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Introduction

BuTools is a collection of Mathematica, Matlab/Octave functions related to recent research
results on the field of phase type (PH) and matrix exponential (ME) distributions and
Markov arrival processes (MAPs) and rational arrival processes (RAPs).

This document lists the elements and the use of the currently available (see the date
on the cover page) BuTools functions. One of the main goals of this document is to relate
the functions and the papers where the related algorithms are published. The readers are
referred to the original publications (available links are provided at the list of references) for
detailed descriptions of the procedures.

1 Usage of the BuTools functions

1.1 The test files

The BuTools package includes a set of test files which demonstrate the usage of the BuTools
functions. There is an associated test function for all main parts (utilities, PH, MAP,
special processes, fluid). The name of the test files are:

test_utils_functions.nb, test_ph_functions.nb and test_map_functions.nb in the Mathe-
matica package and

test_utils_functions.m, test_ph_functions.m and test_map_functions.m in the Matlab/Octave
package.

To obtain a quick impression about the input, the output and the behavior of the available
functions run the related test file. Doing so one gets the description of each function with
some related examples on the output.

1.2 Matlab/Octave

In Matlab/Octave you have to specify the path of the BuTools subpackages.

For example, in Windows base operation systems if the Utilities package is in the
C:\ Work\ Butools\ Utilities directory the path has to be specified by the path(path,
’C:\ Work\Butools\Utilities’) command in the related test file.

If the package is located in the home/Work/Butools/Utilities directory then the syntax of
the command is path(path, ’/home/[your username]/Work/Butools/Utilities’) in
Unix/Linux based operation systems.

1.3 Mathematica

In order to use the BuTools packages in Mathematica one has to locate and load them.
The first step is to specify the directory of the BuTools Mathematica packages (*.m
files). It can be done with assigning the name of the directory to a variable (e.g., "dir”).
The syntax is different in Windows and in Linux systems.



In Windows systems if the BuTools packages (*.m files) are on the C: drive in the

Work\ BuTools directory then the command to locate the packages is:
dir = ”C:\\ Work)\ \BuTools”

In Linux systems if the BuTools packages (*.m files) are in the home/Work/BuTools
directory then the command to locate the packages is:
dir = ” /home/[your username]/Work/BuTools”

After the path is specified in variable ”dir” correctly, type the following command:
AppendTo[$Path, dir]

Now the path of Mathematica is extended with the directory containing the BuTools
packages.

To use a package it has to be loaded by typing << [package name/
For example to load the Utilities package type:
<<”Utilities*”

After these steps you can use all the avaliable functions of the Utilities package.

A complete Mathematica notebook file which locates and loads the package looks
like this:

dir = ”[the directory]”
AppendTo[$Path, Dir]
<<”[package name]*”

The test files also contain the commands for locating and loading the packages.

1.4 Error handling

In most of the functions to use the methods we have assumptions about the input (e.g:
the input of MatginalMomentsFromMRAP is a real MRAP). We check the inputs to ensure
these assumptions, and if these checks fail then an error is occured. To handle the errors we
throw an exception in Mathematica and use the built in error function in Matlab.

If you simply call a function in Mathematica and an exception is thrown, you get the
exception twice. Once in a built in Mathematica warning (unhandled exception) and once
as the output. You can avoid it if you call your function inside the built in Catch function,
e.g Catch[YourFunction|...]]. In this case you don’t get the unhandled exception warning
and the output is a little bit nicer.

In Matlab you don’t have to do anything when you call only one function. If an error
occurs then you get it as the output. Although if you’re running a script and an error occurs,
then your script will stop running. To avoid this, use the try-catch statement and handle the
error. You can see examples in the test files and can get more information about try-catch
in the Matlab help.



2 Available functions

The program package is divided into the following 4 main parts:
e BuToolsUtilities
e BuToolsPH
e BuToolsMAP
e BuToolsSpecialProcesses
e BuToolsFluid

Some functions has optional parameters. We give their default value of these parameters
in []. You can give a numerical precision & (which is 107 by default) to almost every
function. If a check or a function fail, it could be a numerical inaccuracy. In these cases try
to give a bit larger € to the functions.

2.1 BuToolsUtilities

The BuToolsUtilities package contains the following functions

BuToolsVerbose
A flag (global variable) to switch between verbose and silent modes.

CRPSolve
Gives the steady state distribution of the continuous time rational process (CRP). It is
the same as CTMCSolve but without checking if the input matrix is a proper generator
matrix.

Input: matrix
Output: vector
DRPSolve
Gives the steady state distribution of a discrete time rational process (DRP). It is the

same as DTMCSolve but without checking if the input matrix is a proper stochastic
matrix.

Input: matrix
Output: vector
CTMCSolve

Gives the steady state distribution () of the CTMC with generator matrix Q. le.,
the solution of the linear system 7Q = 0,71 = 1.

Input: matrix, e[1071]

Output: vector



DTMCSolve
Gives the steady state distribution (7) of the DTMC with transition probability matrix
P. l.e., the solution of the linear system 7P = 7,71 = 1.

Input: matrix, e[1071]

Output: vector

CheckGenerator

Checks if the matrix is a valid generator matrix. I.e., the matrix is a square matrix, the
matrix has non-negative off-diagonal elements, the diagonal of the matrix is negative,
the row sum of the matrix is 0.

If the transient flag is True it checks if the matrix is a valid transient generator matrix.
L.e., the matrix is a square matrix, the diagonal of the matrix is negative, the matrix has
non-negative off-diagonal elements, the real part of the maximum absolute eigenvalue
is less than zero.

Input: matrix, transient flag [False], e[107!4]

Output: flag

CheckProbMatrix
Checks if the matrix is a valid probability matrix. l.e., the matrix is a square matrix,
the matrix has positive or zero elements, the row sum of the matrix is 1.
If the transient flag is True it checks if the matrix is a valid transient probability
matrix. L.e., the matrix is a square matrix, the matrix has positive or zero elements,
the row sum of the matrix is less equal than 1, the maximum of the absolute values of
the eigenvalues is less than 1.

Input: matrix, transient flag [False], e[107'4]
Output: flag
CheckProbVector
Checks if the vector is a valid probability vector.
L.e., the vector has only non-negative elements, the sum of the vector elements is 1. If
the sub flag is True it checks if the vector is a valid sub-probability vector.

L.e., the vector has only non-negative elements, the sum of the vector elements is less
equal than 1.

Input: vector, sub flag [False], £[10714]
Output: flag
CheckMERepresentation
Checks some matrix exponential conditions of a vector-matrix pair. L.e., the matrix is

a square matrix, the vector and the matrix have the same size, the dominant eigenvalue
(one with maximal real part) of the matrix is negative and real.

Input: vector-matrix pair, £[10714]
Output: flag

CheckMGRepresentation
Checks some matrix geometric conditions of a vector-matrix pair. L.e., the matrix is a



square matrix, the vector and the matrix have the same size, the dominant eigenvalue
(one with maximal absolute value) of the matrix is real, positive and less than 1.

Input: vector-matrix pair, £[107]
Output: flag
CheckPHRepresentation

Checks the phase type conditions on a vector - matrix pair. I.e, the vector is a proba-
bility vector, the matrix is a transient generator and they have the same size.

Input: vector-matrix pair, £[107]
Output: flag
CheckDPHRepresentation
Checks the discrete phase type conditions on a vector - matrix pair. I.e, the vector is

a probability vector, the matrix is a transient probability matrix and they have the
same size.

Input: vector-matrix pair, £[107]
Output: flag
CheckRAPRepresentation
Checks the rational arrival process conditions on 2 matrices.

L.e., matrixO, matrixl are square matrices, they have the same size, the dominant
eigenvalue of matrix0 is negative and real. The rowsums of matrixO+matrix1 are 0.

Input: matrix0, matrix1, e[107]
Output: flag
CheckDRAPRepresentation
Checks the discrete rational arrival process conditions on 2 matrices.

L.e., matrix0, matrixl are square matrices, they have the same size, the dominant
eigenvalue of matrix0 is real and less than 1. The rowsums of matrixO+matrix1 are 1.

Input: matrix0, matrix1, e[107]
Output: flag
CheckMR APRepresentation
Checks the marked rational arrival process (MRAP: RAP with arrivals of different

types) conditions on input matrices.
L.e. matrix0 and Zi‘il matriz; is a RAP.

Input: vector of matrix0, matrix1, ... matrixM, g[1071]
Output: flag
CheckDMRAPRepresentation
Checks the discrete marked rational arrival process (DMRAP: DRAP with arrivals of

different types) conditions on input matrices.
L.e. matrix0 and Zi‘il matriz; is a DRAP.

Input: vector of matrix0, matrix1, ... matrixM, g[1071]

Output: flag



CheckM APRepresentation
Checks if the input matrixes define a continuous time MAP. L.e., matrix0 and matrix1
are squrare matrixes of identical size, matrix0 is a transient generator matrix, matrix1
has only non-negative elements, and the rowsums of matrixO+matrix1 are 0.

Input: matrix0, matrix1, e[1071]
Output: flag
CheckDM APRepresentation
Checks if the input matrixes define a discrete time MAP. I.e., matrix0 and matrix1 are

squrare matrixes of identical size, matrix0 is a transient generator matrix, the matrices
have only non-negative elements, and the rowsums of matrixO+matrix1 are 1.

Input: matrix0, matrix1, e[1071]
Output: flag
CheckMMAPRepresentation
Checks the marked markovian arrival process (MMAP: MAP with arrivals of different

types) conditions on input matrices. I.e. matrix0, Zle matriz; is a MAP and matriz;
has only non-negative elements.

Input: vector of matrix0, matrix1, ... matrixK, e[10714]
Output: flag
CheckDMMAPRepresentation
Checks the discrete marked markovian arrival process (DMMAP: DMAP with arrivals

of different types) conditions on input matrices. I.e. matrix0, Zf‘il matrix; is a DMAP
and matrixz; has only non-negative elements.

Input: vector of matrix0, matrix1, ... matrixM, g[1071]
Output: flag

NormmomsFromMoms

Computes normalized moments (m;) from moments (p;): m; = —

Hi—1H1

Input: moments
Output: moments
MomsFromNormmoms

Computes the moments (y;) from normalized moments (m;) based on p; = m;p; 141
assuming p; = 1.

Input: moments
Output: moments
ReducedmomsFromMoms
Computes reduced moments (r;) from moments (p;): r; = p; /4!
Input: moments

Output: moments



MomsFromReducedmoms
Computes moments (y;) from reduced moments (r;): p; = ;!

Input: moments
Output: moments

FactorialmomsFromMoms
Computes factorial moments (f;) from moments (y;), where u; = E(X') and f; =

EX(X-1D)(X=-2)...(X—-i+1))
Input: moments
Output: moments

MomsFromFactorialmoms
Computes moments (y;) from factorial moments (f;), where pu; = E(X") and f; =

EX(X-1D)(X=-2)...(X—-i+1))

Input: moments

Output: moments
JFactorialmomsFromJMoms

Computes factorial joint moments ( f;;) from joint moments (y;;), where p;; = E(X'Y7)
and fi; = B(X(X -1)(X-2)...(X i+ )Y =1)(Y =2)...(Y —j+1)).

Input: moments
Output: moments
JMomsFromJFactorialmoms

Computes joint moments (;;) from factorial joint moments (f;;), where p;; = F(X'Y7)
and fi; = B(X(X -1)(X-2)...(X —i+ )Y =1)(Y =2)...(Y —j+1)).

Input: moments
Output: moments
KroneckerProduct
Gives the Kronecker product of the two matrices
Input: matrix0, matrix1
Output: matrix
KroneckerSum
Gives the Kronecker sum of the two matrices
Input: matrix0, matrix1

Output: matrix

2.2 BuToolsPH

The BuToolsPH package contains the following functions



RandomPH
Generates a random PH of the given order, that contains zeroEntries zeros. The mean
of the generated PH can be set. The function stops after mazTrials failed try. A try
can fail, if a row contain too many zeros, or the results order is less than the given one.

Input: order, zeroEntries, mean [1], e[10714], maxTrials [25000]
Output: vector-matrix pair
RandomDPH
Generates a random DPH of the given order, that contains zeroFEntries zeros. The

function stops after maxTrials failed try. A try can fail, if a row contain too many
zeros, or the result’s order is less than the given one.

Input: order, zeroEntries, £[107!4], maxTrials [25000]
Output: vector-matrix pair
PHFromME

Converts a non-Markovian representation (vector-matrix pair) to Markovian represen-
tation of a phase type distribution if possible using the procedure from [20].

Input: vector-matrix pair
Output: vector-matrix pair
MomentsFromME
Calculates the first k moments of a ME given with a vector-matrix pair (a, A):

ila(—A)~T (i = 1,2,...,k) [14]. Tt fails if the input isn’t a valid ME representa-
tion.
Input: vector, matrix, k [2n — 1], g[107"]
Output: moments

MomentsFromMG
Calculates the first k moments of a MG given with a vector-matrix pair (a, A): where
the factorial moments are f; = ila(I — A) A1 (i = 1,2,...,k) and it transforms
the factorial moments to ordinary moments. It fails if the input isn’t a valid MG
representation.

Input: vector, matrix, k [2n — 1], [107]
Output: moments
MomentsFromPH
Checks is the input is a PH and calculates the first k moments of a PH given with a

vector-matrix pair (o, A): ila(—A)7T (i = 1,2,...,k) [14]. Tt fails if the input isn’t
a valid PH representation.

Input: vector, matrix, k [2n — 1], e[10711]
Output: moments
MomentsFromDPH

Checks is the input is a DPH and calculates the first k moments of a DPH given with
a vector-matrix pair (a, A): where the factorial moments are f; = ila(I — A) A" 1



(1=1,2,...,k) and it transforms the factorial moments to ordinary moments. It fails
if the input isn’t a valid DPH representation.

Input: vector, matrix, k [2n — 1], [1071]
Output: moments
MEFromMoments
Based on a set of moments p; (1 = 1,2,..., k) it calculates a vector-matrix pair (a, A)

such that p; = ila(—A)™1 (i = 1,2,...,k) [20, 21]. Check the size of the obtained
representation because the procedure might stop before fitting all moments.

Input: moments
Output: vector, matrix
MGFromMoments

Based on a set of moments y; (1 = 1,2,..., k) it calculates a vector-matrix pair (a, A)
such that p; (i =1,2,...,k) are the moments of the returned MG distribution.

Input: moments
Output: vector, matrix
PH2Canonical

Calculates the order 2 canonical representation from any order 2 vector-matrix repre-
sentation, if exists based on [19]. Tt fails if the input isn’t a valid ME representation.

Input: vector-matrix pair, €[10714]
Output: vector-matrix pair
DPH2Canonical

Calculates the order 2 canonical representation from any order 2 vector-matrix repre-
sentation, if exists based on [I7]. It fails if the input isn’t a valid MG representation.

Input: vector-matrix pair, £[107"]
Output: vector-matrix pair
PH3Canonical
Calculates the order 3 canonical representation from any order 3 vector-matrix rep-

resentation, if exists based on [I1]. It gives a warning, if the input isn’t a valid PH
representation, and fails if the input isn’t a valid ME representation.

Input: vector-matrix pair, €[10714]
Output: vector-matrix pair
DPH3Canonical

Calculates the order 3 canonical representation from any order 3 vector-matrix repre-
sentation, if exists based on [I7]. Tt fails if the input isn’t a valid DPH representation.

Input: vector-matrix pair, £[107%]

Output: vector-matrix pair

10



APHRepresentation
Calculates the APH (CF1) representation from any order n vector-matrix represen-
tation, if exists. The procedure is similar to the one in []], but after computing the
eigenvalues it computes a similarity matrix by solving a system of linear equations. It
fails if the input isn’t a valid ME representation.

Input: vector-matrix pair, £[107'4]
Output: vector-matrix pair
ADPHRepresentation
Calculates the ADPH representation from any order n vector-matrix representation, if
exists. The procedure is similar to the one in [§], but after computing the eigenvalues

it computes a similarity matrix by solving a system of linear equations. It fails if the
input isn’t a valid MG representation.

Input: vector-matrix pair, £[10714]
Output: vector-matrix pair
MonocyclicRepresentation

Calculates the representation of the input ME distribution with Markovian monocyclic
generator defined in [16].

Input: vector-matrix pair, exit prob [0]
Output: vector-matrix pair

RepTrafo
Finds the transformation matrix from matrixl to matrix2, if it exists, and then it
applies that transformation to the input vector, such that {vectorl, matrixl} and
{vector2, matrix2} are two representations of the same ME distributions with poten-

tially different sizes. The sizes of the distributions are determined by the size of matrix1
and matrix2.

Input: vectorl, matrixl, matrix2
Output: vector2
APHFrom3Moments
Calculates the smallest APH with the given first 3 moments based on [2].
Input: moml, mom2, mom3
Output: vector-matrix pair
MEOrderFromMoments

Calculates the order of the ME distribution based on its moments using the determinant
of the Hankel matrix [4].

Input: moments, [10714]

Output: order

ME3member
Checks if the vector-matrix pair of size 3 defines an ME(3) distribution [10, 13]

Input: vector-matrix pair, £[107]

11



Output: flag

MEContOrder
Controllability (closing vector) order of the vector-matrix pair [5].  Assum-
ing A=matrix and 1T is the column vector of ones the controllability order is
Rank (1 AT A’L ---)

Input: vector-matrix pair

Output: order

MEObsOrder
Observability (initial vector) order of the vector-matrix pair [5]. Assuming a=vector
a
aA

and A=matrix the observability order is Rank |, 42

Input: vector-matrix pair
Output: order
CheckMEPositiveDensity
Checks if the vector-matrix pair results in a positive density
Input: vector-matrix pair, e[10714]
Output: flag

MEDensity
Gives back the value of the density function of a vector-matrix pair («, A) at point x:

f(z) = —aeA AL
Input: vector, matrix, x

Output: density value

2.3 BuToolsMAP

The BuToolsMAP package contains the following functions

RandomMAP
Generates a random MAP of the given order. You could specify the number of zero
entries in the representation. If it can’t generate a MAP after mazTrials trials, then
the function fails. The obtained MAP’s first moment is mean.

Input: order, zeroEntries [0], mean [1], €[107'%], maxTrials [100]
Output: matrix0, matrixl
RandomDMAP
Generates a random DMAP of the given order. You could specify the number of zero

entries in the representation. If it can’t generate a DMAP after maxTrials trials, then
the function fails.

12



Input: order, zeroEntries [0], [107'*], maxTrials [100]
Output: matrix0, matrix1
RandomMMAP
Generates a random MMAP of the given order and the given number of types. You
could specify the number of zero entries in the representation. If it can’t generate a

MMAP after maxTrials trials, then the function fails. The obtained MMAP’s first
moment is mean.

Input: order, types, zeroEntries [0], mean [1], e[1074], maxTrials [100]
Output: vector of matrix0, matrixl, ... matrixM
RandomDMMAP
Generates a random DMMAP of the given order and the given number of types. You

could specify the number of zero entries in the representation. If it can’t generate a
MMAP after mazTrials trials, then the function fails.

Input: order, types, zeroEntries [0], e[10714], maxTrials [100]
Output: vector of matrix0, matrix1, ... matrixM
MAPFromRAP
Similarity transforms the (matrix0, matrix1) non-Markovian representation of a RAP

to the Markovian representation (outputmx0, outputmx1), if possible using the method
from [20]. It fails if the input isn’t a valid RAP representation.

Input: matrix0, matrix1, e[1071]
Output: outputmx0, outputmx1
MMAPFromMRAP
Similarity transforms the non-Markovian representation of a marked RAP (matrix0

(n x n), ..., matrixM (n x n)) to the Markovian representation (outputmxO0, ..., out-
putmxM) of the same size, if possible using the method from [20].

Input: vector of matrix0, ..., matrixM

Output: vector of outputmxO0, ..., outputmxM

MarginalDistributionFromR AP
Computes the matrix exponential representation of the marginal distribution of a ra-
tional arrival process. It fails if the input isn’t a valid RAP representation.

Input: matrix0, matrix1, e[1071]
Output: vector-matrix pair
MarginalDistributionFromDRAP

Computes the matrix geometric representation of the marginal distribution of a discrete
rational arrival process. It fails if the input isn’t a valid DRAP representation.

Input: matrix0, matrix1, e[1071]

Output: vector-matrix pair
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MarginalDistributionFromMRAP
Computes the matrix exponential representation of the marginal distribution of a
marked rational arrival process. It fails if the input isn’t a valid MRAP represen-
tation.

Input: vector of matrix0, matrix1, ... matrixM, e[1071]
Output: vector-matrix pair
MarginalDistributionFromDMRAP
Computes the matrix geometric representation of the marginal distribution of a discrete

marked rational arrival process. It fails if the input isn’t a valid DMRAP representa-
tion.

Input: vector of matrix0, matrix1, ... matrixM, g[1071]
Output: vector-matrix pair
MarginalDistributionFromMAP

Computes the phase type representation of the marginal distribution of a Markovian
arrival process. It fails if the input isn’t a valid MAP representation.

Input: matrix0, matrix1, e[107]
Output: vector-matrix pair
MarginalDistributionFromDMAP

Computes the discrete phase type representation of the marginal distribution of a dis-
crete Markovian arrival process. It fails if the input isn’t a valid DMAP representation.

Input: matrix0, matrix1, e[107]
Output: vector-matrix pair
MarginalDistributionFromMMAP

Computes the phase type representation of marginal distribution of a marked Marko-
vian arrival process. It fails if the input isn’t a valid MMAP representation.

Input: vector of matrix0, matrix1, ... matrixM, g[1071]
Output: vector-matrix pair
MarginalDistributionFromDMMAP
Computes the discrete phase type representation of marginal distribution of a dis-

crete marked Markovian arrival process. It fails if the input isn’t a valid DMMAP
representation.

Input: vector of matrix0, matrix1, ... matrixM, g[1071]
Output: vector-matrix pair
MarginalMomentsFromRAP
Calculates the first k marginal moments of the RAP with representation Dq, Dy: p; =

ilm(—=Dgo)™'T (i = 1,2,...,k), where 7 is the solution of 7(—Dg) Dy = 7,7l = 1
[14]. Tt fails if the input isn’t a valid RAP representation.

Input: matrix0, matrix1, k [2n — 1], e[1071]

Output: moments
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MarginalMomentsFromDRAP
Calculates the first k marginal moments of the DRAP with representation Dy, Ds:
fi = ilm(I — Do) "Dy ' (i = 1,2,...,k) are the factorial moments (and they are
transformed into raw moments), where 7 is the solution of 7(I—Dgy) ' Dy = m, 7l = 1.
It fails if the input isn’t a valid DRAP representation.

Input: matrix0, matrix1, k [2n — 1], e[107"]

Output: moments

MarginalMomentsFromMRAP
Calculates the first k marginal moments of the MRAP of size n with representation
Dy, D,,...,Dpp: oy = ilm(—=Do)*T (i = 1,2,...,k), where 7 is the solution of
m(—Do) ' SV Dy = m,nll =1 [5]. Tt fails if the input isn’t a valid MRAP represen-
tation.
Input: vector of matrix0, matrixl, ... matrixM, k [2n — 1], [107]

Output: moments

MarginalMomentsFromDMRAP
Calculates the first k marginal moments of the DMRAP of size n with representa-
tion Dg, Dy,..., Dy fi = ilm(I — Do) "Dy ' (i = 1,2,...,k) are the factorial
moments (and they are transformed into raw moments), where 7 is the solution of
(I — Dg)? 224:1 Dy, = 7,71 = 1. It fails if the input isn’t a valid DMRAP repre-
sentation.

Input: vector of matrix0, matrix1, ... matrixM, k [2n — 1], €[107%]

Output: moments

MarginalMomentsFromMAP
Checks is the input is a MAP representation and calculates the first k marginal mo-
ments of the MAP with representation (Dg, Dy): p; = iln(=Dg) T (1 = 1,2,...,k),
where 7 is the solution of 7(—Dg) ™ 'D; = m, 71 = 1 [14]. Tt fails if the input isn’t a
valid MAP representation.
Input: matrix0, matrix1, k [2n — 1], e[107]

Output: moments

MarginalMomentsFromDMAP
Calculates the first k marginal moments of the DMAP with representation Dy, Dy:
fi = i'm(Dg) "Dy '1 (i = 1,2,..., k) are the factorial moments (and they are trans-
formed into raw moments), where 7 is the solution of 7(I — Do) Dy = 7,7l =1. It
fails if the input isn’t a valid DMAP representation.

Input: matrix0, matrix1, k [2n — 1], e[107]
Output: moments

MarginalMomentsFromMMAP
Calculates the first k marginal moments of the MMAP of size n with representa-
tion Do, Dy, ..., Dy oy = ilm(—Dgo) ™1 (i = 1,2,...,k), where 7 is the solution
of T1(—=Do) 'S0, Dy = 7w, nll = 1 [5]. It fails if the input isn’t a valid MMAP
representation.
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Input: vector of matrix0, matrix1, ... matrixM, k [2n — 1], [1074]

Output: moments

MarginalMomentsFromDMMAP
Calculates the first k marginal moments of the DMMAP of size n with representa-
tion Do, Dy,...,Dap: f; = iln(I — Do) "Dy M1 (i = 1,2,...,k) are the factorial
moments (and they are transformed into raw moments), where 7 is the solution of
(I — Do)t Zkle Dy, = m,nl = 1. It fails if the input isn’t a valid DMMAP repre-
sentation.

Input: vector of matrix0, matrix1, ... matrixM, k [2n — 1], [107]

Output: moments

LagkJointMomentsFromRAP

Calculates the matrix of the E(Xé,leag) moments of the RAP of size n with rep-
resentation Dy, Dy: FE(X}, X

1) = iljin(~Do)* ((~ Do) ' D1)"™” (~Do) 1 (i, —
0,1,...,K), where 7 is the solution of 7(—Dy) "Dy = 7,7l = 1 [I4]. It fails if the
input isn’t a valid RAP representation.

Input: matrix0, matrix1, K [n], lag [1], £[107"]

Output: moments

LagkJointMomentsFromDRAP
Calculates the matrix of the F(X{, X7, ,) moments of the DRAP of size n with repre-
sentation Dy, Dy, ... Dps. Factorial joint moments are:
E(X§, Xi,,) = iljla(I — Do)~ 'Do' " (I — Do)"'D)" (I — Do) 2Dy’ "1 (i,j =
0,1,...,K), where 7 is the solution of m(—Dg) ™Dy = 7,71 = 1. It fails if the input
isn’t a valid DRAP representation.

Input: vector of matrix0, matrix1, K [n], lag [1], [107"]

Output: matrix of joint moments

LagkJointMomentsFromMRAP A
Calculates the matrix of the E(X¢, X;, ,) moments for every arrival types of the MRAP

of size n with representation Dg, Dy, ... Dy;. Joint moments of type m are:
] . ) lag—1 )
B(X}0 X,) = Aj(=Do) D (=Do) ' XX, D) (=Do) U (1] =

m,0?
0,1,...,K), where 7 is the solution of 7(—Dg)™" Zi‘il D, = 7,71 = 1. It fails if
the input isn’t a valid MRAP representation.

Input: vector of matrix0, matrixl,. .. matrixM, K [n], lag [1], £[107]

Output: matrix of joint moments

LagkJointMomentsFromDMRAP

Calculates the matrix of the E(Xg, X

lag) moments for every arrival types of the DM-

RAP of size n with representation Dyg, D1, ... Djys. Factorial joint moments of type
m are: i

. . . . ag—
E(Xi0 Xf,,) = (I = Do) "'Dy"' Dy ((I- Do) ' L1, D) (I =
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Do) 772Dy’ 1 (i,7 = 0,1,...,K), where 7 is the solution of 7(—Dg)™ Ei\il D, =
m, w1 = 1. It fails if the input isn’t a valid DMRAP representation.

Input: vector of matrix0, matrix1,... matrixM, K [n], lag [1], £[107"]

Output: matrix of joint moments

LagkJointMomentsFromMAP ‘
Calculates the matrix of the E(Xé,XlJag) moments of the MAP of size n with rep-
resentation Dy, Dy: E(Xé,leag) = iljln(=Dg)~* (=Do)"'D1)'™ (—Do) 71 (i,j =
0,1,...,K), where 7 is the solution of 7(—Dg) "Dy = 7,71 = 1 [14]. Tt fails if the
input isn’t a valid MAP representation.
Input: matrix0, matrix1, K [n], lag [1], £[107"]

Output: moments

LagkJointMomentsFromDMAP
Calculates the matrix of the E(X3, X7, ,) moments of the DMAP of size n with repre-
sentation Dy, Dy, ... Dps. Factorial joint moments are:
BE(X}, X{,,) = ilj!n(I — Do) 'Do'~* (I — Do) Dy)"™ (I — Do) 2Dy/ 1 (i, j =
0,1,...,K), where 7 is the solution of m(—Dg) ™Dy = 7,71 = 1. It fails if the input
isn’t a valid DMAP representation.
Input: vector of matrix0, matrix1, K [n], lag [1], [107"]

Output: matrix of joint moments

LagkJointMomentsFromMMAP ‘
Calculates the matrix of the F(X(, X} ) moments for every arrival types of the MMAP

lag
of size n with representation Dg, Dy, ... Dy;. Joint moments of type m are:
] . . lag—1 )
B(Xiy0 X)) = 7(=Do) D ((-Do) 'S, D) (=Do) I (i) =

0,1,...,K), where 7 is the solution of 7(—Dg)™" Zi‘il D, = 7,71 = 1. It fails if
the input isn’t a valid MMAP representation.

Input: vector of matrix0, matrixl,. .. matrixM, K [n], lag [1], £[107]
Output: matrix of joint moments

LagkJointMomentsFromDMMAP

Calculates the matrix of the E(Xé,leag) moments for every arrival types of the

DMMAP of size n with representation Dg, Dy, ... Djy;. Factorial joint moments of

type m are:
) . ) . lag—1
B(Xj0 Xj,y) = (I = Do)~ D' Dy ((I- Do) M, D, )"

I -
Do) 72Dy’ ' (1,5 = 0,1,...,K), where 7 is the solution of 7(—Djg)™" Zi\il D, =
m,mll = 1. It fails if the input isn’t a valid DMMAP representation.

Input: vector of matrix0, matrix1,... matrixM, K [n], lag [1], €[107]

Output: matrix of joint moments

LagCorrelationsFromRAP
Calculates the lag correlations of the RAP with representation Dy, D7 of size n from
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E(Xo, X&) — pi (

2
H2 — [y
valid RAP representation.

Input: matrix0, matrix1, L [1], e[107]

k=1,2,...,L) [14]. It fails if the input isn’t a

lag 1 to lag L: ¢, =

Output: lagcorrelations

LagCorrelationsFromDRAP
Calculates the lag correlations of the RAP with representation Dy, Dy of size n from

E(Xy, X3,) — p?
(Xo, ’“)2 PU (k= 1,2,...,L) [T4]. It fails if the input isn’t a
M2 — Ky
valid DRAP representation.

Input: matrix0, matrix1, L [1], e[107]

lag 1 to lag L: ¢, =

Output: lagcorrelations

LagCorrelationsFromMAP
Calculates the lag correlations of the MAP with representation Dy, Dy of size n from

E(Xy, X3,) — p?
(Xo, ’“)2 PU (k= 1,2,...,L) [T4]. It fails if the input isn’t a
M2 — Ky
valid MAP representation.

Input: matrix0, matrix1, L [1], e[107]

lag 1 to lag L: ¢ =

Output: lagcorrelations

LagCorrelationsFromDMAP
Calculates the lag correlations of the MAP with representation Dy, Dy of size n from
E(Xy, Xp,) — p?
(Xo, k)z ast (k=1,2,...,L) [14]. Tt fails if the input isn’t a
M2 — Ky
valid MAP representation.

lag 1 to lag L: ¢ =

Input: matrix0, matrix1, L [1], e[107]
Output: lagcorrelations
RAPFromMoments

Calculates a RAP representation based on 2n-1 marginal moments and the n xn matrix
of the lag 1 joint moments based on [20].

Input: marginal moments, joint moments
Output: outputmx0, outputmx1
DRAPFromMoments

Calculates a DRAP representation based on 2n-1 marginal moments and the n x n
matrix of the lag 1 joint moments.

Input: marginal moments, joint moments
Output: outputmx0, outputmx1
RAPFromMomentsAndCorrelations

Calculates a RAP representation based on the first 2n — 1 marginal moments and first
2n — 3 lag correlation parameters based on [15].
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Input: marginal moments, lag correlations
Output: outputmx0, outputmx1
MRAPFromMoments

Calculates an MRAP representation based on 2n-1 marginal moments and the n x n
matrices of the lag 1 joint moments based on [9].

Input: marginal moments, vector of jointmomentsmatrix1, ... jointmomentsmatrixM
Output: vector of matrix0, matrix1, ... matrixM,
MAP2Canonical

Calculates the canonical representation of the input MAP of size 2 if possible based
on [3]. Tt fails if the input isn’t a valid MAP representation.

Input: matrix0, matrix1, e[1071]
Output: matrix0, matrix1
DMAP2Canonical

Calculates the canonical representation of the input DMAP of size 2 if possible based
on ... . It fails if the input isn’t a valid DMAP representation.

Input: matrix0, matrix1, e[1071]
Output: matrix0, matrix1

StairCase
Computes a smaller representation of a RAP if possible using the staircase algorithm
[5]. If Do=matrix0, Dj=matrixl, and B=similarity matrix then the small repre-
sentation is the upper-left non-zero block of (B 'DyB, B~'D;B). The outputs in
Mathematica and Matlab can be different for the same input due to that the built in

singular value decomposition gives different results, but both are sufficient. For more
details see the test examples.

Input: matrix0, matrix1, closing vector, [107]
Output: size, similarity matrix
MStairCase
Computes a smaller representation of an MRAP using staircase algorithm [5].
Input: vector of matrix0, matrix1, ... matrixK, closing vector, [10714]
Output: size, similarity matrix
MinimalRepFromRAP
Computes a minimal representation of a RAP using the staircase method once for

eliminating the redundancy caused by the initial vector and once for the closing vector
[5]-

Input: matrix0, matrix1

Output: smaller representation if exists
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MinimalRepFromMRAP
Computes a minimal representation of an MRAP using the staircase method once for
eliminating the redundancy caused by the initial vector and once for the closing vector
[5]. It fails if the input isn’t a valid MRAP representation.

Input: vector of matrix0, matrix1, ... matrixK
Output: vector of matrix0, matrix1, ... matrixK
MRAPContMinimize

Computes a minimal representation of an MRAP using the staircase method by elim-
inating the redundancy caused by closing vector [5].

Input: vector of matrix0, matrix1, ... matrixK
Output: vector of matrix0, matrix1, ... matrixK
MRAPObsMinimize

Computes a minimal representation of an MRAP using the staircase method by elim-
inating the redundancy caused by initial vector [5].

Input: vector of matrix0, matrix1, ... matrixK

Output: vector of matrix0, matrix1, ... matrixK

2.4 BuToolsSpecialProcesses

The BuToolsSpecialProcesses package contains functions associated with transient
MAP/RAP (TMAP/TRAP), Markovian/rational binary trees (MBT/RBT). These func-
tions are associated with the computation of characterizing set of moments of these processes
and the computation of a representation based on a characterizing moments set.

MomentsFromTRAP
Calculates the order 0,1,...,2n — 1 marginal moments (y; = E(X{Ix,<00)) of the
TRAP of size n with representation o, Do, Dy: p; = ila(—Dg) " 1DyT (i =
1,2,....2n— 1) [1.
Input: vector, matrix0, matrix1

Output: moments
LaglJointMomentsFromTRAP ’
Calculates the matrix of the E(X!X{Ix,<cox;<c0) moments of the tran-

sient RAP with representation «, Dy, Dy: E(X{, X{[X0<00,X1<oo) =
i!j!a(—Do)iiilDl(—Do)ijilDl]I (Z = 1, 2, e ,n) [7]

Input: vector, matrix(0, matrix1

Output: jointmoments

TRAPFromMoments
Calculates an TRAP representation based on the marginal moments and the lag 1 joint
moments based on [7].
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Input: marginal moments, jointmoments
Output: vector, matrix0, matrix1
TRAPContMinimize

Computes a minimal representation of an TRAP using the staircase method by elimi-
nating the redundancy caused by closing vector [7].

Input: vector, matrix(0, matrix1,
Output: vector, matrix(0, matrix1,
TRAPObsMinimize

Computes a minimal representation of an TRAP using the staircase method by elimi-
nating the redundancy caused by initial vector [7].

Input: vector, matrix(0, matrix1,
Output: vector, matrix(0, matrix1,
TRAPMinimize

Computes a minimal representation of an TRAP using the staircase method once for
eliminating the redundancy caused by the initial vector and once for the closing vector

[7].

Input: vector, matrix(0, matrix1,

Output: vector, matrixO, matrix1,
MomentsFromRBT

Calculates the order 0, 1,...,2n — 1 marginal moments (E(X{Ix,<x)) of the RBT of
size n with representation a, Do, B: ; = ila(—Dg) " 'BT (i = 1,2,...,2n — 1) [1].

Input: vector, matrix0 (n x n), matrixl (n x n?),
Output: moments
GammaijkMomentsFromRBT

Calculates the matrix of the vix = F(XEX]YF Ik, <o0.x,<00vp<o0) moments [7] of the
RBT with representation «, Dy, B:

E((X¥)", X{]) = iljlkla(—=Do) " 'B ((-Do) " 'BlI® (-Dy) *'BI).

Input: vector, matrix0, matrix1
Output: jointmoments
RBTFromMoments

Calculates an RBT representation based on the marginal moments and the «;;; mo-
ments based on [7].

Input: marginal moments, jointmoments

Output: vector, matrix0 (n x n), matrixl (n x n?),
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RBTContMinimize
Computes a minimal representation of an RBT using the staircase method by elimi-
nating the redundancy caused by closing vector [7].

Input: vector, matrix0 (n x n), matrixl (n x n?),

Output: vector, matrix0 (n x n), matrixl (n x n?),

RBTObsMinimize
Computes a minimal representation of an RBT using the staircase method by elimi-
nating the redundancy caused by initial vector [7].

Input: vector, matrix0 (n x n), matrixl (n x n?),

Output: vector, matrix0 (n x n), matrixl (n x n?),

RBTMinimize
Computes a minimal representation of an RBT using the staircase method once for
eliminating the redundancy caused by the initial vector and once for the closing vector
7.
Input: vector, matrix0 (n x n), matrixl (n x n?),

Output: vector, matrix0 (n x n), matrixl (n x n?),

TRAPToTMAP
Similarity transforms the non-Markovian representation of a transient rational arrival
process (vector (1 x n), matrixO (n x n), matrixl (n x n)) to the Markovian repre-
sentation (outputvec, outputmx0, outputmx1) of the same size, if possible using the
method from [20].

Input: vector, matrix0, matrix1

Output: outputvec, outputmx0, outputmsx1

RBTToMBT
Similarity transforms the non-Markovian representation of a rational binary tree pro-
cess (vector (1xn), matrix0 (nxn), matrixl (nxn?)) to the Markovian representation

(outputvec, outputmx0, outputmx1) of the same size, if possible using the method from
[20].

Input: vector, matrix0 (n x n), matrixl (n x n?),

Output: outputvec, outputmx0 (n x n), outputmx1 (n x n?),

2.5 BuToolsFluid

The BuToolsFluid package contains the functions for solving the multi regime (with piecewise
continuous fluid rates) Markov fluid models. These models are defined by the vector defining
the regions of the fluid buffer by their boundaries, vector thres, the generator matrix of the
background continuous time Markov chain, matrix Q, and the diagonal matrix of the fluid
rates, matrix R, both, for all regions of the fluid buffer. The vector of the boundaries contains
also the lower and the upper buffer limit. @ and R are three dimensional: Q(:,:, ) and
R(:,:,1) are the generator and the rate matrix for the i-th region. The functions computes
the probability masses at the boundaries, matrix pmatrix (number of boundaries X number
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of states), and the fluid density values for M (default= 10°) equidistance buffer levels, matrix
f (M x number of states).

additive_decomposition

This function is based on the additive decomposition method [12]. The program uses
the function X = lyapunov(A, B, C) to solve the following equation: A- X + X - B =
—C. (MATLAB’s Control System Toolbox contains a program called lyap.m which
solves the same problem, but with a different algorithm.) Furthermore it needs the
function X = ordereigs(A), which returns X, the ordered eigenvalues of the upper
quasi-triangular matrix A. (For newer MATLAB distributions it can be replaced with
ordeig().)

At this moment this function can not be used for Octave, as it uses ordschur() a
program only available in MATLAB.

Input: matrices Q, R and the vector thres

Output: matrices pmatrix, f

matrix_analytic

3

3.1

The function is based on the matrix-analytic method proposed in [6]. It calculates the
characterizing matrix W by the function matrix_analytic_psi. This computation is based
on the numerical solution of the quadratic matrix equation G = A0 + A - G + A2 - G?
by the cyclic reduction algorithm ([G, R,U] = QBD_-CR(A0, A1, A2)). (Other solvers

are available in the SMCSolver package [1].
Input: matrices Q, R and the vector thres

Output: matrices pmatrix, f

Other related libraries, utilities

The libphprng library

The 1ibphprng library is a pseudo-random number generation library for omnet++ and ns2.
It implements several efficient algorithms to obtain PH distributed random numbers.
Requirements to compile the library:

an existing installation of omnet++4
cmake build system
gnu C++ compiler

the Eigen3 linear algebra package for ¢4+

More details on the library (the algorithms included and the usage) can be found in [I§].
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