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Summary of Linear algebra

Lin. algebra

v

System of linear equations
> 0, 1, or infinitely many solutions.

v

Vectors, matrices

v

Singular value decomposition (SVD),
> solution of Ax = b with the SVD of A.
Spectral decomposition,

v

> iterative procedure for finding the dominant eigenvalue
and eigenvector.
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Summary of Linear algebra

Lin. algebra

» Commutativity of matrices

» Sylvester equation
> vec operator, Kronecker product (®),
» vec(ABC) = (C”" ® A) vec(B),

» Matrix functions

» definition,
» spectral decomposition based interpretation.
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Linear equation

. algebra

Scalar linear equation: axz = b

» a # 0 — single solution: x = b/a.

» a=0
» b =0 — infinite solutions: = € R,
» b 0 — no solution.
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System of linear equations

System of linear equations:

a1121 + a12z2 = by Lfm, ellaabm
a2121 + ag2x2 = b

az1x1 + azary = b3

That is
Ax=Db
with
a1 ai . by
A= laxn ax], X:{l}, b= |b
)
azy  asp b3

Scalar description of the matrix equation:

2
Zaijxj = bi, for i = 1,2,3.

Jj=1
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Matrix properties

Matrix properties Lin. algebra

> size,
» rank (number of independent rows/columns)

» singular values (numerically stable)

Square matrix properties

» determinant,
> eigenvalues, eigenvectors (numerically sensitive),
> inverse exists:

> invertible, full rank, independent rows/columns, non-zero
determinant, non-singular, ...




Special matrices

Identity matrix: I = {d;;},

1, i=

where&ij:{ 0, i+

?’ is the Kronecker delta.

Diagonal matrix: D = diag{ds,...,d,},
Unitary matrix: UTU = UUT =1 (if U is real)

For complex U: UFU = UUH =1,

where # is the conjugate transpose operator.

Risk analysis




Commuting matrices

Commonly, AB # BA,

as a consequence several scalar identity fails for matrices, e.g.:
(A+B)>=A%+ AB+BA + B?> # A + 2AB + B?

%(A+xB)Q =B(A+2B)+ (A+2B)B#2(A+2B)B

Exceptions:
A, I, A=1 A" for n € IN and all of their linear combinations,

S ¢A™ always commute.

n=—oo

The usual scalar identities hold for commuting matrices.
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Singular value decomposition (SVD)

A = U )\ |: V :| Lfm, ellaabm
mXxXm

where U and V are unitary matrices,

7

g = On =
nxm nxm nxm

is a matrix whose diagonal elements are the o; > 0 singular
values.

¥ is assumed to be ordered such that o1 > 09 > .. ..

The r non-zero singular value form diagonal matrix S of size
r X r, where r < min(m, n).

For the number of non-zero singular values we have

r = rankA = number of independent rows/columns of A




Singular value decomposition (SVD)

Graphical demonstration

Lin. algebra

(from https://en.wikipedia. org/wiki/Singular_value_decomposition)

e i} 0'2\4

v U

M=UX-V*



https://en.wikipedia.org/wiki/Singular_value_decomposition
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Linear equations

Ax = b has a solution
if b is a linear combination of the columns of A.

That is

rank A = rank A b




Linear equations
If A=UUV is the SVD of A then
Anxm Xmx1 =bpx1 | - U” from left
can be written as

UTAx =U"b
UTU ¥ Vx = UTp
N—— = N——

1 x/ b’

that gives a transformed linear equation

\I/nxm X/m><1 = b/nxl
| [x’l } |
X3 by
with x’ = Vx, b’ = U”b and block sizes S, x,, X,
b’ ¥4

X/
2m—rx1’ Y1lrx1> Y2n—rx1-*

Risk analysis
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Linear matrix equations

The block decomposed version of the a transformed linear
equation

b/
ST I e
0lo0 X5 bl
is
Sx} + 0x5,, . = bl

0x + 0x5, = b

2n—rx1

» If n —r > 0 and b, # 0 then no solution.

» If b, = 0 and m — r = 0 then the single solution is
x = VIS~1p].

» If b, = 0 and m — r > 0 then there are infinite solutions of
dimension m — 7.




Linear matrix equations

In some cases, a matrix of unknowns X and some matrices of
coefficients form a linear matrix equation.

Eg., AX — B.
If 3A~! then X = A~!'B is the solution.

If AA~! then AX = B needs to be transformed into standard
linear equation form using

> vec operator,
» Kronecker product (®),
» vec(ABC) = (CT ® A) vec(B),

vec(AX) = vec(C)
vec(AXI) = vec(C)
vec(X) = vec(C)

Risk analysis




Linear matrix equations

In case of the Sylvester equation
AX+XB=C

the same approach has to be applied also when JA~! and
IB—

vec(AX + XB) = vec(C)

vec(AXI + IXB) = vec(C)

I® A +B? @1)vec(X) = vec(C)
——

A’ x’ b’




Spectral decomposition

A = UAV is the spectral decomposition of A when U™! =V
and A is a block diagonal matrix composed of Jordan blocks J;

Jl >\i 1
Js . )

A1

T nxn Ai HN; XN

If all Jordan blocks are of size one then #\ = n,

A1
A2

and A is said to be diagonalizable.
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Spectral decomposition
If A is diagonalizable then
A =UAV =) whv;

=1

where u; is the ith column of U and vj is the ith row of V.

Computing the spectral decomposition

» Solve the order n polynomial equation det(A — A\I) =0
A1,..., A\, are its roots,

» for i =1,...,n solve the linear equation (A — A\, I)u; = 0,
» obtain v; from V =U"1.

Note that vijuy; = d;; due to VU =1
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Iterative procedure for computing A* and u*

The dominant eigenvalue, A*, and the related eigenvector u* of
A can be computed using the summation vector s and initial .
vector ujpi as follows )
Input: ujnit, A, s;
U = Ujnit;
repeat
Uold = U;
c=sTu;
u=Au/g
until juglq — u| < ¢
return : c,u;

A potential initial setting is s” = {1,1,...,1} and
Uinit?. = {1,0,...,0}.

Evaluate the conditions when the procedure converges.




Matrix functions

If A is a square matrix and f(z) is a scalar function with
Taylor series f(xz) = .2, ¢;x" then

(oo}
A)EY A
=0

If A is diagonalizable and A = UAV is its spectral
decomposition then

C; A Cz UAV ClUAz
Z Z Z

AL f(/\l)
VA f(x2)

<
Il

c
<

:Uiq

1=0
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Random variables

Independent random variables (RV) Prob. theory

» cumulated distribution function (CDF)
Fx(z) = Pr(X < z)
» discrete RV: probability mass function (PMF)
> continuous RV: probability density function (PDF)
fx(x) = F Fx(2)
» moments: E(X™)
» and their descendants (e.g., variance (2nd cumulant):
0% = E(X?) — E(X)?, nth cumulant %)

. n — n n
» The cumulants sums up: £'%,y = K% + Ky




Law of total probability

Law of total probability (LTP)
> Pr(A) =3, Pr(A|B;)Pr(B;),

» discrete condition:

Pr(A) =Y Pr(A|X = z;)Pr(X =)
= 21: Pr(AlX = x)pi
> continuous condition:
Pr(A) = / PrAIX = o) fx (z)dz

> BE(Y) =3, EY|B;)Pr(B;).

Danger: Pr(AlX =z) — %ir% Pr(Alz <X <z+9)
—




Law of total probability

Application

> E(g(Y)) =2, E(g(Y)|B;)Pr(B;),

» discrete condition:

ZE V)X =zi)pi

» continuous condition:
D= [ BGWIX = )fx(@)da

If g(x) = 2" and Y = X then E(g(Y)) = E(X™).

Risk analysis
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Distributions

One-parameter

» Discrete Prob. theory
» Bernoulli (on {0,1})
» Geometric
» Poisson

» Continuous

» Exponential
Two-parameter

» Discrete
» Uniform
» Binomial
» Continuous

» Uniform
» Normal
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Transforms

Transforms:

Prob. theory

» Characteristic function ¢(t) = E(e®®X),t € R
» Moment generating function M (t) = ( X)teR

» Cumulant generating function K (t) = log(E(e!X)),t € R
» Probability generating function G(z) = E(2%),z € C
» Laplace transform L(s) = E(e™*X),s € C

Advantages:

» analytically tractable (due to convolution, linear
operations)

» direct computation of moments

» inverse transformation (symbolic/numeric)
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Dependent random variables

Dependent random variables (X,Y)

Prob. theory

» cumulative distribution function (CDF)
Fxy(z,y) =Pr(X <z,Y <y)
> discrete RV: probability mass function (PMF)
pij = Pr(X =z, Y =y;)
> continuous RV: probability density function (PDF)
fxy(@,y) = 2 5 Fxy(z,y)

» marginal distribution:

Fx(x) = ylggo Fxy(z,y)

= lim Pr(X <z,Y <y)=Pr(X <z

Y—>0o0
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Dependent random variables

Prob. theory

Dependent random variables (X,Y)

» conditional distribution Pr(X < z|Y =y)
» discrete RV: Pr(X = ;|Y = y;) = PriX=e;Y=y;) _ pij

Pr(Y=y;) - P
» continuous RV: fx|y—,(z) = %

> joint moments: E(X"Y™) = [ fy z"y™ fxy (z,y)dydz

» and their descendants (e.g., covariance:
E(XY)— E(X)E(Y), correlation)




Normal distribution

PDF of normal distribution with (p,0?):

1 *(wju)z
frla) = <=5

If X is normal distributed with (u,0?), then X = X;“ is
standard normal distributed.

PDF and CDF of standard normal distribution with
(p=0,02=1):

fe@ == e = [
Y5 y=—00 s

e_yz/Qdy.

CDF of normal distribution with (u, 0?):

Pr(X <z)=dyg (I_“).

g




Multivariate normal distribution

Probability density function

» X ={Xy,..., X3}7T is multivariate normal with location
= {p1,...,ux}" and covariance matriz £ = {o;;} if its
PDF is

Fx(x) = (2m) 72 det ()26 20mm R0

where E(Xz) = U; and E(XlXJ) - E(XZ)E X]) = 0435,
that is O3 = E(X,LXZ) - E(Xz)E( 1‘) = i

In matrix form,
E(X) = p and E(XXT) - E(X)E(XT) = X.

3 = {oy;} is symmetric, positive definite matrix (with
positive eigenvalues).




Multivariate normal distribution

Construction of multivariate normal distribution

» Let Z={Z1,...,Z;}T be composed of i.i.d. standard
normal distributed RVs.
That is F(Z;) =0, Var(Z;) = 1,
and E(Z;Z;) = E(Z;)E(Z;) for i # j.

In matrix form E(Z) =

because for i # j, E(
E(Z:Z:) — E(Zi)E(Z:)

0 and E(ZZ") — E(Z)E(Z") =1,
7 ) E(Z)E(Z;) =0 and
=Var(Z) =1,
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Multivariate normal distribution

Construction of multivariate normal distribution

> Let X =p+ AZ.

X is multivariate normal distributed with location p and
covariance matriz ¥ with ¥ = AAT, because

EX)=E(p+AZ)=p+AEZ) =pn
~——
0
and

> = EXX") - EX)EXT)

=E((p+AZ)(p+ AZ)") — pup”

= BE(up") + E(W(AZ)") + E(AZp") + E(AZ(AZ)") — pp”

=pp" + u(AEZ)" + AEZ)p" + E(AZZ"AT) — pp”
el e

=AEZZ")AT = AA".
N——
I
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Problem formulation

There is financial institution S (system) with C' resources
(currency) and N customers (investors).

The customers can request hy, hs, ..., hx resource with
probability p1, ps, ..., pnN, respectively.

The system risk is defined as

N
Pr(aggregate request exceeds the resources) = Pr (Z Yih; > C’)

i=1

where Y; is a Bernoulli RV with Pr(Y; = 1) = p;.




The main challenge and solution methods

The main challenge

» Timely response (real-time)

» Scaling: N is fairly large

» Computational complexity provided by the O(2") cases
needs to be reduced.

Solution methods:

» Brute-force
» Large Deviation Theory (based on on-line tail
approximation methods)

Central limit theorem

v

v

Statistical sampling

v

Adaptive approximation

Risk analysis
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Problem variants

Problem variants:

» h=hi=hys=...=hyandp=p; =p2=...=pn

> hi,ha,...,hy are i.i.d. with PDF f,(x) and
P=p1=p2=...=PN

» h=hy=hy=...=hy

v

hi,ha,...,hy are i.i.d. with PDF f3(z)
P=p1=p2=...=PN

v
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Brute force solution

Brute force solution:
LTP completely eliminating the randomness

N
Pr <Z Yihi > C)

i=1
1

1 N
-y Y TP =w)
yn=0 j=1

1=0
N
(ZYihi >C ’ Y, :yla--~7YN:yN>
i=1

- Pr
= Z Pr(y)- Pr (yhT > C),
W e

<

where y = {y1,...,yn} and h = {hq,...,hn}.

Risk analysis
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Markov inequality

Markov inequality:

E(X)

Pr(X >a) <
a

where X is non-negative RV.

The distribution satisfying the equality is

a with probability B2X)

a

X{O with probability 1 — 239




Markov inequality

Proof for continuous non-negative X:

oo

E(X):Amxfx(x)dx>A xfx(z)dx

> [Capx@is=a [ fx@as
_uPr(Xza)

Proof for general non-negative X:
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Chebysev inequality

Chebysev inequality (X € R, b € R™)

Pr(lX — E(X)| >b) < ZX

b2 management

Proof:

Let Y = (X — E(X))? and apply the Markov inequality for Y
at b?




Markov related inequalities

g(x) is non-negative, monotone increasing for x > a, then

. " E(g9(X))
PriXza < g(a)
Proof for continuous X:
B(o(x0)) = [ T @ xS / " g(@) fx (@)

mon. inc.

= st sxt@is =gt [ fxtagas

a

=g(a)Pr(X > a)




Moment inequalities

If g(z) = 2" and X € R* then

E(X™)

a?’L

Pr(X >a) <

If all F(X™) moments are known, then

BE(X"
Pr(X > a) < min £20S0)
neN+ a”

If g(z) = " with u € R then

E(X"
Pr(X >a) < min (X*)
u€R+ a*




Central moment inequalities

If g(x) = |z — p|™, p = E(X) and a > p then
g(x) is monotone increasing for z > a and

Pr(X > q) < ZIX =B _ E(X = EQOM)

la—plm (a—p)
where E(|X — E(X)|™) is the nth central moment of X.

If all central moments are known then

. E(X - E(X)[")
Pr(X >a) < min @—p" .

Similarly, if g(z) = |z — p|* with u € RT and a > p then

. BX - E(X)
Pr(X >a) < nin @) .




ChCI‘HOH bound T’mk analysis

If g(x) = e** and s > 0 then

E(esX)

esa

Pr(X >a) <

)

where Mx (s) = E(e*¥) is the moment generating function.

If Mx(s) is known then

Pr(X >a) < min Mx(s) = Mx(s7)

= scR+ eS¢ es*a

. . Mx (s)
where s* = argmin g+ —2a-

esa
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Chernoff versus moment bounds

Let Bo(a, s) = 27 and By (a,u) = BXT) then

esa

E sX X n
Bc(a,s) = (esa ) _ e *E ( S|X">
e n.
n=0
3 > " & (Sa)n 3 E(Xn)
—em S S = 3 e EX
n=0 n=0
> n
sa
= Z ( ‘) e %"  Buyl(a,n)
n=0 L,_/

Poisson(sa) weights

— the best moment bound is at n* = |s*a + 0.5]

and Bys(a,n*) < Be(a, s).

— the tightest moment-like bound is By (a, s*a).




Cantelli’s inequality

Fora € RT and X € R
2

IXx

Proof
Let Y = X — B(X), u = % and 0% = E(X?) — B(X)?
then E(Y) =0, E(Y?) = 0% and

Pr(Y >a)=Pr(Y +u>a+u) < Pr((Y +u)?® > (a+u)?)
Iwagkov E((Y+U)2) E(Y2 +2UY+’LL2)

= T atw? (a+u)?
_0§(+u2 . O'g(

- (a+u)? u:%_ai—i—a

Ezercise: Which g(z) provides the Cantelli’s inequality?




Example

X is Binomial(n, p) with p = 1/4.

P(X > 3n/4) =777

’ Method \ order \ opt \ bound \ n = 100 ‘
Markov 1 - 3 0.333
Moment 2 | - | 0.114

All moments 00 + 1.11-10~%
Chebyshev 2 - 2 0.0075
Cent. mom. 3 - % 0.000075
All cent. mom. 0o + 1.03-10~%
Chernoff co | + | 37% [139-107*

For n =100, E(X) = np = 25 and

P(X >3n/4)=P(X >75)=14-10"%




Markov related inequalities

g(x) is non-negative, monotone decreasing for © < a and X € R
then

o 2 B(E(X)
PrixX<a) <=0
Proof for continuous X:
Bo(x) = [ g@ix@is "2 [ g s

mon'ZdeC' /a g(a)fx(z)dz = g(a) ’ fx(x)dx

— 00 —0o0

a)

IN

= g(a)Pr(X




Chernoff lower bound

If g(x) = e7** and s > 0 then

P?“(X < a) < E(e—SX)

— _ )
6«5‘(1

where Lx(s) = E(e™*%) is the Laplace transform of X.
If Lx(s) is known then

L
Pr(X <a) < min ﬁ,
36]R+ efsa
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Central limit theorem (CLT)

“sum of i.i.d. rv-s converges to normal distribution”

Sample average:

It converges to lim S, = E(X).
n—oo
But how fast does it converge?
How many samples needed to approximate E(X).

Variance of S,,:

Var (S Z Var ( ) Z V‘” = V‘”;L(X )

i=1

Risk analysis




Central limit theorem (CLT)

lim S, — E(X) =

n—0o0

lim n(S, — E(X)) =77

n—oo

lim v/n(S, — B(X)) £ N(0,0%)

n— oo

Equivalently

nlinéoT (Z_; X; — nE(X)> 2 N(0,0%)




Lyapunov’s Central limit theorem (LCLT) e

Generalization of the CLT:

The sum of independent but differently distributed rv-s,
>, X, also converges to normal distribution with mean
i, E(X;) and variance Y., Var(X;), if

n -0
lim (Zﬁ) > E(IXi — wi*) =0
n—o00 — =
for V6 > 0, where E(X;) = u; and Var(X;) = o?

i

Hard to check condition, hard to predict convergence speed.




Application of LCLT
Application of LCLT for the cash-flow problem:
> Let X = YN, Y;hy, than E(X) = 32N | p;h; and

N

Var(X Z Var(Y; Z(;m — pH)h?.

=1

» Let Z is normal distributed with mean p = E(X) and
variance 02 = Var( ).

> Let Z = , 1.e. 7 is standard normal distributed.

Than

N
Pr (Z}ghi >C|=Pr(X>C)~Pr(Z>0C)
1=1

—Pr<Z>C_”>—1—q><C_“>.
g ag




Example
B; is Bernoulli with p = 1/4.

X =>"" | B; is Binomial(n, p) with p = 1/4.
P(X >3n/4) =777
For n = 100, E(X) = np = 25 and

1 1
X)=1 B)=1 - — —
Var (X) =100 Var (B) = 100 (4 16)

- B(X
P(X>T5)~1- BoEX)) 1.34-107%
Var (X)

while the exact results is

P(X >3n/4) = P(X >75)=1.4-10"%,

In this case the CLT underestimates the risk!!!
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Sampling
The complexity of the risk analysis problem is O(2%).

Shall we approximate the result based on partial information
(sampling)?

N
risk = Pr (Z Yihi > C) =Pr(Yh" >0)
i=1

Z Pr(y)- Pr yhT > C)

Vye{0,1}V
Z Pr(y)- Pr yhT > C’ Z Pr(y)- Pr yhT > C’)
VyeC vyeC

where y = {y1,...,y~} € {0,1}" and C C {0, 1}".

Z Pr(y) - Pr yhT > C’) < risk
VyeC

<Y Pr(y)-Pr(yh™ >C)+1- > Pr(y)

VyeC VyeC
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Li-Silvester method

Li, V. and J. Silvester. “Performance Analysis of Networks with Unreliable

Components.” IEEE Trans. Commun. 32 (1984): 1105-1110.

For a given complexity, ¢ = |C|, the tightest bounds are
obtained when . .. Pr(y) is maximal.

Order the y vectors with decreasing probabilities:

Pry®M) > Pr(y®)>...> Pr(y®@)>...> Pr(y®")) and
bound the risk based on the ¢ most probable samples

iPr(y(i)) - Pr (y(i)hT > C) < risk
i=1

< Z Pr(y®). pr (y“)hT > c) +1-> Priy").
=1

i=1

Problem: Efficient generation of the ordered y wvectors.




Example
Same as before: N =100, p=1/4

The difference between the lower and upper bounds by the
Li-Silvester method is A =1-3", . Pr(y)

(independent of h and C)

p=1/4 p=1/100
samples A \ 1-A A
1[[~1]32-1075 0.63
101 || ~1 | 1.1-1071 0.26
5051 || ~1 | 1.9-1071° 0.079
166751 || ~1 | 2.1-107° 0.018

Still very slow convergence.




Table of content

Monte Carlo simulation h-flow
management

Statistical cash-flow management problem




Random sampling
Monte Carlo simulation:

Generate random y samples according to the distribution of y
and check if yh” > C

If the generated samples are ygb)d, ygi)d, . ,yﬁifi then

risk & n = ZI (ymth > C)
1 N— —

Bs

1 risk

7 is the sample average of S i.i.d. rv: B; = { 0 1 — risk

As discussed with CLT:
E(n) = E(B ) = risk,

Var (n ZVar (B ) ivm Va;( )

with Var (B) = risk — risk®.




Monte Carlo simulation

Algorithm:

» Sample generation

> Generate S samples such that the elements of yﬁi)d are

independent and Pr(ymdel =1)=p; for all i < N and
s< S

» Risk estimation

5
1
risk = n = 522( 5‘;)th >C>.

s=1

Risk analysis
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Stratified sampling
We need to explore {0,1}%.

Decompose {0, 1} to I disjoint subsets Cy,...,C; (that is
UL, ¢ ={0,1}¥ and C;NC; = 0 for i # j). Than by the LTP

risk = Pr (yhT > C’)
I I
= ZPT (yhT >ClyeC)Pr(yeC)= Z risk; p;,
i=1 i=1
where p;, = Pr(y €C;) = ZVyGCi Pr(y) and
risk; = Pr (yhT >Cly € C,;) is the risk in set C;.

Sample allocation scheme S1, ..., ST (Ele S; = S) then risk;

is approximated based on the series of random samples
yf“f],)d €Cy,s=1,...,5; as

S
risk; &~ n; = Z (ymd h? > C')




Stratified sampling

Simple Algorithm:

» Sample generation
» Fori=1,...,1, generate S; samples such that y € C;

» Risk estimation

I I S
risk = n = mei = Zpi Si ZI (ySz)dihT > C) .
i=1 i=1 v s=1

sample average in C,
1%

Risk analysis




Stratified sampling
Sampling in layers:

Let #y be the number of ones in y and C; = {y : #y = i}.

Layer 0:

N
Pr(y =0) = I, (1 —pj)
py) = Pr(y =0y € Co) = 1

Layer 1:
. TN
Pr(y = 61’) = 131)1’ Hj:l(l *pj)

Py N P;
177};1 j:l(lfpj) 1in

iV = Pr(y=ely €C) =

N Pk N - N D
Zk:1 17];% Hj:1(17pj) Zk:1 1721c

)

i

» Sample generation in C; according to p

Task: Compute the sample distribution in Co

Risk analysis




Stratified sampling

Approximating the error of stratified sampling

1 risk;

g y . pl) _
7; is the sample average of S; i.i.d. rv: Bs’ = { 01— risk;

That is n; = 213719 where E(B(-)) = risk; and
VwQﬁQ:ﬂ&U—EwQ):mm—mﬁ

S.
1S
E(n) ==Y EBY)= § k; = risk;,
(n:) 2 (Bj 5 ris ris
i By
Var(n;) = Var (Zs_Sli > 512 SE 1 Var(B
1 _ risk; — risk?




Stratified sampling

Using the data of the strata and n = Z _1 Pi"s We can compute
the mean and variance of 7.

I 7 I
=F <Z Piﬂz‘) = ZPiE(ni) = Zpiriski = risk,

=1

I
Var (n) =Var (Z pml> Z prar (n:) Z 22t risk; — HSk

Risk analysis




Stratified sampling

Optimal sample allocation

. risk; — I‘lSk fash-flo
Vars = min Var(n) = m1n E pr—t management

S1,...,51
ol si= z LS s i=1

ForI—Qandsl—%,clszs_mk)forz—l2

t Y = Y% that is 5, = X0
1 S2

Its minimum is obtained a = Jatve

Interpretation of c;:  p?  (risk; — risk?)
~ ——

importance  uncertainty




Stratified sampling R

Optimal sample allocation

! risk; — I‘lSk
Vars = min  Var(n) HllIl Z 2
S1,.-,51

=1
S1, 55 s

2 (risk; —risk? .
Let 81—%,@:% fori=1,...,1I, then
. &
Vars = min =,
81,4581 i

Its minimum is obtained at 5£11 =...= S—FII that is

\/a .
i1 VG

S; =




Risk analysis

Stratified sampling

Approaches when the variance is not known.

» variance free: s; = p;
> estimation/processing:
approximate the variance based on the first S* samples
» adaptive method:
start with s; = p;
in each step maintain E(B®), Var (B(z))7 and update s;.
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Portfolio

Which one to buy?

18M, Standard deviaton: 0.009930

INTC, Standard deviaton: 0.010882

MCD, Standard deviation: 0.008217

wsh-f

mana

Portfolio opt.

Option pricing

MSFT, Standard deviation: 0.009356




Portfolio

Which one to buy?

Portfolio: [—0.043,0.24,0.29, —0.42]

Portfolio opt.

Min Risk portfolio, Standard deviation: 0.0037

Portflio value

2017-01 2017-03 2017-05 2017-07 2017-09 201711 201801
Time




Portfolio

Possible answers:

» the one with the highest expected increase,

» the one with the least risk,

Possible portfolios

Portfolio opt.

Expected Returns
°
°

0.007 0.008 0.011 0.012 0.013

0.009 0.010
Volatility (Std. Deviation)

» combine income and risk:
> e.g., minimize the risk for a given expected income,
> e.g., maximize the income with a given risk level.




MOdCl Risk analysis

> 5;(t) - the price of asset ¢ at time ¢,
> 7;(t) = s;(t) — s;(t — 1) - the profit of asset i at time ¢,

Assumption:

r(t) = {ri(t),...,rn(t)}7 is time stationary, multi-dimensional
normal distributed with location g and covariance matrix X.

To recap:

E(ri(t)) = s and E((ri(t) — pi)(r;(t) — p;)) = o4 for V.




MOdCl T’mk analysis

Portfolio:

w; - amount of asset i, w = {wy,...,wy}".

» market value at time ¢:

p(t) = 305 wisi(t) = w''s(t)
> income at time t¢:

w(t) = 3o/, wiri(t)

» expected income at time ¢ (independent of ¢):

N N
E(z(t))=FE <Z wiri(t)) = Zwmi =wip
i=1 i=1

» risk at time ¢ (independent of ¢):
variance of z(t).




Model

Risk at time ¢:




Risk analysis

Portfolio optimization
Minimize the risk for a given expected income (b):

Wopt = argmin w!Sw
w:wTlpu=>b

Let ¥ = Zf\il \ix;x! be the spectral decomposition of 3

(symmetric), such that Ay < A < ... < Ay and xiij = 0y;. Portfolio opt.
N N
T Ty T N T -
wu=§ WXiXiMZE Vifti = V" [
— \v/v —
=1 v; Py 1=1

N N
wlSw = E wal-)\ixiTW = E vid\v; = VI AV
i=1 i=1

Transformed problem (quadratic optimization with linear
constraint):

N

_ : TA _ : A 2

Vopt = argmin v' Av = argmin Vs
v:vTp=b vy N vii=bi_—q




Risk analysis

Portfolio optimization

Reverse problem definition:

Maximize the expected income for a given risk (r):

Portfolio opt.

Wopt = argmax wop
w:wT ZSw=r

Transformed problem (linear optimization with quadratic
constraint):

N
Vopt = argmax vipp = argmax E V; fbi
v:vTAv=r v N NP=ri




Risk analysis

Portfolio optimization

Modified optimization problem:

Wopt = argmin w!Sw
w||wll2=1

where ||wlls = /2N, w? = VwTw. et .

N N
wliw = E wlx; x?w = E viv; =viv
i=1 ~~ i=1

Vi

Transformed problem (linear optimization in v?):

N
_ : TA _ : A 2
Vopt = argmin v' Av =  argmin Vs
viviv=l Vi vi=lio
Optimal solution is Vzpt ={1,0,...,0}, Wopt = X1.




Obtaining g and 3

Form the samples
> s;(t) - the price of asset i at time ¢,
> Ti<t) = Sl(t) — Si(t -1

the sample mean vector and sample covariance matrix are

Zr

t=1

T
Zr — it

t=1

T

Nl =

M
I
N =

) - the profit of asset i at time ¢,

Risk analysis




Risk analysis

Computing the required eigenvector

How to obtain x;, the eigenvector of the minimal eigenvalue of
3 by the iterative procedure providing the maximal
eigenvalue/eigenvector?

Portfolio opt.

» Apply the iterative procedure for 371.
» In 2 steps:

» compute An by the iterative procedure for 3,
> apply the iterative procedure for AyI — 3.




On the fly approximation
Form the r(t) = {ri(t),...,rn(t)} time stationary,

multi-dimensional normal distributed samples for t = 1,2, ...

with location g and covariance matrix 3, compute

Input: Winit,r(t), T, n; (n — convergence speed)
W = Winit; S = 0; ys =0
for t=1toT do

s=s+r(t);
v=r(t) —s/t;
.
Yy=wv;
Ys = ys + 4%
w=w+ny(v—yw)
end for

return : s/T, y;/T, w;
where

» s/T approximates the mean p,
» y/T approximates the dominant eigenvalue of X,

» w approximates the dominant eigenvector of 3.

Risk analysis

Portfolio opt.




On the fly approximation

Assuming, v = r(t) — p and using y = wlv = vi'w,

the expected change of w is

E(my(v—yw))=nE [vyviw-—wivviww
v oy

=nE((c(t) — () —p)")w
—nqw’ E((c(t) — p)(x(t) —p)") ww

=nEw-—nw EZww
——
c:scalar

=n(Zw—cw).

Risk analysis




On the fly approximation

A necessary condition for the convergence of the iteration is
that the expected change of w converges to 0.

It holds when
Yw —cw =0,

that is ¢ and w are eigenvalue and eigenvector pair of ¥ and

wlw =1.

wTw = 1, because

c=w! Xw = cwlw.
<
CW

Risk analysis

Portfolio opt.
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Mean reversion

The tendency of a market variable (such as an interest rate) to
revert back to some long-run average level.

A potential economic explanation for interest rate:

» increased interest rate,
» economic slowdown,

» low demand for funds, Mean reverting
» interest rates decreases.




Trade with the mean reverting portfolio

ﬂ Trade with mean reverting portfolio

Evolution of Daily Follow-Through {1950 to Present)

1956 1961 1864 1971 197 191 180 1901 19 20O 2004

—Fofsmingliowip  —Foligweg Clowe Down

» far above/below mean: sell/buy

» back to mean from above/below: buy /sell

Risk analysis

Telek Miklo
BME

Mean reverting
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Ornstein-Uhlenbeck model R
Assume " BME |

> s5;(t): the price of asset i at time ¢,
» w;: amount of asset i,
» p(t) market value at time ¢: p(t) = vazl w;s;(t) = wls(t).

Mathematical model for continuous time behaviour
(described by a stochastic differential equation)

dp(t) = Mp — p(t))dt + adW (1),

Mean reverting

where

» u: is the mean (long time average),

> X: mean reversion coefficient (the force to return to the
mean),

» W (t): Wiener process (normalized noise),

> o: volatility (volume of noise).

Wiener process:

» independent increments,

> W(t+ A)—WI(t)is N(0,A) normal distributed.




Ornstein-Uhlenbeck model

Integrating the stochastic differential equation:

t

p(t) = p(0)e ™M 4+ p(1 — e ™M) + / . oe MW (s).

From which

E(p(t)) = p(0)e™™ + p(1 — ™).

Le. E(p(t)) exponentially converges to the mean with rate A.

Limiting behaviour:

Jim p(t) ~ N(u, 53)-

Mean reverting




Ornstein-Uhlenbeck model

Relation of the integral and differential forms:

t
) =pl0e (1 ) e [ gy,
s=0 S
a = At — At Xt /t As AW (s)
dtp(t) =—Ap(0)e ™ + Ape e - oe — ds
e dW (D)
At a@W(t)
+e “oe 7
¢
= A0 1= e e [ g g
s=0 dS
—Ap(t)
dW (t

dt

Mean reverting
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Autoregressive model

Assume s;(t) is the price of asset ¢ at time step t.

Mathematical model for asset prices in discrete time instants:

s(t) —p=A(s(t—1) — p) + w(t) evolution
s(t)—s(t—1) =T —-A)(p—s(t—1)) +w(t) OU diff. form
s(t) =As(t—1)+ I-A)p+w(t) AR(1) form

where

» A: modification of prices in one time step.

> w(t): noise in time step t.

AR(1) model, because only s(t—1) affects s(¢) (directly).

Mean reverting




Autoregressive model

Assumptions

> s(t) is stationary, with mean p and covariance matrix X,
ie., B((s(t) — p)(s(t) — u)T) = X for Vt.

> w(t) is multivariate normal with mean 0 and covariance ©®

Mean reverting

Condition of stability: sp(A) <1

Covariance relation based on the evolution form:

Var (s(t) — p) =Var (A(s(t—1) — u)) + Var (w(t))
B((s(t) — 1)(s() — 1)7) =AB((s(t1) — r)(s(t—1) — ) ) AT
+ E(wt)w®))
T =AZA" +©




Autoregressive model
Market value of portfolio w at time step t:

p(t) = whs(t).
Mean of portfolio w (independent of ¢):
4= Ep(t) = wTE(s(t) = wTp.

Market value of the autoregressive model

p(t) =wls(t) = wlAs(t—1) +wl (I— A)p+wlw(t),
———

past effect constant noise

and its variance
Var(p(t)) = Var(w's(t)) = E (W' (s(t)—p))?)
—_———

o

=Var(wTAs(t—1)) + Var(wTw(t))

Opast Onoise

=F (WIA(s(t—1)—p))?) + noise-

Mean reverting




Optimal portfolio
Predictability factor of portfolio w

Opast Opast Var(wTAs(t—1))
vw) = o Opast + Onoise - Var(wTs(t))
BT A(S(-1) — ) (s(t— 1)~ )T AT w)
E(wT(s(t)—p)(s(t)—p)"w)
wlAYATw

wTYw

» v(w) large — noise is small — p(t) is predictable

» v(w) small — noise is large — p(t) is unpredictable

Optimal portfolio:

wlASATw
Wopt = argmax v(w) = argmax TS
w w

Mean reverting




Risk analysis

Optimal portfolio

wlAYSATw
Wopt = argmax ———m———
w wlEsw

Let ¥ = BTAB be the spectral decomposition of 3
(symmetric), such that A\; < Ao < ... < An.

Mean reverting

wlSw = WTBTAl/zT AYV2Bw =vTv
—_—

vT v
wIASATw = wIBTAY2" A-12BASATBTA1/2" A1/2Bw
—
vT A v
= VTAV

Transformed problem with v = AY/?Bw:

vIAv T
Vopt = argmax ——— = argmax v. Av
v vy vi||v]|2=1
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Model identification

Model: s(t) —p = A(s(t—1) — p) + w(t),
with s(t) ~ N (p,X) and w(t) ~ N(0,O)

Auto covariance matrix:

is asymmetric in general (R(k) = R(—k)T),
but R(0) = X is symmetric.

One step auto covariance matrix:

R = R(1) = E((s(t) — p)(s(t — 1) — )")
— B((A(s(t—1) — ) + w(t)(s(t — 1) — p)")
— B((A(s(t—1) — w))(s(t — 1) — p)") + E(w(t)(s(t — 1) — )")
— AB((s(t-1) — p)(s(t — 1) — )7) + 0




Model identification

Model: s(t) — p = A(s(t—1) — p) + w(t).
Observations: s(t) for t =1,...,T.

Model identification

1 T
Zs(t)sT(t)> —ap” (symmetric)

Mean reverting




Mean reverting portfolio trading

Assuming s(t) = As(t—1) + w(t),
with s(t) ~ N(p, X) and w(t) ~ N(0,O)

Input: 7', s(1),s(2),. .. ;
Compute f1,%, A, © from s(1),...,s(T);
Compute v,y from 2 A O,

Mean reverting

Wopt = BTA1/2TV0pt§ H= Wg;:tp/;
Short = TRUFE;
for t=T+1tooo do
if Short && wl,s(t) <p— A then
BUY; Short = FALSFE;
end if
if Short && w] ;s(t) >+ A then
SELL; Short = TRUE;
end if
end for
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Risk analysis

Binomial Options Pricing Model

Assumptions

» discrete time (lattice based),

» price can take 2 new values in each step (up-down).

General binary tree:

Option pricing

> S, = Sy, S’id_|r1 = S,d;, step dependent up/down ratio.
» p; = Pr(up at step i), step dependent up/down
probability.
1 —p; = Pr(down at step i)

There are 2%V leaves of the tree.

Leaves are characterized by the binary vector y = {y1,...,yn}
with y; = 1 indicating the upper price in step i.

The price at leaf y is Sy, =S¢ [[ wi [[ d;

iy;=1 2:y;=0




Risk analysis

Binomial tree
Binomial tree:

> u; = u, d; = 1/u, with step independent up/down ratio.

> p; = p step independent up/down probability.

There are N + 1 leaves of the tree.

Leaves are characterized by the number of steps with upper
prices, n.

The price at leaf 7 is Sy = SoudN—" = Syu2t—N,

n=0 n=1 n=1 n=3

Option pricing




Risk analysis

Binomial tree

To approximate the continuous distributed asset prices at time
t in n steps with risk free rate r and volatility o let

Option pricing

» 147 =e"/" per step risk free rate,

» u=e’V" d=1/u, per step up/down price change,

ert/n_d

> p = “.—7, per step up probability.




Risk analysis

Binomial Options Pricing Model

» The strike price is X,
» the asset price at time ¢ is Sy,

» the call option price at time ¢ is C4.

Time line:

» present — root,

Option pricing

» future before maturity — internal nodes,

> maturity time — leaves.

Option valuation is a three-step process:

» price tree generation (from root to leaves),

» calculation of option value at each leaf node:
CVleaf = max(sleaf - X> 0)7

» sequential calculation of the option value at each preceding
node (from leaves to root).




Risk analysis

Calculation of the option value at a node
Risk neutrality assumption:

» today’s asset price represents the expected asset value

discounted at the risk free rate,
that is § = PSut(—p)Sa _ puS+(1—p)dS

1(+F ) i+
. _ (1+7)—d
from which p = *=—-—,
» today’s call value represents the expected call value
discounted at the risk free rate, Option pricing
that is ¢ = 2CutU-p)Ca
1+r :

Arbitrage-free pricing (delta-hedging):

» compute the portfolio for which both outcome (up/down)
results the same pay off:

AS, — B(1+7) =C,
ASy — B(l JrT‘_) = Cy,

» Solve these equations for A and B, and C = AS — B.

The assumptions provide identical option value.



Arbitrage-free pricing (detailed) el
Input:
» Current and future asset prices: S, S./Sq,
> Strike price: X, Risk free rate: 147,
» Future option prices: Cy/Cq,
Output: Current option prices C.

Hedging

» Make a future value independent portfolio:
A asset and call option

Future value of this portfolio:
> in case of Sy : AS, — Cu
> in case of Sq: ASqy —Cyq

Option pricing

v

» From the identity of the two cases
Cc,—-C
A=—r 2l
Su — Sq

v

The current value of this port folio is: AS — C

The discounted future value of the portfolio is

AS, —Cy  ASg—Cq
I+7 147

From the identity of the last two: C' =-AS — B.

v

B=

v



Risk analysis

Calculation of the option value at a node

Vanilla options:

» European option: option can be exercised on the maturity
date only,

» American option: option can be exercised any time up to
the maturity date, Option pricing

Option value at a node

» European option: Cpgy, = C,

» American option: Cy,, = max(C,S — X),

where C' is computed as above, S is the asset value at the node
and X is the strike price.
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Black-Scholes Options Pricing Model

» The strike price is X,

> the asset price at time ¢ is S;.
Payoff of the call option at maturity is max(S; — X, 0).

St is a random variable with CDF F'(z) = Pr(S; < x) and PDF
f(x). The expected payoff of the call option at maturity is

Option pricing

Q= h max(z — X,0)f(x)dx

z=0

X oo
= max(z — X,0) f(z)dx + / max(z — X,0) f(z)dz
=0 =X ———

r—X
_ /ooxf(;z:)dxX/Xoo f(x)dx

X
— B(SiI8, > X)(1 - F(X)) = X(1 - F(X))
= (B(S¢|S; > X) — X)(1 - F(X)).




Black—Scholes Options Pricing Model R

» The risk free interest rate is r,

> the (current) price of the call option is C.

Option pricing

The expected payoff of the call option at maturity is €.

The discounted expected payoff with risk free interest rate r is
Qe "L,

—rt

That is the current price of the call option C = Qe




Risk analysis

Black-Scholes Options Pricing Model
Under the assumptions of the BS model

- the underlying process follows a geometric Brownian
motion with constant drift and volatility.

S, is a lognormal distributed with parameters ut and ov/%,
where o is referred to as volatility of S;.

Option pricing

That is, log S; is normal distributed with mean pt and
standard deviation o/%.

1 _ (ogz—pt)?

Consequently, its PDF is f(z) = e~ 22 and

E(S,) = etlnta®/2)

xo\/2mt

The mean of the discounted future price is Sy, that is
Sy = e—rtE(St) _ et(,u+g2/2—r)_

Substituting f(x) into the expected payoff expression for 2
gives the BS formula (after some algebra).




Risk analysis
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Risk analysis

Next lesson

Still to add:

» algorithm for computing Y vectors of decreasing
probability, Next lesson

» algorithm for the optimal mean reverting portfolio on the
fly.




Risk analysis
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Test problems

» You are given h, p (N ~ 3) and C. Compute the risk by

vVvyVvVey

brute force,

CLT,

Li-Silvester by n samples,

Tail approximation (Markov, Chebysev, Chernoff,
moment, ...),

» Monte Carlo (samples are given),

>

stratified sampling (samples are given).

» You are given 3 (2 x 2) and p of the portfolio problem.
Compute

vy vy vy

the spectral decomposition of X ,
min risk portfolio with unit norm,
min risk portfolio with income b,
the risk of portfolio w.

» You are given the parameters of the mean reverting
portfolio problem. Define and compute elements of the
optimal portfolio.

Risk analysis
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