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Abstract. Several previous contributions have proposed calculation methods that can be
used to determine the steady state (and from it the blocking probabilities) of Code Division
Multiple Access (CDMA) systems. This present work extends the classical Kaufman-Roberts
formula such that it becomes applicable in CDMA systems in which elastic services with state
dependent instantaneous bit rate and average bit rate dependent residency time are supported.
Our model captures the effect of soft blocking, that is an arriving session may be blocked in
virtually all system states but with a state dependent probability. The core of this method is to
approximate the original irreversible Markov chain with a reversible one and to give lower and
upper bounds on the so called partially blocking macro states of the state space. We employ this
extended formula to establish lower and upper bounds on the steady state and the class-wise
blocking probabilities.
Keywords — CDMA networks, Soft blocking, Kaufman-Roberts formula, reversible Markov
chains

1 Introduction

The Kaufman-Roberts formula for a fixed transmission link carrying multi-rate traf-
fic establishes a recursive relation between the macro states of the system3. This
formula has been popular to calculate the steady state of systems with large state
spaces, such as the transmission links of circuit switched and asynchronous transfer
mode (ATM) networks [1]. A fundamental assumption of the Kaufman-Roberts for-
mula is that the system is Markovian and that the so called local balance equations
hold, which is the case in reversible Markov chains [3], [4].

The works by Stamatelos et al. and Rácz et al. extend this formula such that
it includes elastic and adaptive traffic [5], [6]. The core idea in these papers is to
construct a reversible Markov chain that well approximates the non-reversible sys-
tem that supports elastic traffic. These papers continue to assume a fixed capacity
transmission link.

Along another line, the seminal paper by Altman proposes a Shannon like capac-
ity measure called the best effort capacity for CDMA networks supporting elastic
services [7], [8]. This model and the calculation method makes use of some assump-
tions that lead to a reversible system and the steady state can be determined using

3 This paper builds on the model and observation of an earlier work that has appeared at the International
Teletraffic Congress, ITC 2005, Beijing, China, September 2005 [11].



product forms. The extension of this model proposed by Fodor and Telek in [10]
uses matrix inversion to determine the steady state. The Kaufman-Roberts equation
is attractive, because it does not suffer from the problem of state space explosion of
realistic systems. It turns out to be especially useful when the state dependent soft
blocking probabilities are only dependent on the macro states, which is a widely
accepted assumption, see for instance [12] and [13]. We note that these latter papers
do not model elastic traffic.

A series of works by T. Bonald and A. Proutiére are related to the present pa-
per. These papers take explicitly account that sessions arrive dynamically and their
sojourn time depends on the received bit rates. Reference [15] takes explicitly ac-
count the impact of the intra-cell interference cancellation principle that is used in
High Data Rate CDMA systems. In such systems there is a time division multi-
ple access (TDMA) component that can maximize the overall throughput. Among
other aspects, the paper studies the blocking probabilities in such systems when the
admission control algorithm is based on the number of active users or when it is
based on the minimum data rate. Reference [16] presents a model and computa-
tional technique for a CDMA system where arriving calls can be blocked and inter-
rupted due to outages and varying bit rate requirements of the mobiles. This model
is applied to both the uplink and the downlink of CDMA systems. Finally, reference
[17] presents a general model for the analysis of the traffic capacity of cellular data
networks based on information theoretic considerations. This work is primarily ap-
plicable for time division and frequency division systems and a comparison is made
with the information theoretical maximum capacity. This model describes useful
relationships between the session-wise data rates and the used amount of resources
(e.g. power levels) in TDMA and FDMA systems and presents results that highlight
the importance of modeling the dynamic session arrivals and departures. The con-
tribution of the present paper to these works is the development of a recursive rela-
tionship between the system states and based on this relationship the establishment
of lower and upper bounds on the blocking probabilities when admission control is
based on the minimum data rates.

In this paper we consider a multiple access interference (MAI) limited CDMA
network basically as modeled in [7] and [10]. Soft blocking is modeled similarly
to what has been done in [12] and [13]. This system is conveniently modeled by
a Markov chain. Next, in order to reduce the number of states and to establish a
recursive relationship, we define the system macro states. The macro states are de-
fined much the same way as in the classical Kaufman-Roberts case, that is, the set
of micro states in which the overall (CDMA) resource consumption is the same. A
major difference compared to the classical case is that the system is (1) irreversible
and (2) the macro states are heterogeneous in the sense that there are macro states
that consist of a mixture of blocking and non-blocking states. As we shall see, this
second feature is due to the non-linear relation between the resource consumption
of the elastic sessions and their bit rates. This structure (the combination of these
two features) requires some effort in terms of establishing the balance equations on
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which the Kaufman-Roberts recursion can be built. Specifically, we distinguish non-
blocking, partially blocking and fully blocking macro states. Depending on how the
partially blocking macro states are treated and how the class-wise blocking proba-
bilities are calculated from the steady state, we arrive at lower an upper bounds of
the steady state probabilities and the class-wise blocking probabilities. We discuss
the details of these bounds and present promising numerical results for a CDMA
system supporting two elastic service classes.

The paper is organized as follows. Section 2 presents our basic model for elastic
traffic in CDMA. In the subsequent section we develop the reversible approximation
of this system and based on this approximation we propose an extension of the
Kaufman-Roberts formula. Section 4 builds on this formula and proposes a method
that can be used to bound the class-wise blocking probabilities. Section 5 presents
numerical results. We conclude the paper in Section 6.

2 CDMA Uplink Equations and State Space Structure

The CDMA uplink model is similar to the single transmission link model in that
sessions belonging to different service classes share a common resource. In CDMA
however, a fast explicit rate control algorithm allows the system to slow down elastic
sessions and thereby reduce the required power. In this section we extend the clas-
sical multi-rate model and put the CDMA uplink model into a multi-rate context.
This model is described in details in [20] and has also been used in [7].

2.1 Basic CDMA Equations

We consider a single CDMA cell at which sessions belonging to one of I service
classes arrive according to a Poisson arrival process of intensity λi (i = 1, . . . , I).
Each class is characterized by a peak bit-rate requirement R̂i and an exponentially
distributed nominal holding time with parameter µi. That is, an arriving session is
assumed to have a fixed amount of data to send, so the transmission rate assigned to
it determines the residency time of the session. This fixed amount of data is assumed
to be an exponentially distributed random variable with mean value R̂i/µi. (We note
that although this assumption ignores the heavy tailed distribution of file sizes [21],
it is an accepted assumption for the purpose of studying the trade-off between the
assigned bit rate, the session holding time and the class-wise blocking probabilities,
see [7], [18], [19].) When sending with the peak rate for a session, the required
target ratio of the received power from the mobile terminal to the total interference
energy at the base station is calculated as follows:

∆̃i =
Ei

WN0

· R̂i, i = 1, . . . , I, (1)

where Ei/N0 is the signal energy per bit divided by the noise spectral density that
is required to meet a predefined QoS (e.g. bit error rate, BER); noise includes both
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thermal noise and interference. This required Ei/N0 can be derived from link level
simulations and from measurements. R̂i is the peak bit rate of the session of class i
and W is the spread spectrum bandwidth. As a first step, we ignore the interference
caused by neighbor cells. (We will incorporate the neighbor cell interference into
the model in the next subsection.)

Let ni be the number of ongoing sessions of class i. We will refer to vector
n = {ni}, i = 1, . . . , I as the state of the system. We now assume that arriving
sessions are blocked by a suitable admission control algorithm that prevents the sys-
tem to reach the state in which the power that should be received at the base station
would go to infinity. In other words, a suitable admission control algorithm must
prevent the system to reach its pole capacity (as defined by Equation (8.10) of [20]
and (5) of [7]). According to these definitions, the pole capacity is the polyhedron
n∗ that is defined by:

n∗ = {n : 1 =
I∑

i=1

ni∆i}, where ∆i =
∆̃i

1 + ∆̃i

, i = 1, . . . , I.

In order to model this, we use the standard equations (8.3)-(8.12) from [20] as fol-
lows. The power Pi that is received at the base station from the mobile terminal
for session i must fulfill (assuming that the terminal can control the power level for
each session separately):

Pi

PN + Yown − Pi

= ∆̃i, i = 1, . . . , I; Yown =
I∑

i=1

niPi. (2)

where Yown is the total power received by the base station from within its own
cell (or sector), and PN is the background noise power.

Rewriting (2), we get:

Pi

PN +
I∑

l=1

nlPl

= ∆i. (3)

Multiplying with ni and summing over i:

I∑
i=1

Pini =

PN

I∑

l=1

nl∆l

1−
I∑

l=1

nl∆l

. (4)

Substituting (4) into (3) and denoting Ψ = Ψ(n) =
I∑

l=1

nl ·∆l:

Pi =

(
PN +

PN · Ψ
1− Ψ

)
·∆i =

PN ·∆i

1− Ψ
, i = 1, . . . , I. (5)
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From (5) it is clear that the admission control algorithm must prevent that Ψ
(often referred to as the load factor) becomes larger Ψ̂ , 1− ε; ε > 0. In the single
class case, it means that the number of admitted sessions must fulfill: n ≤ bΨ̂/∆c
(where we now let n = n1 and ∆ = ∆1). In the rest of the paper we assume that
such admission control algorithm operates in the system. We note that because of
the relation expressed by Equation (3) and the definition of Ψ(n), one can consider
Ψ(n) as the overall used ”resource” in state n in the multi-rate CDMA system, while
Ψ̂ corresponds to the ”total available capacity”. (The value of ε > 0 determines
the normal operation region of the CDMA system and is usually determined such
that the noise rise in the CDMA cell - defined as Yown+PN

PN
= 1

1−Ψ
- always remains

below 5-7 dB.) This observation can be seen as an analogy between the multi-rate
CDMA model and the multi-rate loss models developed in the 80’s and 90’s [1]. We
also mention that the non linear relation between the assigned resource and the rate
requirement is well known, see for instance [2] for an early reference.

2.2 The Impact of Slow Down

Recall that the required target ratio (∆i) depends on the required bit-rate. Explicit
rate controlled elastic services tolerate a certain slow down of their peak bit-rate
(R̂i) as long as the actual instantaneous bit rate remains greater than the minimum
required R̂i/âi. When the bit rate of a class-i session is slowed down to R̂i/ai,
(0 < ai ≤ âi) its required ∆ai

value becomes:

∆ai
=

∆̃i

ai + ∆̃i

=
∆i

ai · (1−∆i) + ∆i

, i = 1, . . . , I, (6)

which increases the number of sessions that can be admitted into the system, since
now all n states are feasible for which

Ψa =
I∑

i=1

ni ·∆ai
< Ψ̂.

We use the notation ∆min,i = ∆âi
to denote the class-wise minimum target ratios

(can be seen as the minimum resource requirement), that is when the session bit-
rates of class-i are slowed down to that class’ minimum value. The smallest of these
∆min,i values ∆ = mini ∆min,i can be thought of as the finest ”granularity” with
which the overall CDMA resource is partitioned between competing sessions.

It is the task of the bandwidth sharing policy to determine the ∆ai
≥ ∆min,i

values (and consequently the ai ≤ âi class-wise instantaneous slow down factors)
for each state of the system such that Ψa ≤ Ψ̂ . Because of the admission control
assumption, such a resource assignment is always possible in feasible states. The
set of (micro) states n in which the overall resource consumption (Ψa(n)) is the
same composes a macro state of the system. We number these macro states with
j = 1 . . . J and denote the resource consumption in macro state with index j by νj .
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Specifically, the jth macro state of the system (Ω(j)) is conveniently defined as the
set of micro states in which the overall resource consumption is νj , that is:

Ω(j) = {n|νj(n) = Ψa(n) =
I∑

i=1

ni∆ai
}.

With a slight abuse of notation and terminology, where it is not confusing, we some-
times refer to both the index j and Ω(j) as ”macro state j”. Also, it will be useful
to introduce the operator J (x) that returns the index of the macro state in which the
used CDMA resource is x if such a macro state exists. This implies that specifically
for νj: J (νj) = j.

The model input parameters are summarized in Table 1.

2.3 Modeling the Interference from Neighbor Cells

The interference contribution from other cells is typically quite high (around 30-
40%). This is taken into account as follows. We think of the CDMA system as one
that has a maximum of n̂ = Ψ̂

∆
number of (virtual) channels. The neighbor cell in-

terference ξ is a random variable of log-normal distribution. That is, its distribution
function, mean and standard deviation respectively are given by:

Dξ(x) =
1

2

(
1 + erf(

ln x−N√
2S

)
)
; α =

ϕ

ϕ + 1
· n̂ and σ = α, (7)

where N and S are the corresponding parameters of the normal distribution and are
obtained from α and σ as follows:

N = ln

(
α2

√
α2 + σ2

)
; S =

√√√√ln

(
1 +

σ2

α2

)
;

erf(x) is the error function defined as the integral of the Gaussian distribution:
erf(x) , 2√

π

∫ x

0
e−t2 dt; and ϕ is a factor characterizing the neighbor cell inter-

ference and is an input parameter of the model (Table 1). The mean value α is equal
to the average capacity loss in the cell due to the neighbor cell interference and σ
is chosen to be equal to α as proposed by [14] and also adopted by [12]. (When
ϕ = 0, the neighbor cell interference is ignored in the model.)

Recall that we think of Ψ as the used resource in state n. Then in a given state
n let bΨ (n) denote the probability that the neighbor cell interference is greater than
the available capacity in the current cell (i.e. (Ψ̂ − Ψ )):

bΨ (n) = Pr{ξ > Ψ̂ − Ψ} = 1− Pr{ξ < Ψ̂ − Ψ} = 1−Dξ(Ψ̂ − Ψ). (8)

The impact of state dependent soft blocking resulted, e.g. by the neighbor cell inter-
ference, can conveniently be taken into account by modifying the λi arrival rates in
each state by the (state dependent) so called passage factor: σi(n) = gi(1−bΨ (n)) =
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Table 1. Model (Input) Parameters

I Number of service classes
R̂i Peak bit rate associated with class-i sessions
λi Arrival intensity of sessions belonging to class-i

1/µi Mean (nominal) holding time of sessions belonging to class-i
âi Maximum slow down (using the terminology of [7]) of R̂i

ϕ Parameter of the other cell (sector) interference (see Equation (7))
Ei/N0 Normalized signal energy per bit requirement of class-i

gi(D(Ψ̂ − Ψ(n))). The passage factor is the probability that a class-i session is not
blocked by the admission control algorithm when such a session arrives in system
state n [12]. Obviously, the passage factor of the hard blocking states is zero. 4

When gi(x) = x ∀k, the passage factor only depends on the macro state of the sys-
tem and is the same for all classes. This is the assumption of the current paper. As
we shall also see in the Markov model, the hard blocking states will determine the
”edges” of the state space, while the passage factors will affect the transition rates
between states.

2.4 Determining the System State Space

Recall that in each n state of the system, the inequality
∑

i ni ·∆ai
≤ Ψ̂ must hold.

It follows that the maximum number of sessions from each class can be calculated
as follows:

nmax,i = b Ψ̂

∆âi

c, i = 1, . . . , I.

The states that satisfy the above inequality are the feasible states and constitute the
state space of the system (Θ). The feasible states, in which the acceptance of an
additional class-i session would result in a state outside of the state space are the
class-i blocking states. The set of the class-i blocking states is denoted by Θi. Due to
the ”Poisson Arrivals See Time Averages” (PASTA) property, the sum of the class-i
blocking state probabilities gives the (overall) class-i blocking probability [1].

In each feasible state, it is the task of the bandwidth sharing policy to determine
the ∆ai

(n) class-wise target ratios for each class. ∆ai
(n) reflect the fairness criterion

that is implemented in the resource sharing policy and is out of the scope of this
paper. From these, the class-wise slow down factors and the instantaneous bit-rates
of the individual sessions can be calculated as follows:

ai(n) =
∆i · (1−∆ai

(n))

∆ai
(n) · (1−∆i)

; Rai
(n) = Ri/ai(n) (9)

For ease of presentation, in the rest of the paper we will not indicate the depen-
dence of ai, ∆ai

and Rai
on the micro state n. We note that the above mentioned

4 From this point we somewhat casually use the term blocking to refer to hard blocking, while we explicitly
spell out soft blocking when this casual usage is not confusing.
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bandwidth sharing policy and the associated fairness issue using the same modeling
assumptions as in this paper is the topic of [22].

2.5 An Example of the State Space

7, 8, 9 :   MACRO STATES in which ALL micro states are Class-1 blocking

6:   MACRO STATE in which SOME micro states are Class-1 blocking

0, 0 0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 0, 7 0, 8

1, 0 1,1 1,2 1,3 1,4 1,5

2,0 2,1 2,2

3,0

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15

16 17 18

19

0 d 2d 3d 4d 5d 6d 7d 8d

2d

4d

6d

3d 4d 5d 6d 7d

5d 6d

1

2

3

4

5

6

7

8

9

MACRO 
STATES

: BLOCKING MICRO-STATES (for Class-1)

 
D-min2 = 0.1245
D-min1 = 0.3315

Class-2 (Peak: d)

  Class-1
(Peak: 2d)

Y=1-e,
d = 0.299

Fig. 1. An example of a state transition diagram with two service classes. There are 19 micro states and 9 macro
states. For instance, macro state 6 comprises the Class-1 blocking micro states (2,1), (1,3) and the non-blocking
micro state (0,5).

Figure 1 depicts an example of the state space. In this example we neglect the
other-cell interference (ϕ = 0). There are two traffic classes with peak resource
requirements ∆1 = 2d and ∆2 = d respectively (where d = 0.299). Both traffic
classes are elastic and tolerate a slow down of their bit rates to one third of their
respective peak bit rates (i.e. â1 = â2 = 3), which corresponds to ∆min,1 = 0.3315
and ∆min,2 = 0.1245.

This system can be in one of the 19 feasible micro states as illustrated in Figure
1. The 9 class-1 blocking micro states are indicated in dotted squares. There are 9
macro states, out of which macro state 6 (consisting of micro states: (2,1), (1,3) and
(0,5)) deserves attention. In this macro state the overall peak resource consumption
is 5d > Ψ̂ and therefore there is a need for slowing down some of the sessions. On
the other hand, all three micro states are feasible states, because if all sessions are
slowed down to their minimum rates, the resource consumptions become 2∆min,1 +
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∆min,2 = 0.7875 < Ψ̂ = 1, ∆min,1 + 3∆min,2 = 0.705 and 5∆min,2 = 0.6225.
What is noteworthy is that micro states (2,1) and (1,3) are class-1 blocking states
(micro states (3,1) and (2,3) are certainly not feasible), but micro state (0,5) is non-
blocking, since micro state (1,5) is part of the state space (∆min,1 + 5∆min,2 =
0.954).

2.6 System Behavior

We now make use of the assumptions that the arrival processes are Poisson and
the nominal holding times are exponentially distributed (see Subsection 2.1). The
transitions between states are due to an arrival or a departure of a session of class-i.
The arrival rates are given by the intensity of the Poisson arrival processes. Due to
the memoryless property of the exponential distribution, the departure rates from
each state depend on the nominal holding time of the in-progress sessions and on
the slow down factor in that state. Specifically, when the slow down factor of a
session of class-i is ai(n), its departure rate is µi/ai(n).

The Markovian property for such systems was observed and formally proven by
Altman et al. [9], and Nunez Queija et al. [19]. It is also used by Massoulie and
Roberts in [18], where the departure rates of the birth-death process are modulated
by the actual instantaneous bandwidth of elastic traffic. Thus, the system under these
assumptions is a continuous time Markov chain (CTMC) whose state is uniquely
characterized by the state vector n.

2.7 Assigning a Blocking Measure to the Macro States

Let Π(n) denote the stationary probability distribution of the CTMC representing
our system. Also, recall from Subsection 2.2 that Ω(j) is the set of micro states
forming macro state j, and let Ωi(j) be the Class-i-blocking subset of Ω(j).

In contrast to the classical Kaufman-Roberts case, a CDMA macro state may
consist of non-blocking micro states only, a ”mixture” of non-blocking and block-
ing micro states or blocking micro states only. In order to define the recursive re-
lationship between macro states, there is a need to assign a blocking measure to
each macro state. To this end, we first introduce the following micro state blocking
measure. In each micro state n:

βi(n) =

{
0 if n is not a class-i blocking state

Π(n) if n is a class-i blocking state. (10)

Consider now the Ω(j) micro states of the macro state j where |Ω(j)| > 0.
Then:

– Macro state j is a non-blocking macro state with respect to class-i if |Ωi(j)| = 0.
In these case: βi(j) = 0.

– Macro state j is a fully blocking macro state with respect to class-i if Ωi(j) =
Ω(j). That is, all micro states of this macro state are blocking with respect to
class-i. In these case: βi(j) =

∑
Ω(j) Π(n).
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– Macro state j is a partially blocking macro state with respect to class-i if
|Ωi(j)| > 0 and Ωi(j) 6= Ω(j). In these case: βi(j) =

∑
Ωi(j)

Π(n). Clearly, the
calculation of βi(j) in this case requires that the blocking micro states within
macro state j (that is the set Ωi(j)) are known.

3 Recursive Equation for Elastic Traffic in CDMA

3.1 Constructing the Reversible System

As a first step, we devise a method that can be used to construct a reversible Markov
chain for virtually all work conserving bandwidth sharing policies. Recall that in
system state n all class-i sessions are slowed down by a factor of ai(n). This implies
that the class-i session departure (death) rate becomes µi

ai(n)
. Since the system is not

reversible, the local balance equations in general do not apply:

ni · µi

ai(n)
·Π(n) 6= λiσ(n−i )Π(n−i ); i = 1, . . . , I, (11)

where n−i = n − ei and ei is vector whose elements are zero, except for its i-th
element which is 1.

We may think of the quantity
µi

ai(n)
as the state dependent departure rate in the

original Markov chain. Similarly to what had been done in [5] and [6], we look
for an approximating Markov chain with the same Ω state space in the form that is
defined by (12).

Φi(n)niµiΠ(n) = λiσ(n−i )Π(n−i ); i = 1, . . . , I. (12)

A Markov chain constructed like this is reversible if and only if the values of Φi(n)
for every state is derived from another positive state dependent variable x(n) as
described by the following equation (see also [1]):

Φi(n) =
x(n−i )

x(n)
; x(0) = 1. (13)

We select the class dependent function Φi(n) in such a way that the modified model
possesses the following properties (without further motivating these properties):

– The resource sharing discipline keeps its work conserving property, i.e. either
all flows get their respective required peak resource (and are served with their
peak rate Ri) or the system is serving at its full capacity.

– Any flow may transfer the same amount of data in state n of the modified
Markov chain as it would do in state n of the original Markov chain.

Table 2 compares the properties of the original (irreversible) and the modified
(reversible) Markov chains. The first row corresponds to the holding times and show
that they needed to be changed to get a reversible Markov chain. The second row
shows the traffic demand of the flows. We may think of the traffic demand of a class-
i session as its peak resource requirement multiplied by its mean nominal holding
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Table 2. Comparison of the Original and the Modified Markov Chains

Properties in state n

Original Markov chain Reversible Markov Chain

Departure rate (µi)/ai(n) Φi(n)µi

Traffic demand ∆i/(µi) ∆i/(µi)

Used resource ∆ai Φi(n)∆i

time, (that is its mean holding time when served at its peak rate). This product
corresponds to the number of bits that the flow would transfer if it was served at its
peak bit-rate. The key observation is that according to the second property and the
reasoning above, these values need to be the same in state n of both Markov chains.
The third row shows the actual resource consumed by class-i flows in state n, which
we may think of as a ”bandwidth like” quantity in the multi-rate model. Thus, as
shown in the last row of Table 2, the second property determines the resource shares
(δi(n)) of the flows in the modified Markov chain.

We now focus on the work conserving property. This consists of two parts. If the
system is not over-booked, that is νj = n ·∆ ≤ Ψ̂ , then the sum of the bandwidth
shares must exactly match the total amount of resource occupied. This relation is
shown in (14). We note here that this part is handled the same way as it was done in
[3], [5] and [6].

I∑
i=1

ni ∆i Φi(n) = νj ∀ n :j ≤ Ψ̂ (14)

Equation (14) implies that when νj ≤ Ψ̂ , then Φ(n) = 1. On the other hand, when
the resource is over-booked, the bandwidth shares of the flows must sum up to the
link capacity. Equation (15) quantifies this:

I∑
i=1

ni ∆i Φi(n) = Ψ̂ ∀ n :νj > Ψ̂ (15)

Equations (14) and (15) assure that the modified model remains work conserving
and describes the system load well. Substituting (13) into (14) and (15) and taking
into account the condition that x(0) must be equal to 1, the values of x(n) can be
determined recursively as follows:

x(n) =

I∑
i=1

ni ∆i x(n−i )

Min(Ψ̂ , νj)
. (16)

3.2 Steady State Analysis

The state space of the reversible Markov chain is identical with that of the original
system, but the state transitions are modified. We can therefore immediately estab-
lish the local balance equations in this modified system (recall the blocking measure
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β introduced in Subsection 2.7):

ni∆iΦi(n)Π(n) = ρiσi(n
−
i )∆i

(
Π(n−i )− βi(n

−
i )

)
, (17)

where ρi , λi/µi. Subtracting βi(n
−
i ) on the right hand side of this equation reflects

that there is no Class-i state transition from state (n−i ) to state n if the former is a
class-i blocking state. Summing over i, we get for micro states n in which νj ≤ Ψ̂ :

I∑
i=1

ni∆iΦi(n)Π(n) = νj ·Π(n) =
I∑

i=1

ρiσi(n
−
i )∆i

(
Π(n−i )− βi(n

−
i )

)
.

For micro states, in which νj > Ψ̂ :
I∑

i=1

ni∆iΦi(n)Π(n) = Ψ̂ ·Π(n) =
I∑

i=1

ρiσi(n
−
i )∆i

(
Π(n−i )− βi(n

−
i )

)
.

Summarizing:

Min[νj, Ψ̂ ] ·Π(n) =
I∑

i=1

ρiσi(n
−
i )∆i

(
Π(n−i )− βi(n

−
i )

)
. (18)

Summing over Ω(j):

Min[νj, Ψ̂ ] ·
∑

n:n·∆=νj

Π(n) =
∑

n:n·∆=νj

I∑
i=1

ρiσi(n
−
i )∆i

(
Π(n−i )− βi(n

−
i )

)
. (19)

Combining (18) and (19) and making use of the macro state blocking measures
defined in Subsection 2.7 leads to the following result.

Theorem 1. The q(j) unnormalized macro state probabilities satisfy the following
set of recursive equations:

Min[νj, Ψ̂ ]·q(j) =
I∑

i=1

ρi ·∆i ·σi

(J (νj−∆i)
)·

(
q
(J (νj−∆i)

)−βi

(J (νj−∆i)
))

.

(20)

Equation (20) establishes a recursive relationship between macro state j and the
J (j −∆i)-s that can be seen as an analogy with the relationship expressed by the
classical Kaufman-Roberts formula. Note that (20) yields the relative (unnormal-
ized) macro state probabilities when setting q(0) to some convenient value (typi-
cally to 1). It will be useful to note that the unnormalized macro state probabilities
are monotone decreasing functions of the βi macro state blocking measures.

In order to arrive at the Q(j) macro state probabilities, a normalization is neces-
sary. In order to arrive at performance measures of interest and specifically the class-
wise blocking probabilities, the issue is to determine the βi(J (νj −∆i)) class-wise
blocking measures for each macro state. The issue of normalization and finding the
βi-s is investigated in the next Section.
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3.3 A Generalization of the Kaufman-Roberts Formula Based on Theorem 1

Equation (20) can be seen as a generalization of the Kaufman-Roberts formula in
the following sense. Both the classical Kaufman-Roberts formula and (20) have the
following general structure:

q(1) = 1, q(j) =

j−1∑

k=1

q(k)pkj j > 1, (21)

where the pkj ≥ 0 coefficients express the ”weight” with which the lower indexed
macro state probabilities contribute to q(j). For finite capacity systems in which the
resource utilization of all admitted sessions have a positive lower bound, the pkj

coefficients become zero at a given finite j. For the classical case

pkj =
∑

i:∆i=j−k

ρi∆i

j
, (22)

where the summation goes through the traffic classes whose resource need is j − k.
In our CDMA system:

pkj =
∑

i:∆i=j−k

ρi∆iσ(j −∆i)(q(J (j −∆i))− β(J (j −∆i)))

min(j, Ψ̂) q(J (j −∆i))
=

=
∑

i:∆i=j−k

ρi∆iσ(k)(q(J (k))− β(J (k)))

min(j, Ψ̂) q(J (k))
. (23)

The most important property of (22) is that it contains only macro state dependent
input parameters. In contrast, in (23) the β(k) parameters can only be determined
by means of the micro state probabilities, which are unknown.

We note that the structure of the system state space and the deduction of the pkj

coefficients rely on the equations (5) and (1). The relationship between the required
resource and the assigned bit rate may be different, which is the case in the model
proposed by [17]. In such a case, the issue becomes to establish the pkj coefficients
and thereby a recursive relationship as in (21). Once the coefficients are determined,
the results of the next section can be generalized to that particular type of system as
well.

4 Macro State, Accumulated Macro State and Blocking
Probabilities

In order to apply the recursive equations, three further considerations are necessary.
First, the value of q(0) is unknown, and it is usually set to 1. Equation (20) can
thereafter be used to determine the unnormalized macro state probabilities. Then, in
order to arrive at the absolute macro state probabilities, the unnormalized probabili-
ties have to be normalized. Secondly, the class-wise macro state blocking measures
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(βi(j)) need to be determined. This task is non-trivial, because it would require the
exact knowledge of the steady state probabilities of the blocking micro states in
macro state j. Finally, from the macro state probabilities we need to calculate or
estimate the class-wise blocking probabilities. This task is similar to the previous
one in that we need to decide on how to take into account partially blocking macro
states. These three tasks are considered in the subsections below.

4.1 The Unnormalized and Normalized Macro State Probabilities
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Fig. 2. The unnormalized macro state probabilities
(q(j)).
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Fig. 3. The normalized macro state probabilities
(Q(j)).
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Fig. 4. The unnormalized accumulated macro state
probabilities (s(j)).
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Fig. 5. The normalized accumulated macro state prob-
abilities (S(j)).

Recall that in order to calculate the macro state probabilities, we need to know
the βi(j) macro state blocking measures. These βi(j) values however are not avail-
able, since the micro state probabilities are not available. However, each macro state
can be marked as ”non blocking”, ”partially blocking” and ”fully blocking”, since
determining whether a certain micro state is Class-i blocking or not does not require
that its state probability be established. Therefore, a lower and an upper bound on
the real βi(j) =

∑
n∈Ω(j) βi(n) values can be determined as follows. A lower bound
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on the class-wise macro state blocking measure is given as follows:

β
i
(j) =

{
0 if Ωi(j) 6= Ω(j) (non-blocking or partially blocking macro state),
q(j) if Ωi(j) = Ω(j) (fully blocking macro state).

(24)

This equation states that if j is fully blocking, the associated βi(j) has to be set to
q(j); otherwise to 0. Likewise, the upper bound:

β̄i(j) =

{
0 if |Ωi(j)| = 0 (non-blocking macro state),
q(j) if |Ωi(j)| > 0 (partially blocking or fully blocking macro state).

(25)

That is, if j is partially or fully blocking, its blocking measure is set to q(j), other-
wise to 0.

Consider (20) setting q(0) = 1. Let q(j) and q̄(j) denote the calculated non-
normalized macro state probabilities when substituting β̄i(j) and β

i
(j) into (20)

respectively. 5 As we noted after Theorem 1, q(j) is a decreasing function of βi(j).
Then, since β

i
(j) ≤ βi(j) ≤ β̄i(j), ∀i, j, it follows that:

q(j) ≤ q(j) ≤ q̄(j) ∀j > 0. (26)

This relation is illustrated in Figure 2 in the case of a simple example in which the
number of macro states is 9. The relation after normalization does not hold for all j
(Figure 3).

4.2 The Unnormalized and Normalized Accumulated Macro State
Probabilities

Consider now the non-normalized and normalized accumulated macro state proba-
bilities that are defined as follows respectively:

s(j) =
∑

k≤j

q(k); s(j) =
∑

k≤j

q(k); s̄(j) =
∑

k≤j

q̄(k). (27)

S(j) =
s(j)

s(J)
; S(j) =

s(j)

s(J)
; S̄(j) =

s̄(j)

s̄(J)
, (28)

where J is the largest macro state. Because of (26):

s(j) ≤ s(j) ≤ s̄(j) ∀j > 0. (29)

5 Note that when we substitute β̄i(j) and β
i
(j) as defined by (25) and (24) respectively into (20), it iteratively

yields the unnormalized βi values, since the q(j)-s are the unnormalized macro state probabilities. The nor-
malized β′i values are defined in a similar manner but using the Q(j) normalized macro state probabilities.
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4.3 Bounding the Accumulated Macro State Distribution

To upper and lower bound the accumulated macro state distribution - determined by
the pkj (k, j ≤ J) coefficients in (23) - we introduce a set of coefficients p̄kj and p

kj

(k, j ≤ J) such that for ∀j ≤ J :

q(j)

s(j)
≤ q(j)

s(j)
≤ q̄(j)

s̄(j)
. (30)

The following theorem will turn out to be crucial for providing the blocking proba-
bility bounds.

Theorem 2. The accumulated macro state distributions S(j) and S̄(j) determined
by p̄kj and p

kj
satisfy

S̄(j) ≤ S(j) ≤ S(j) (31)

for ∀j ≤ J .

The proof is provided in Appendix I.

4.4 Calculating the Bounds on the Class-wise Blocking Probabilities

Recall that if we had access to the micro state probabilities, the class-wise blocking
probabilities could be calculated as Bi =

∑
j β′i(j). A lower bound can be calcu-

lated by using the lower bounds on the normalized macro state probabilities (Q(j)-s)
and summing these for the fully blocking macro states (thus omitting the partially
blocking states). In a similar manner, calculating the Q̄(j)-s and summing them
over both the partially and fully blocking macro states results in an upper bound
of the class-wise blocking probability. These intuitively straightforward results are
expressed in the following theorem.

We define the limit of partially and fully blocking macro states as jp
i = max(j :

|Ωi(j)| = 0) and jf
i = max(j : Ωi(j) 6= Ω(j)), and the lower and upper bounds of

the class-wise blocking probabilities as Bi =
∑

j>jf
i

Q(j) = 1 − S(jf
i ) and Bi =

∑

j>jp
i

Q̄(j) = 1 − S̄(jp
i ). We note that with this notation the exact blocking proba-

bilities can be expressed as the sum of the (normalized) blocking measures of the
partially blocking states and the fully blocking state probabilities:

Bi =
∑

jp
i <j≤jf

i

β′i(j) +
∑

jf
i <j

Q(j) =
∑

jp
i <j≤jf

i

β′i(j) + 1− S(jf
i ) (32)

Considering that jp
i ≤ jf

i and (29) we have the following useful theorem.
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Theorem 3. For the set of coefficients p̄kj and p
kj

that satisfy (30), the following
inequality chain holds:

Bi ≤ Bi ≤ Bi ∀i. (33)

The proof is given in Appendix II.
An important characteristics of Theorem 3 is that it only relies on the p̄kj and

p
kj

coefficient bounds and on the jp
i and jf

i macro state indexes. Thus, based on
the discussion in Subsection 3.3, Theorem 3 can be generalized for other non-linear
systems as well provided that the pkj coefficients of Equation (21) (similarly to (22)
and (23)) and the jp

i and jf
i indexes can be determined. This observation could be

used to extend our results to models proposed for TDMA or FDMA systems in for
instance [17].

4.5 A Macro State Level Analysis Method for CDMA

Our goal in this subsection is to provide an analysis method based on Theorem 2
for approximating S(j) such that the bounds depend only on the common properties
of macro states, where these common properties include the range of the possible
micro state dependent measures in a given macro state. In our CDMA system (spec-
ified by (23)), the only micro state dependent measure is β(k) when k is a partially
blocking macro state. In this case 0 < β(k) < q(k) defines the valid range of
the macro state blocking measure (whose exact value cannot be calculated with-
out knowing the micro state probabilities) and determine the valid range of the pkj

coefficients associated with macro state k.
To this end we note that if (30) holds, then we know that (31) holds and Theorem

3 applies. Therefore, starting from q(1) = q̄(1) = 1 we may iteratively calculate
q(j) and q̄(j) based on

q(j) =

j−1∑

k=1

q(k)p
kj

and q̄(j) =

j−1∑

k=1

q̄(k)p̄kj, (34)

where the p
kj

(p̄kj) parameters are the minimum (maximum) of the valid range of
the coefficient associated with macro state k (obtainable from (23)). The following
theorem provides a non-recursive condition for (30) which can be checked on the
fly together with the calculation of the consecutive macro state probabilities.

Theorem 4. The macro state level analysis provides a valid upper and lower bound
of the blocking probabilities if for ∀j ≤ J:

q(j)

s(j)
= min

(
q(j)

s(j)

∣∣∣∣q(`) ≤ q(`) ≤ q̄(`),∀` < j, p
kj
≤ pkj ≤ p̄kj, ∀k < j

)

q̄(j)

s̄(j)
= max

(
q(j)

s(j)

∣∣∣∣q(`) ≤ q(`) ≤ q̄(`),∀` < j, p
kj
≤ pkj ≤ p̄kj,∀k < j

) (35)
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Proof: Considering a given set of pk` parameters, q(j) recursively depends on all
previous pk` (` < j) via the q(`) non-normalized macro state probabilities. If (35)
holds for ∀k ≤ `, the upper and lower limits of this dependence are given by q(`)

and q̄(`), since q(`) =
∑`−1

k=1 q(k)pk` is a monotone function of all q(k) and pk`

(∀k < `) and the minimum and the maximum of q(`) are obtained according to
(34). Taking the whole range of all previous q(`) non-normalized macro state prob-
abilities and the pkj parameters associated with the current macro state we obtain
the possible range of q(j)/s(j). If the extreme values of this range are q(j)/s(j)
and q̄(j)/s̄(j) then the blocking probability limits calculated from (34) are valid
bounds. 2

4.6 Summary: Calculating the Blocking Probability Bounds

Theorem 1, together with (22) and (24)-(25) and (34) provides a means to iteratively
calculate q, q̄, s and s̄. Using Theorem 4 as an indicator for the (sufficient) condition
(30), the Bi and B̄i values as defined in Theorem 3 establish a lower and upper
bound respectively on the class-wise blocking probabilities.

4.7 A Heuristic Estimate on the Class-wise Blocking Probabilities

Recall from Theorem 1 and Section 4 that depending on how the macro state block-
ing measures are taken into account in (20), we may arrive at a lower or an upper
bound on the Q(j) macro state probabilities. Then, depending on how we take into
account (the bounds on) the partially blocking macro states, we arrive at lower and
upper bounds specifically on the class-wise blocking probabilities. The combination
of these 2 choices (1: lower/upper bound on all Q(j)-s and 2: consider the partially
blocking state only or both the partially and fully blocking states) give four options
for estimating the blocking probabilities. It is intuitively clear that calculating the
lower bounds on each Q(j) and then summing the fully blocking states only results
in a lower bound (Bi =

∑
j:Ωi(j)=Ω(j) Q(j)), while calculating the upper bounds on

each Q(j) and then summing both the partially and fully blocking states results in
an upper bound on the blocking probabilities (Bi =

∑
j:|Ωi(j)|>0 Q̄(j)).

The following heuristic guess value takes into account all four options:

γi =

∑

j:Ωi(j)=Ω(j)

Q(j) +
∑

j:Ωi(j)=Ω(j)

Q̄(j) +
∑

j:|Ωi(j)|>0

Q(j) +
∑

j:|Ωi(j)|>0

Q(j)

4
(36)

The intuitive explanation for this guess value is that the four options ”average out”
their respective estimation errors and can be expected to give a reasonable estimate
of the blocking probabilities. This will be discussed further in the numerical section.
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Table 3. Input Parameters for Case I and Case II

Parameter Case I (Figures 6-13) Case II (Figures 14-19)
∆1 2 ·∆ 2 ·∆
∆2 ∆ ∆

â1 1 . . . 5 : (Fig.6, 7; . . . 12, 13) 1 . . . 5 : (Fig.14, 15; . . . 18, 19)

â2 1 . . . 6 (along the x axis) 1 . . . 6 (along the x axis)
λ1 λ λ/2

λ2 λ 2 · λ

Table 4. Common Parameters for Case I and Case II

Parameter Value
∆ 0.099
λ 87.2613

µ1 = µ2 32.03

5 Numerical Results

5.1 Implementation

We have implemented the method described in Section 3 and Section 4 in a Math-
ematica script. It takes the input parameters of Table 3 and 4 and generates the
original (irreversible) and the modified (reversible) state spaces and state transi-
tions, calculates the normalized macro state probabilities and from them the lower
and upper bounds and the guess value on the blocking probabilities. For verification
purposes, it also calculates the exact blocking probabilities by solving for the steady
state with the direct (non-recursive) method as described in [10].

5.2 Input Parameters

The input parameters are summarized in Tables 3 and 4. In both Case I and Case
II the class-1 peak resource requirement (∆1 = 2∆) is twice of that of class-2
(∆2 = ∆). For class-1, the maximum slow down factors are varied between â1 = 1
(in Figures 6 and 7 in Case I and 14 and 15 in Case II) up to â1 = 5 (in Figures 12
and 13 in Case I and 18 and 19 in Case II). For class-2, â2 is varied between 1 . . . 6
along the x axis in each figure. The total offered traffic load in both cases is:

Λ =
∑

i

Λi =
∑

i

λi · 1/µi ·∆i = 3
λ

µ
∆.

In Case I: Λ1 = 2Λ2, in Case II: Λ2 = 2Λ1. The other-cell interference ratio (ϕ) is
set to 0 in both cases.

5.3 Numerical Results

Figures 6-13 show the (class-1 and class-2) blocking probabilities as the function
of the class-2 maximum slow down factor (â2) for Case I, while Figures 14-19
correspond to Case II. In all figures (except for Figure 8 and 9), there are four
curves: the lower and upper bounds, the actual (”REAL”) value calculated from the
reversible Markov chain and the guess value that is the result of the heuristics dis-
cussed in the previous section. Figures 8 and 9 compare the blocking probabilities
for Case I when using the direct (matrix inversion) method to calculate the exact
values from the irreversible Markov chain with those calculated from the reversible
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Fig. 6. Case I, â1 = 1 is kept fixed, â2 = 1 . . . 6.
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Fig. 7. Case I, â1 = 1 is kept fixed, â2 = 1 . . . 6
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Fig. 8. Irreversible Case I, â1 = 1 is kept fixed, â2 =
1 . . . 6.
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Fig. 9. Irreversible Case I, â1 = 5 is kept fixed, â2 =
1 . . . 6

system. These plots illustrate that the reversible approximation works well for both
small and greater â values.
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Fig. 10. Case I, â1 = 2 is kept fixed, â2 = 1 . . . 6.
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Fig. 11. Case I, â1 = 2 is kept fixed, â2 = 1 . . . 6.

First we note the impact of allowing for bit rate decrease (i.e. the state dependent
slow down of the bit rates). The system is clearly overloaded in both cases with
blocking probabilities above 24% and 11% in Case I (Figure 8, â2 = 1) and above
26% and 11% in Case II (Figures 14 and 15). Yet, even a small maximum slow
down rate (already at âi = 2...3) brings the system into a normal operation mode
with acceptable blocking probabilities (Figures 10-11 and 16-17.)

In both cases, the class-1 blocking probabilities are higher than the class-2 ones,
because the class-1 peak resource demand is twice of that of class-2. It is noteworthy
that class-1 blocking is higher in Case II as well, despite that the class-2 arrival
intensity is reduced by half. When class-1 sessions are ”rigid” (â1 is small), the
class-1 blocking probabilities are not much affected by varying the maximum slow
down rate of class-2. This is especially true in Case I, when the arrival rates are
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equal. As class-1 becomes more and more elastic (â1 = 3 . . . 5), especially in Case
II, class-1 blocking also decreases as class-2 becomes elastic. For instance, when
â1 = 5, class-1 blocking decreases from almost 2% close to 0% in Case I and from
more than 4% close to 0% in Case II.

Regarding the bounds, they are tightest when the maximum slow down rates
are equal or similar (â1 ≈ â2), especially at small blocking values. An intuitive
explanation for this is as follows. Recall that when calculating the lower bound
on the blocking probability, a partially blocking macro state is ignored, although it
does contribute to overall blocking. This is because we do not know its exact Q(j)
(since we do not know the micro state’s βi(n) values). The lower bound therefore
becomes ”loose” when there are high probability blocking micro states that are
part of a macro state, since we miss these micro states from the calculation. When
the class-wise âi values are similar, the structure of the Markov chain becomes
”more balanced” (in the 2 dimensional case, roughly equal number of states in the
x and y directions), and such mixed partially blocking macro states arise less often
than when the Markov chain is ”unbalanced” (that is when the âi values are much
different). Likewise, the tightness of the upper bound depends on the number of non-
blocking micro states that become part of a partially blocking macro state, since we
calculate these states’ probabilities in the upper bound. This happens less often in a
nice ”well-balanced” chain.

The heuristic ”guess” value performs well in cases when both classes are elastic,
and especially at low blocking values. Because the guess value is derived from the
bounds, a similar reasoning applies to it as the one for the bounds above. Indeed,
when the maximum slow down rates are exactly equal, the guess value gets remark-
ably close to the real blocking probabilities. This experience was actually confirmed
by other numerical experiments (not shown here) as well.

Figures 20-23 show results for the case when the neighbor cell interferers with
the cell under study. For this purpose we have set the parameter of the neighbor cell
interference (see Table 1) to ϕ = 0.2. Recall that in our model this leads to a non-
zero soft blocking in addition to the hard blocking that is present irrespective of the
neighbor cell interference. For Case I, Figures 20 (Class-1) and 21 (Class-2) show
that the total ((soft+hard) blocking probabilities, the lower and upper bounds and
the guess value. For Case II, similar results are shown by Figures 22 and 23. In both
cases we observe that both the bounds and the heuristic guess value are reasonable,
showing similar behavior as in the case with no interference.

6 Conclusions
In this paper we considered a CDMA cell that supports elastic services. Sessions be-
longing to such service classes can dynamically adjust their transfer rates depending
on the interference situation in the system. The dynamic adjustment of the session
bit rates makes the calculation of the session-wise blocking probabilities non-trivial,
because (1) the session holding times depend on the received throughput and (2)
the relationship between the CDMA resource consumption and the instantaneous
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Fig. 12. Case I, â1 = 5 is kept fixed, â2 = 1 . . . 6.
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Fig. 13. Case I, â1 = 5 is kept fixed, â2 = 1 . . . 6.
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Fig. 14. Case II, â1 = 1 is kept fixed, â2 = 1 . . . 6.
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Fig. 15. Case II, â1 = 1 is kept fixed, â2 = 1 . . . 6.
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Fig. 16. Case II, â1 = 2 is kept fixed, â2 = 1 . . . 6.
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Fig. 17. Case II, â1 = 2 is kept fixed, â2 = 1 . . . 6.
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Fig. 18. Case II, â1 = 5 is kept fixed, â2 = 1 . . . 6.
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Fig. 19. Case II, â1 = 5 is kept fixed, â2 = 1 . . . 6.
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Fig. 20. Case I, â1 = 2 is kept fixed, â2 = 1 . . . 6.
(Same setting as that for Figure 10 but now with neigh-
bor cell interference.)
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Fig. 21. Case I, â1 = 2 is kept fixed, â2 = 1 . . . 6.
(Same setting as that for Figure 11 but now with neigh-
bor cell interference.)

session-wise bit rates is non linear. In this fairly general setting the paper develops
an extension of the Kaufman-Roberts recursion that has been the de facto standard
to calculate the steady state of fixed multi-rate systems. In order to establish this
recursion, we approximated the original irreversible Markovian system with a re-
versible one. It turns out that the system macro states are such that a single macro
state may contain both blocking and non-blocking micro states. Because of this, we
have proposed a method that gives bounds on the steady state and blocking proba-
bilities rather than determining the exact values. Numerical examples indicate that
slowing down the bit rates lead to the drastic decrease of the blocking probabil-
ities, despite the necessary residency time increase. Our approximation performs
especially well when the session-wise maximum slow down rates are equal. Based
on our observations we proposed an intuitively appealing heuristic approximation
method specifically for the blocking probabilities. This approximation works well
in a large number of numerical cases (only part of which was presented here).
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Fig. 22. Case II, â1 = 2 is kept fixed, â2 = 1 . . . 6.
(Same setting as that for Figure 16 but now with neigh-
bor cell interference.)
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Fig. 23. Case II, â1 = 2 is kept fixed, â2 = 1 . . . 6.
(Same setting as that for Figure 17 but now with neigh-
bor cell interference.)

Appendix I: Proof of Theorem 2

Proof: For ∀` ≤ J we introduce a series of normalized distributions, and accumu-
lated distributions as follows:

Q(j, `) =
q(j)∑`

k=1 q(k)
=

q(j)

s(`)
and S(j, `) =

j∑

k=1

Q(k, `) =

∑j
k=1 q(k)∑`
k=1 q(k)

=
s(j)

s(`)
,

where j ≤ `. Note that Q(j, J) = Q(j) and S(j, J) = S(j). We prove the theorem
by induction. The theorem holds for ` = 1 since S̄(1, 1) = S(1, 1) = S(1, 1) = 1.
Assuming that the theorem holds for ` ≥ 1, i.e., for 1 ≤ j ≤ `

S̄(j, `) ≤ S(j, `) ≤ S(j, `), (37)

we have

S(j, `+1) =
s(j)

s(` + 1)
=

s(j)

s(`)

s(`)

s(`) + q(` + 1)
= S(j, `)

(
1− q(` + 1)

s(` + 1)

)
(38)

and using (30) and (37) it results

S̄(j, ` + 1) = S̄(j, `)

(
1− q̄(` + 1)

s̄(` + 1)

)
≤

S(j, ` + 1) = S(j, `)

(
1− q(` + 1)

s(` + 1)

)
≤

S(j, ` + 1) = S(j, `)

(
1− q(` + 1)

s(` + 1)

)
(39)

for 1 ≤ j ≤ `.
Finally for j = ` + 1 we have

S̄(` + 1, ` + 1) = S(` + 1, ` + 1) = S(` + 1, ` + 1) = 1. (40)

2
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Appendix II: Proof of Theorem 3

Proof of Bi ≤ Bi Because S ≤ S:

1− S(jf
i ) ≤ 1− S(jf

i ) +
∑

jp
i <j≤jf

i

β′i(j)

Proof of Bi ≤ B̄i Because S̄ ≤ S:

Bi ≤
∑

jp
i <j≤jf

i

β̄′i(j) +
∑

jf
i <j

Q(j) =
∑

jp
i <j≤jf

i

Q(j) +
∑

jf
i <j

Q(j) =
∑

j>jp
i

Q(j) =

= 1−
∑

j≤jp
i

Q(j) = 1− S(jp
i ) ≤ 1− S̄(jp

i ) = B̄i

2

References
1. K. W. Ross, ”Multiservice Loss Models for Broadband Telecommunication Networks”, ISBN 3-540-

19918-8, Springer Verlag, 1995.
2. Z. Liu, M. J. Karol, M. El Zarki, K. Y. Eng, ”Channel Access and Interference Issues in Multi-code DS-

CDMA Wireless Packet (ATM) Networks”, ACM Wireless Networks, 2, pp. 173-193, 1996.
3. J. S. Kaufman, ”Blocking in a Shared Resource Environment”, IEEE Transactions on Communications,

29(10):1474-1481, 1981.
4. F. P. Kelly, ”Reversibility and Stochastic Processes”, ISBN 0471276014, January 1979.
5. G. M. Stamatelos and V. N. Koukoulidis, ”Reservation-Based Bandwidth Allocation in a Radio ATM

Network”, IEEE Transactions on Networking, Vol. 5, No. 3, pp. 420-428, June 1997.
6. S. Racz, B. P. Gero and G. Fodor, ”Flow Level Performance Analysis of a Multi-service System Supporting

Elastic and Adaptive Services”, Performance Evaluation 49, Elsevier, pp. 451-469, 2002.
7. E. Altman, ”Capacity of Multi-service Cellular Networks with Transmission-Rate Control: A Queueing

Analysis”, ACM Mobicom ’02, Atlanta, GA, September 23-28, 2002.
8. E. Altman, ”Rate Control and QoS-related Capacity in Wireless Communications”, - Keynote Speech at

Quality of Future Internet Services - QoFIS, Stockholm, October 2003.
9. E. Altman, D. Artiges and K. Traore, ”On the Integration of Best-Effort and Guaranteed Performance

Services”, INRIA Research Report No. 3222, July, 1997.
10. G. Fodor and M. Telek, ”Performance Anlysis of the Uplink of a CDMA Cell Supporting Elastic Services”,

in the Proc. of IFIP Networking 2005, Waterloo, Canada, Springer LNCS 3462, pp. 205-216, 2005.
11. G. Fodor and M. Telek, ”A Recursive Formula to Calculate the Steady State of CDMA Networks”, Inter-

national Teletraffic Congress 2005, Beijing, China, September 2005.
12. V. B. Iversen, V. Benetis, N. T. Ha and S. Stepanov, ”Evaluation of Multi-service CDMA Networks with

Soft Blocking”, Proc. ITC Specialist Seminar, pp. 223-227, Antwerp, Belgium, August/September 2004.
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