のへで

Model identification

Model:
$$\mathbf{s}(t) - \boldsymbol{\mu} = \mathbf{A}(\mathbf{s}(t-1) - \boldsymbol{\mu}) + \boldsymbol{\omega}(t)$$

Observations: $\mathbf{s}(t)$ for $t = 1, \dots, T$.

Model identification

$$\tilde{\boldsymbol{\mu}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{s}(t)$$

$$\tilde{\boldsymbol{\Sigma}} = \left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{s}(t) \mathbf{s}^{T}(t)\right) - \tilde{\boldsymbol{\mu}} \tilde{\boldsymbol{\mu}}^{T} \qquad \text{(symmetric)}$$

$$\tilde{\mathbf{R}} = \left(\frac{1}{T-1} \sum_{t=2}^{T} \mathbf{s}(t) \mathbf{s}^{T}(t-1)\right) - \tilde{\boldsymbol{\mu}} \tilde{\boldsymbol{\mu}}^{T}$$

$$\tilde{\mathbf{A}} = \tilde{\mathbf{R}} \tilde{\boldsymbol{\Sigma}}^{-1}$$

$$\tilde{\boldsymbol{\Theta}} = \tilde{\boldsymbol{\Sigma}} - \tilde{\mathbf{A}} \tilde{\boldsymbol{\Sigma}} \tilde{\mathbf{A}}^{T} = \tilde{\boldsymbol{\Sigma}} - \tilde{\mathbf{R}} \tilde{\boldsymbol{\Sigma}}^{-1} \tilde{\mathbf{R}}^{T}$$

Risk analysis

Felek Miklós BME

dministration

Prob. theory

Cash-flow management

Portfolio opt.

Mean reverting Option pricing Next lesson

Test

◆□▶ ◆圖▶ ◆필▶ ◆필▶ - 필 - のへ⊙

Mean reverting portfolio trading

Assuming
$$\mathbf{s}(t) = \mathbf{As}(t-1) + \boldsymbol{\omega}(t)$$
,
with $\mathbf{s}(t) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\boldsymbol{\omega}(t) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Theta})$

Input:
$$T$$
, $\mathbf{s}(1)$, $\mathbf{s}(2)$,...;
Compute $\tilde{\boldsymbol{\mu}}$, $\tilde{\boldsymbol{\Sigma}}$, $\tilde{\mathbf{A}}$, $\tilde{\boldsymbol{\Theta}}$ from $\mathbf{s}(1)$,..., $\mathbf{s}(T)$;
Compute \mathbf{v}_{opt} from $\tilde{\boldsymbol{\Sigma}}$, $\tilde{\mathbf{A}}$, $\tilde{\boldsymbol{\Theta}}$;
 $\mathbf{w}_{opt} = \mathbf{B}^T \mathbf{\Lambda}^{1/2^T} \mathbf{v}_{opt}$; $\mu = \mathbf{w}_{opt}^T \tilde{\boldsymbol{\mu}}$;
Short = $TRUE$;
for $t = T + 1$ to ∞ do
if Short & & $\mathbf{w}_{opt}^T \mathbf{s}(t) < \mu - \Delta$ then
BUY; Short = $FALSE$;
end if
if Short & & $\mathbf{w}_{opt}^T \mathbf{s}(t) > \mu + \Delta$ then
SELL; Short = $TRUE$;
end if
end for

Risk analysis Mean reverting

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Sampling methods

Stratified sampling

Portfolio optimization

Mean reverting portfolio

Ornstein-Uhlenbeck model

Autoregressive model

Model identification

Option pricing

Binomial Options Pricing Model Black–Scholes Options Pricing Model

Next lesson

Test problems

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting **Option pricing** Next lesson

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Sampling methods Monte Carlo simula

Stratified sampling

Portfolio optimization

Mean reverting portfolio

Ornstein-Uhlenbeck model

Autoregressive model

Model identification

Option pricing

Binomial Options Pricing Model

Black-Scholes Options Pricing Model

Next lesson

Test problems

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting **Option pricing** Next lesson

Binomial Options Pricing Model

Assumptions

- ▶ discrete time (lattice based),
- ▶ price can take 2 new values in each step (up-down).

General binary tree:

▶
$$S_{i+1}^u = S_i u_i, S_{i+1}^d = S_i d_i$$
, step dependent up/down ratio

p_i = *Pr*(up at step *i*), step dependent up/down probability.
 1 − *p_i* = *Pr*(down at step *i*)

There are 2^N leaves of the tree.

Leaves are characterized by the binary vector $\mathbf{y} = \{y_1, \dots, y_N\}$ with $y_i = 1$ indicating the upper price in step *i*.

The price at leaf **y** is $S_{\mathbf{y}} = S_0 \prod_{i:y_i=1} u_i \prod_{i:y_i=0} d_i$

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting **Option pricing** Next lesson Test

◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ → 圖 → のへで

Binomial tree

Binomial tree:

- ▶ $u_i = u, d_i = 1/u$, with step independent up/down ratio.
- ▶ $p_i = p$ step independent up/down probability.

There are N + 1 leaves of the tree.

Leaves are characterized by the number of steps with upper prices, \hat{n} .

The price at leaf \hat{n} is $S_{\mathbf{y}} = S_0 u^{\hat{n}} d^{N-\hat{n}} = S_0 u^{2\hat{n}-N}$.

Risk analysis

Felek Miklós BME

Binomial tree

To approximate the continuous distributed asset prices at time t in n steps with risk free rate r and volatility σ let

Telek Miklós BME Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting **Option pricing** Next lesson Test

Risk analysis

Binomial Options Pricing Model

- The strike price is X,
- the asset price at time t is S_t ,
- the call option price at time t is C_t .

Time line:

- ▶ present root,
- ▶ future before maturity internal nodes,
- ▶ maturity time leaves.

Option valuation is a three-step process:

- ▶ price tree generation (from root to leaves),
- ► calculation of option value at each leaf node: $C_{\text{leaf}} = \max(S_{\text{leaf}} - X, 0),$
- sequential calculation of the option value at each preceding node (from leaves to root).

Risk analysis Telek Miklós BME Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting **Option pricing** Next lesson

Calculation of the option value at a node Risk neutrality assumption:

- ► today's asset price represents the expected asset value discounted at the risk free rate, that is $S = \frac{pS_u + (1-p)S_d}{1+\bar{r}} = \frac{puS + (1-p)dS}{1+\bar{r}}$ from which $p = \frac{(1+\bar{r})-d}{u-d}$,
- ► today's call value represents the expected call value discounted at the risk free rate, that is $C = \frac{pC_u + (1-p)C_d}{1+\bar{r}}$.

Arbitrage-free pricing (delta-hedging):

 compute the portfolio for which both outcome (up/down) results the same pay off:

> $\Delta S_u - B(1 + \bar{r}) = C_u$ $\Delta S_d - B(1 + \bar{r}) = C_d,$

▶ Solve these equations for Δ and B, and $C = \Delta S - B$.

The assumptions provide identical option value.

Risk analysis

Telek Miklós BME

Arbitrage-free pricing (detailed)

Input:

- Current and future asset prices: $S, S_u/S_d$,
- Strike price: X, Risk free rate: $1 + \bar{r}$,
- Future option prices: C_u/C_d ,

Output: Current option prices C.

Hedging

- Make a future value independent portfolio:
 Δ asset and call option
- ▶ Future value of this portfolio:
 - in case of S_u : $\Delta S_u C_u$
 - in case of S_d : $\Delta S_d C_d$

▶ From the identity of the two cases

$$\Delta = \frac{C_u - C_d}{S_u - S_d}$$

- ▶ The current value of this port folio is: $\Delta S C$
- ▶ The discounted future value of the portfolio is

$$B = \frac{\Delta S_u - C_u}{1 + \bar{r}} = \frac{\Delta S_d - C_d}{1 + \bar{r}}$$

From the identity of the last two: $C = \Delta S = B$.

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting

Option pricing

Next lesson

Test

Calculation of the option value at a node

Vanilla options:

- European option: option can be exercised on the maturity date only,
- American option: option can be exercised any time up to the maturity date,

Option value at a node

- European option: $C_{Eur} = C$,
- American option: $C_{Am} = \max(C, S X),$

where C is computed as above, S is the asset value at the node and X is the strike price.

Risk analysis

Telek Miklós BME

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Sampling methods

Monte Carlo simulatio

Stratified sampling

Portfolio optimization

Mean reverting portfolio

Ornstein-Uhlenbeck model

Autoregressive model

Model identification

Option pricing

Binomial Options Pricing Model

Black-Scholes Options Pricing Model

Next lesson

Test problems

Risk analysis

Telek Miklós BME

Administration Lin, algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting **Option pricing** Next lesson

Black–Scholes Options Pricing Model

- The strike price is X,
- the asset price at time t is S_t .

Payoff of the call option at maturity is $\max(S_t - X, 0)$.

 S_t is a random variable with CDF $F(x) = Pr(S_t < x)$ and PDF f(x). The expected payoff of the call option at maturity is

$$\begin{split} \Omega &= \int_{x=0}^{\infty} \max(x - X, 0) f(x) dx \\ &= \int_{x=0}^{X} \underbrace{\max(x - X, 0)}_{0} f(x) dx + \int_{x=X}^{\infty} \underbrace{\max(x - X, 0)}_{x-X} f(x) dx \\ &= \int_{X}^{\infty} x f(x) dx - X \int_{X}^{\infty} f(x) dx \\ &= E(S_t | S_t > X) (1 - F(X)) - X (1 - F(X)) \\ &= (E(S_t | S_t > X) - X) (1 - F(X)). \end{split}$$

Risk analysis Telek Miklós Cash-flow Option pricing

Black–Scholes Options Pricing Model

- The risk free interest rate is r,
- the (current) price of the call option is C.

The expected payoff of the call option at maturity is Ω .

The discounted expected payoff with risk free interest rate r is $\Omega e^{-rt}.$

That is the current price of the call option $C = \Omega e^{-rt}$.

Risk analysis

Telek Miklós BME

Black–Scholes Options Pricing Model

Under the assumptions of the BS model

- ...,

- the underlying process follows a geometric Brownian motion with constant drift and volatility.

 S_t is a lognormal distributed with parameters μt and $\sigma \sqrt{t}$, where σ is referred to as volatility of S_t .

That is, $\log S_t$ is normal distributed with mean μt and standard deviation $\sigma \sqrt{t}$.

Consequently, its PDF is
$$f(x) = \frac{1}{x\sigma\sqrt{2\pi t}}e^{-\frac{(\log x - \mu t)^2}{2t\sigma^2}}$$
 and $E(S_t) = e^{t(\mu + \sigma^2/2)}$.

The mean of the discounted future price is S_0 , that is $S_0 = e^{-rt} E(S_t) = e^{t(\mu + \sigma^2/2 - r)}$.

Substituting f(x) into the expected payoff expression for Ω gives the BS formula (after some algebra).

Risk analysis

Telek Miklós BME

Administration Lin, algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting **Option pricing** Next lesson Text

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへの

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Sampling methods Monte Carlo simulati

Mean reverting portfolio

Ornstein-Uhlenbeck model

Autoregressive model

Model identification

Option pricing

Binomial Options Pricing Model Black-Scholes Options Pricing Mode

Next lesson

Test problems

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson

Next lesson

Still to add:

- algorithm for computing Y vectors of decreasing probability,
- algorithm for the optimal mean reverting portfolio on the fly.

ション ふゆ マ キャット マン・ション シック

BME Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson

Risk analysis

Telek Miklós

Administrative details

Linear algebra

Linear equations

Matrix properties

Probability theory

Random variables

Probability distributions

Statistical cash-flow management problem

Problem formulation

Brute force solution

Tail approximation inequalities

Central limit theorem

Sampling methods Monte Carlo simulation Stratified sampling Portfolio optimization Mean reverting portfolio Ornstein-Uhlenbeck model Autoregressive model Model identification Option pricing Binomial Options Pricing M

Black-Scholes Options Pricing Model

Next lesson

Test problems

Risk analysis

Telek Miklós BME

Administration Lin. algebra Prob. theory Cash-flow management Portfolio opt. Mean reverting Option pricing Next lesson Test

Test problems

- ▶ You are given **h**, **p** ($N \sim 3$) and C. Compute the risk by
 - ▶ brute force,
 - ► CLT,
 - Li-Silvester by n samples,
 - Tail approximation (Markov, Chebysev, Chernoff, moment, ...),
 - ▶ Monte Carlo (samples are given),
 - ▶ stratified sampling (samples are given).
- ▶ You are given Σ (2 × 2) and μ of the portfolio problem. Compute
 - \blacktriangleright the spectral decomposition of $\pmb{\Sigma}$,
 - min risk portfolio with unit norm,
 - min risk portfolio with income b,
 - the risk of portfolio **w**.
- You are given the parameters of the mean reverting portfolio problem. Define and compute elements of the optimal portfolio.

Risk analysis

Telek Miklós BME