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Kivonat

A disszertációban egy eljárást javasolok kommunikációs rendszerek h́ıvás szintű el-
emzésére Markov hozam modellek felhasználásával. A vizsgált modell a hagyományos
többsebességű veszteséges rendszerek modelljének a kibőv́ıtése, amely figyelembe vesz az állandó
sávszélességigényű osztály mellett adapt́ıv és elasztikus forgalmi osztályokat is. A forgalmi
osztályok alapvető teljeśıtményjellemzői a h́ıvások blokkolásának valósźınűsége illetve a kapc-
solat alatt elért sávszélesség. A h́ıvás blokkolás defińıciója hasonló a többsebességű veszteséges
rendszerek modelljében használthoz illetve egy kapcsolat elért sávszélességét a kapcsolat alatt
átvitt adat mennyiségének és a kapcsolat idejének a hányadosával definiáljuk. Az elért
sávszélesség definiálása adaṕıv és elasztikus osztályokra lehetőséget teremt olyan link megosztási
politika tervezésére, amely egyidejűleg biztośıtja a megfelelő blokkolási valósźınűségeket
az adaṕıv és elasztikus forgalmi osztályok számára, illetve figyelembe veszi a maximális
megengedett blokkolási valósźınűséget az állandó sávszélességigényű osztályra és a minimálisan
megkövetelt elért sávszélességet az adapt́ıv és elasztikus kapcsolatok számára. A javasolt link
megosztási politika, amely a részleges átfedésű politika alkalmazása a vizsgált rendszerben,
paramétereinek meghatározásakor feltételeket szabhatunk az elért sávszélesség várható értékére
vagy valamilyen kvantilisére. A elért sávszélesség várható értékére szabott feltétel esetén ele-
gendő a rendszer Markov modelljének egyensúlyi viselkedését vizsgálni, mialatt kvantilisre
vonatkozó feltétel esetén a rendszer viselkedését léıró Markov hozam modell tranziens anaĺızise
szükséges. Általában a vizsgált renszereink nagy állapotterű modelleket eredményeznek. Mi-
alatt a Markov modellek egyensúlyi viselkedésének meghatározására számos algoritmus létezik
nincsen olyan általános módszer, amely megbirkózna 104 állapotnál több állapottal rendelkező
Markov hozam modellek tranziens elemzésével.

Két alapvető megközeĺıtési mód található Markov hozam modellek vizsgálatával foglalkozó
publikációkban. A rendszer szempontjából vizsgálva a modellt a legfontosabb tel-
jeśıtményjellemző az egy adott időintervallum alatt elvégzett munka nagysága, azaz a felhal-
mozott hozam nagysága. A felhasználó szemszögéből nézve rendszer úgy is elképzelhető, mint
ami adott mennyiségű munkát valamennyi idő alatt el tud végezni, azaz ekkor egy adott munka
teljeśıtési idejét vizsgáljuk. A disszertáció első fele ezt a kétfajta teljeśıtményjellemzőt vizsgálja
olyan Markov hozam modellek esetében, ahol mind állapotokhoz rendelt ráta alapú hozamokat,
mind állapot átmenetekhez rendelt azonnal jellegű hozamokat is tartalmaz a modell.

A disszertáció első fejezete egy rövid áttekintést ad a rendelkezésre álló numerikus algoritmu-
sokról, amelyek Markov modellek egyensúlyi illetve tranziens viselkedésének meghatározására
alkalmasak. Természetesen a Markov hozam modellek elemzésére alkalmas módszereket
is tárgyalja. A második és a harmadik fejezet egy új módszert javasol, amely alkalmas
nagy állapotterű (több mint 106 állapot) Markov hozam modellek tranziens viselkedésének
vizsgálatára. A javasolt algoritmus a vizsgált teljeśıtményjellemzők első n momentumát
határozza meg. A negyedik fejezet egy olyan algoritmust ismertet, amely a momentumokból
kiindulva meghatároz egy alsó és egy felső korlátot a lehetséges eloszlásfüggvényekre. Az utolsó
fejezet bemutatja a javasolt link megosztási politikát, illetve a hozzá kapcsolódó számı́tási
eljárásokat. A javasolt számı́tási eljárások felhasználják az előző fejezetek által bemutatott új
eredményeket is.
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Abstract

This dissertation proposes a method for call level analysis of a communication system
through Markov reward models. The studied model is the extension of classical multi-rate
loss models and considers non-adaptive stream, adaptive stream and elastic traffic classes. The
main performance measures of the traffic classes are the blocking probabilities and the through-
puts measures. The meaning of blocking probabilities are the same as in multi-rate loss models
and the throughput of a flow is defined as the amount of transferred data divided by the trans-
mission time. Considering throughput measures for non-adaptive stream (e.g. an adaptive
video codec) and for elastic traffic (e.g. file transfer protocol) gives a possibility to design link
allocation policy which is able to provide predefined blocking probability for the adaptive and
for the elastic flows, while it is able to take into account the blocking probability constriants for
non-adaptive stream flows and the minimum throughput constraint for the elastic and adaptive
flows. Determining the parameters of the proposed link allocation policy, which is the adap-
tation of the partial overlap policy, we can consider constraint on the average throughput or
constraint on throughput threshold. Applying constraint on the average throughput requires
only the steady-state analysis of the Markovian model of the proposed policy meanwhile the
transient analysis of the Markov reward model of the policy is needed to apply throughput
threshold constraint. In general, our system models result in large Markovian models. Mean-
while there are several algorithms for the steady-state analysis there is no general algorithm
which can deal with the transient analysis of Markov reward models with more than 104 states.

Two main different point of view have been assumed in the literature when dealing with
Markov reward models. In the system oriented point of view the most significant measure is
the total amount of work done by the system in a finite interval (accumulated reward). In the
user oriented point of view the system is regarded as a server, and the emphases of the analysis
is on the ability of the system to accomplish an assigned task in due to time (completion time).
The first part of the dissertation study these two measures of Markov reward models where
state associated rate rewards and transition associated impulse rewards are applied.

The first chapter of the dissertation gives a brief insight into the available numerical algo-
rithms for performing steady-state and transient analysis of Markovian models including also
Markov reward models. The second and the third chapter propose new algorithms for the
transient analysis of large Markov reward models. The algorithms can determine the first n
moments of the reward measures in large models with more than 106 states. The forth chap-
ter describes a numerical algorithm which determines upper and lower bounds of distribution
function based on its moments. The last chapter presents the proposed link allocation policy
with the complete link allocation procedure of a single link. The link allocation procedure uses
the new Markov reward models’ analysis algorithms and the proposed distribution estimation
method.
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Chapter 1

Introduction

I wrote this dissertation to summarize the significant results of my three-year Ph.D. research
(1997 − 2000). The dissertation has been prepared at the Budapest University of Technology
and Economics as a partial fulfillment of the requirements for obtaining the Ph.D. degree. I
have been a co-author of twelve conference papers [C1]-[C12] and seven journal papers [J1]-[J7].
I would like to express my greatest thanks to Miklós Telek and Gábor Fodor for their guidance
throughout my studies and for the joint work.

1.1 Motivation

In recent years there have been significant advances in researching and standardizing mech-
anisms that are capable of providing service differentiation in the Internet. While there still
seems to be a wide span of the methods which aim at providing differentiation among contend-
ing flows, it is widely accepted that there is a need for traffic engineering mechanisms which
control the access of the different traffic classes to network bandwidth resources. Generally,
the issue of bandwidth sharing should be considered in the context of dynamically arriving
and departing flows, which naturally calls for the application of the classical multi-rate models
[Ros95]. Multi-rate models have proved useful in the dimensioning and performance evaluation
of circuit switched as well as ATM networks. Thus, they provided motivation for extending
applicability of this modelling paradigm to the Internet context.

Unfortunately, a direct application of the multi-rate models for the traffic engineering in
the Internet is non-trivial, because

• by definition, it is not possible to associate a constant bandwidth with elastic services,
like the best effort without minimum rate guarantee or the ”better than best effort” with
minimum rate guarantee type of services and the bandwidth occupied by the elastic flows
depends on the current load on the link and on the scheduling and rate control algorithms
applied in the network nodes;

• the notion of blocking, when applied to elastic flows, needs to be reconsidered because
an arriving elastic flow might get into service even if at the arrival instant there is no or
very small bandwidth available;

• for many services, we need to take account of the fact that the actual residency time of
an elastic flow depends on the throughput which the flow receives, for instance, an ftp
session would last longer if its throughput decreases and real-time services’ holding time,
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2 CHAPTER 1. INTRODUCTION

on the other hand, is insensitive to the throughput, which is the case, for instance, with
a flow associated with an adaptive video codec.

Since the reservation based multi-rate models can not directly used, the multi-service envi-
ronment which is the meaningful extensions of multi-rate models is applied so as to allow the
inclusion of both QoS-assured and elastic traffic into a common framework.

Markov reward models (MRMs) allow us to perform the quantitative analysis of multi-service
environment. Hence, we need for an efficient MRM analysis algorithm which can be applied
to analyze complex call level models. Nevertheless MRMs have been studied since a long time
[How71] a significant bottleneck of the application of MRMs for analysis of complex systems
is the lack of numerical methods for large models. While the considered telecommunication
systems result in large MRMs. This fact moved my research direction in MRMs.

Consequently, my Ph.D. activity covered two different research fields. I have put research
activity on the extension of the multi-rate models to the Internet context meanwhile I have put
a strong effort to developing numerical algorithms to increase the applicability of MRMs.

1.2 Related works and contributions

Here I provide a review of the research results and I identify my contribution to this line of
research.

Modelling Multi-service environment

The theory of multi-rate models is covered by [Kau81, Ros95, Rob96]. Application examples of
this modelling paradigm include those concentrating on routing and call admission algorithms
for QoS assured traffic classes in [SVVP91, DM94] and also those that are concerned with the
optimal sharing of link bandwidth resources as in [CLW95, MMR96, BM98, MRW98]. However,
none of these models addresses the issue of applying this model to cases where elastic traffic is
also present in the network.

The notion of call admission control for elastic traffic and fairness issues are discussed
in a number of publications, see [Rob98, MR99a, MR99b, MR99c]. In fact, I feel that my
publications are in line with these papers; and extend them by proposing a computational model
to arrive at specific performance measures on the throughputs and the blocking probabilities.
The blocking probability vs. throughput tradeoff is also emphasized and directly connected to
the issue of charging in [Kel97, GK99].

The extension of the multi-rate model to include elastic services was proposed independently
of each other in [BF96] and in [AAT97]. The application of MRMs to compute the mean transfer
time of files with exponentially distributed sizes and the blocking probabilities for the complete
sharing method and assuming two traffic classes was proposed already in [ABFT97]. Those
results have been extended for the partial overlap link allocation strategy (”mixed scenario”) in
[QBM99], where the authors are concerned with the computation of the blocking probabilities
and also of the first moment of the transfer time of a file of size x.

The impact of pricing on the optimal bandwidth sharing strategy, again assuming two traffic
classes is considered in [AAT97] and in [FNB98].

From a more practical point of view, specifically examining the TCP traffic (which is the
predominant example on the elastic traffic class in the Internet), Feng et al. find it beneficial
to provide a minimum throughput for TCP flows, because in that case the TCP algorithm can
be modified such that the “goodput” of TCP connections is much improved [FKSS99].
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I summarize the contribution of my papers to this line of work in Chapter 6. We propose
a call level model [J1, J2, C4, C8] , called multi-service environment, for analyzing call level
performance measures such as the blocking probability and the throughput; and we provide
algorithms for the numerical analysis [J3, C1, C2, C3, C9] as well.

Markov reward models

The stochastic reward processes have been studied since a long time [How71], because the pos-
sibility of associating a reward variable to each system state increases the descriptive power
and the modelling flexibility. However, only recently, stochastic reward models (SRMs) have
received attention as a modelling tool in performance evaluation of computer and communi-
cation systems. Common assignments of the reward rates are: execution rates of tasks in
computing systems (the computational capacity) [Bea78, SSM87], number of active processors
(or processing power) [Bob87, GDI88], throughput [Mey82], available bandwidth [BFAT97] or
average response time [LW88].

Two main different points of view have been assumed in the literature when dealing with
SRM [KNT86]. In the system oriented point of view the most significant measure is the total
amount of work done by the system in a finite interval. This measure is often referred to as
performability [Mey82]. In the user oriented (or task oriented) point of view the system is
regarded as a server, and the emphasis of the analysis is on the ability of the system to accom-
plish an assigned task in due time. Consequently, the most characterizing measure becomes
the probability of accomplishing an assigned service in a given time.

A unified formulation to the system oriented and the user oriented point of view was provided
in [KNT86] together with the double Laplace transform expression of the completion time for
the case when the underlying stochastic process is a continuous time Markov chain (CTMC ).
This case is referred to as Markov reward model (MRM ).

Various numerical techniques were proposed for the evaluation of the system and the user
oriented measures of MRMs. Some of these methods calculate the distribution of reward mea-
sures. The distribution, in double transform domain, can be obtained by a symbolic matrix
inversion. If the size of the state space allows to obtain the solution of the symbolic matrix in-
version then multidimensional numerical inverse transform methods [CLW94] can provide the
time domain results, but, due to the computational complexity of the symbolic inversion of
matrices, this approach is not applicable for models with more than 20 states.

In time domain, reward measures can be described either by a set of equations with convo-
lution integrals or by a set of partial differential equations, but the numerical methods compute
the distribution in time domain are usually based on the evaluation of a double summation,
where both of the summation parameters increase to infinity. The discrete summations are ob-
tained by adopting the randomization technique [Ste94]. The randomization technique usually
provides nice numerical properties and an overall error bound. The numerical methods based
on this approach [DG91, NS96, SG98] differ in the complexity and memory requirement of one
iteration step.

MRMs with special features allow special, effective numerical approaches. In the case when
the underlying CTMC has an absorbing state, in which no useful work is performed, it is easy to
evaluate the limiting distribution of performability [Bea78]. The numerical method in [GT87]
makes use of a special structure of the underlying CTMC.

The numerical analysis of the distribution of reward measures is, in general, more complex
than the computation of moments of those reward measures. The mean of the performability
can be obtained by the transient analysis of the underlying CTMC. A numerical convolution
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approach is proposed in [IDH86] to evaluated the (n+1)-th moment of the performability based
on its n-th moment. A similar approach is followed in [TPF98] to calculate moments of the
user oriented measures, but the high computational complexity of the numerical convolution
does not allow to apply this approach for the analysis of MRMs with large (> 100) state spaces.

Other direct methods make use of a spectral - or partial fraction decomposition, which is
relatively easy for acyclic CTMCs, since the eigenvalues of the generator matrix are available
in its diagonal [STR88]. The subclass of MRMs where the user has an associated phase type
distributed random work requirement was studied in [BT90]. In this case the completion time
is phase type distributed, i.e., an “extended” CTMC can be defined which characterizes the
distribution of the completion time.

The contribution of my papers to this line of work is as follows. We propose algorithms for
the evaluation of large Markov reward models. The proposed analysis method [C2, C10] contains
the automatic generation of the (commonly large) Markov reward model, the calculation of the
moments of the reward measures and the estimation of the distribution based on the obtained
moments.

1.3 Notation

Here I introduce that only notation required for the statement of main results in this disserta-
tion. I give the basic rules which help to make difference among mathematical objects. The
applied objects are matrices, vectors, random variables, stochastic processes, sets, functions,
etc. The common notation rules make reading the dissertation easier.

I use different letter types for different objects. I indicate matrices with boldface letters
(e.g. Q). Vectors are denoted by underlying letters (e.g. v). I consider a vector indicated
with underlying as a column vector and I describe a row vector as the transpose of a column
vector (e.g. vT is a row vector). I use calligraphic letters to represent random variables, sets
and vector spaces (e.g. X ).

I introduce some constant objects. The null vector 0 that all entries are null, the identity
vector h that all entries equal 1, the null matrix 0 and the identity matrix I are used as constant
vectors and matrices. Furthermore, two special objects help our with analysis work, i.e., the
well-known unit step u[x] and the unit impulse δ[x].

I briefly review the Laplace transform. The Laplace transforms are a powerful practical tool.
The operation in transform domain could result in a simpler expression and the procession of a
Laplace domain result can be treated separately making use of well-known theoretical results.
The definition of Laplace (LT) and Laplace-Stieltjes (LST) transform of a function f(t) are

LT : f ∗(s) =

∫ ∞

0

f(t)e−st dt and LST : f∼(s) =

∫ ∞

0

e−st df(t) .

I apply the Laplace and Laplace-Stieltjes transform for matrix functions as well, e.g.

LST
{

eQt
}

= [sI −Q]−1

where the i, jth entry of the right hand side matrix is the Laplace-Stieltjes transform of the i, jth

entry of the left hand side matrix. Excellent overviews of Laplace transforms can be founded
in [Fel66, pp 429-497] and in [Kle75, Appendix I].



Chapter 2

Numerical algorithms for Markovian
models

A broad spectrum of solution techniques is available for performing steady-state and transient
analysis of Markov chains and Markov reward models. This chapter gives a brief insight into
the available numerical algorithms.

2.1 Steady-state analysis of Markov chains

This section presents algorithms which compute the steady-state distribution of a homogeneous
Markov chain with finite states. This section based on [Ste94, BBC94, IM98].

The steady-state solution of a Markov chain can be formulated as the solution of a special
linear system. We assume that the stationary solution vector p (steady-state distribution) exists
and unique. Calculating the stationary solution corresponds to solving a set of steady-state
equations of form

QT · p = 0 or PT · p = p (2.1)

where the first term refers to a continuous time Markov chain (CTMC ) and the second one
refers to a discrete time Markov chain (DTMC ). The generator matrix Q of a CTMC and the
one-step transition matrix P of a DTMC are singular and have rang n−1, where the considered
Markov chains have n states. Furthermore, if it is necessary, we can make a non-singular linear
system from (2.1) replacing an arbitrary equation with the

∑

pi = 1 normalization equation.
Alternatively, we may interpret the computation of p as an eigenvector problem. The

normalized right-hand eigenvector of QT for eigenvalue 0 is the stationary solution vector of a
CTMC and the eigenvector of PT for eigenvalue 1 is the stationary solution vector of a DTMC.

There are close relation between the two obtained linear systems in (2.1) and can be trans-
formed from each other. Starting from a CTMC, determined by its generator matrix Q, and
setting P = Q/q + I with q ≥ maxi|qii| we can obtain that P is a one-step transition matrix of
a DTMC and vice-versa.

There are several types of methods which can deal with the steady-state analysis. In most
cases numerical methods which are appropriate to solve a large linear system A · x = b will
be presented. Of course, some methods highly utilize the fact that b = 0 or b = h. We can
consider three main types of methods.

• Direct methods

5
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• Iterative methods

• Projection methods

The following three subsections summarize these methods.

2.1.1 Direct methods

Numerical methods that compute the solution of a mathematical problem in a fixed number of
operations are generally referred to as direct methods. Direct methods have the advantage that
an upper bound on the time required to obtain the solution could be determined in advance.
More important, for certain class of problem, direct methods result in more accurate answers
being obtained in less time [Ste82].

Gaussian elimination

Gaussian elimination may be viewed as a transformation from a linear system A · x = b to an
equivalent linear system U · x = d in which the matrix U is upper triangular; and from it the
solution x can be obtained through a simple back substitution. The procedure of obtaining the
matrix U from the matrix A is called the reduction phase and it is accomplished in (n − 1)
steps. The i-th step eliminates all non-zero elements below the i-th diagonal element by adding
a suitable multiple of the i-th equation into each equation below the i-th. This algorithm
requires n3/2 + n2/2 − 5n/6 additions and multiplications, and n2/2 + n/2 divisions.

The LU decomposition

The coefficient matrix A of a linear system can be written as the product of a lower triangular
matrix L and an upper triangular matrix U, i.e.,

A = L ·U .

The solution of the considered linear system, A · x = b, is then

x = U−1 · L−1 · b

and can be derived from a forward and a backward substitutions. Doolittle decomposition
assumes that diagonal elements of L equal 1 in contrast with Crout decomposition which
assumes that diagonal elements of U equal 1. If we assume that Doolittle decomposition is
being performed, then elements of matrix U can be determined by

uij = aij −
i−1
∑

k=1

likukj for i ≤ j

and elements of matrix L can be obtained by

lij =

[

aij −
j−1
∑

k=1

likukj

]

/ujj for i > j .

Gaussian elimination and Doolittle decomposition are closely related. The reduction phase of
Gaussian elimination is none other than the derivation of matrix U.
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The LDU decomposition

The coefficient matrix A can be written as

A = L ·D · U
where diagonal elements of the matrix L and the matrix U equal 1 and the matrix D is a
diagonal matrix. The solution of A · x = b, which is in the form

x = U−1 · D−1 · L−1 · b ,

can be calculated similarly as in the LU decomposition.

The GTH algorithm

The GTH (Grassman-Taksar-Heyman) algorithm [She82, GTH85] is a special version of Gaus-
sian elimination that has attributes that appear to make it even more stable than the usual
version. In GTH the diagonal elements are obtained by summing the off-diagonal elements
rather then performing a subtraction. It is known that subtractions can sometimes lead to loss
of significance in the representation of a real number. The concept evolved from probabilistic
arguments, and the originally suggested implementation is a backward elimination procedure.

One may conclude that, if compact storage schemes are used then compared with the best
possible implementation of Gaussian elimination GTH is likely to require either significantly
more memory, significantly more time, or both. Since Gaussian elimination is known to be
stable, it may be felt that the only real need for GTH occurs when the problem is very ill-
conditioned.

2.1.2 Iterative methods

The term ”iterative method” refers to a wide range of techniques that use successive approxi-
mations to obtain more and more accurate solution. Iterative methods can be expressed in a
simple form

x(k) = B · x(k−1) + c

where neither the matrix B nor the vector c depend upon the iteration count k. This section
presents four iterative methods, i.e., the power method, Jacobi method, Gauss-Seidel method
and the successive overrelaxation method (SOR).

The power method

The power method is applicable to the derivation of a right-hand eigenvector corresponding
a dominant eigenvalue, λ1, of matrix A. Assume that |λ1| ≤ |λ2| ≤ . . . ≤ |λn|. The power
method is described by the iterative procedure as follows

x(k) =
1

γk−1
A · x(k−1)

where γk =‖ A · x(k) ‖∞ is a normalizing factor. The rate of the convergence depends on the
ratios of eigenvalues (i.e. |λi|/|λj|). The smaller these ratios, the quicker the method tends
to corresponding eigenvector. Thus, the power method will not perform satisfactory when
|λ1| ≈ |λ2|.
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Jacobi method

Jacobi method is easily derived by examining each of the n equations in the linear system
A · x = b in isolation. If the i-th equation

n
∑

j=1

aijxj = bj

is solved for the value of xi while assuming the other entries of x remain fixed then we can
obtain

xi = (bi −
∑

j 6=i

aijxj)/aii

which is called as Jacobi method. In matrix terms, the definition of Jacobi method can be
expressed as

x(k) = D · (L + U) · x(k+1) + D−1 · b

where the matrices D,−L and −U represent the diagonal, the strictly lower-triangular and the
strictly upper-triangular parts of the matrix A, respectively. This method is easy to implement,
but its convergence is slow.

Gauss-Seidel method

Gauss-Seidel method is similar to Jacobi method, expect that it uses updated values as soon
as they are available. Formally, the Gaus-Seidel iteration formula is given by

x
(k)
i =

(

bi −
∑

j<i

aijx
(k)
j −

∑

j>i

aijx
(k−1)
j

)

/aii .

In matrix terms, the definition of Jacobi method can be expressed as

x(k) = (D − L)−1 · (U · x(k−1) + b) .

As before, D,−L and −U represent the diagonal, the strictly lower-triangular and the strictly
upper-triangular parts of the matrix A, respectively. In general, if Jacobi method converges,
Gauss-Seidel method will converge faster, though still relatively slowly.

The successive overrelaxation method

The successive overrelaxation method (SOR) can be derived from Gauss-Seidel method by
introduction an extrapolation parameter ω. This extrapolation takes the form of a weighted
average between the previous iterate and the computed Gauss-Seidel iterate successively for
each component given by

x
(k)
i = ωx̂

(k)
i + (1 − ω)x

(k−1)
i

where x̂ denotes a Gauss-Seidel iterate. In matrix terms, the SOR algorithm can be written as
follows.

x(k) = (D − ωL)−1 · (ωU + (1 − ω)D) · x(k−1) + ω(D − ωL)−1 · b
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If ω = 1, the SOR method simplifies to Gauss-Seidel method. A theorem due to Kahan
[Kah58] shows that the SOR method fails to converge if ω is outside the interval (0, 2). The SOR
may accelerate convergence of Gauss-Seidel (ω > 1, over-relaxation) or may yield convergence
when Gauss-Seidel fails (0 < ω < 1, under-relaxation). From the optimal choice of ω, the SOR
method may converge faster than Gauss-Seidel by an order of magnitude. The choice of an
optimal, or even a reasonable, value for ω has been the subject of much study. Some results
have been obtained for certain classes of matrices. Unfortunately, little is known at present for
an arbitrary linear system.

Block iterative methods

The concept of iterative methods can be extended to partitioned linear systems. By partitioning
the matrix A and the vector x we can rewrite the homogeneous linear system A · x = 0 as







A11 . . . A1N
...

. . .
...

AN1 . . . ANN






·





x1

x2

x3



 = 0

and we can write the matrix A as DN − (LN + UN) where the DN is a block diagonal matrix
and the LN and the UN are respectively strictly lower and upper block triangular matrices.

The block version of Gauss-Seidel method can be written as

Dii · x(k+1)
i =

i−1
∑

j=1

Lij · x(k+1)
j +

N
∑

j=i+1

Uij · x(k)
j .

This method implies that at each iteration we must solve N linear systems separately.
In a similar manner to block Gauss-Seidel, we may also define a block Jacobi method as

Dii · x(k+1)
i =

i−1
∑

j=1

Lij · x(k)
j +

N
∑

j=i+1

Uij · x(k)
j .

Finally, a block SOR method can be defined by

x
(k+1)
i = (1 − ω)x

(k)
i + ω

{

D−1
ii

(

i−1
∑

j=1

Lij · x(k+1)
j +

N
∑

j=i+1

Uij · x(k)
j

)}

.

In general such block iterative methods require more computation per iteration, but this is
offset by a faster rate of convergence.

2.1.3 Projection methods

The basic idea behind projection methods is quite simple. They extract an approximation of the
exact solution of a linear system from a small-dimension subspace. In general, the dimension
of this subspace more less than the dimension of the considered linear system.

The basic projection method is defined by three objects: a subspace K of dimension m from
which the approximation is selected; a subspace L that sets constraints necessary for extracting
the unique approximation from K. The third object is the constraint type. Consequently, we
need to define two subspaces K and L and the constraint type for a projection method. Natu-
rally, the ”performance” of a projection method depends on those three objects. In general, the
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constraint type comes from the problem direct (e.g. the approximated solution be orthogonal
to the subspace L).

The selection of the two subspaces may be very difficult. The majority of projection methods
adopt Krylov subspace method. Because we hope that a ”good” approximation lies in a low
dimension Krylov subspace and there is an ”efficient” algorithm to construct this subspace.
Formally, for a general linear system , A · x = b, the Krylov subspace of order m is defined as

Km(A, v) = span{v,A · v, . . . ,Am−1 · v} .

One can see that the construction of a m dimension Krylov subspace requires only m − 1
matrix-vector multiplications, hence we can efficient span this subspace. But for the other
requirement, i.e. a good approximation lies in a low dimension Krylov subspace, there is only
a general theorem (e.g. [IM98]) which can not be apply to our context (i.e. the determination
of the degree of minimal polynomial of matrix A is a very complex task).

Theorem 2.1 If the minimal polynomial of a nonsingular matrix A has degree m, then the
solution to A · x = b lies in the subspace Km(A, b).

In a Krylov subspace K = Km(A, b) the general idea of projection methods is to compute
the approximation as

x(m) = c1y1
+ . . . + cmy

m

where y
1
, . . . , y

m
form a basis of Krylov subspace and the coefficients c1, . . . , cm are chosen

according to the optimal criterion determined by the subspace L and the constraint type (e.g.
L = K and the residual vector r = A ·x(m)−b is orthogonal to the subspace L). Gram-Schmidt
algorithm (see Table 2.1) is widely used to construct an orthonormal basis for a subspace, this
step is necessary, because the vectors {b,A · b, . . . ,Am−1 · b} span a Krylov subspace but they
are not orthogonal.

Input

V, a basis for the subspace K
Output

Y, an orthonormal basis for K
R, the solution of V = Y ·R

r11 =‖ v1 ‖2;
y
1

= v1/r11;

For j := 1 To Dim(K) Do

Begin

For i:=1 To j-1 Do

rij = yT

i
· vj ;

y
j

= vj −
∑j−1

i=1 rij y
i
;

rjj =‖ y
j
‖2;

y
j

= y
j
/rjj ;

End;

Table 2.1: Algorithm : Gram-Schmidt orthogonalization, construction of an orthonormal basis
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The basic projection process

As before, consider a linear system

A · x = b

and let the subspace K be spanned by a set of m vectors V = [v1, v2, . . . , vm]. One can write
an approximate solution as a linear combination of these vectors, x = V · y, where y is a vector
of m components. In order to extract a unique y, one possibility is to require that the residual
vector, b−A · x, be orthogonal to m linearly independent vectors W = [w1, w2, . . . , wm]. The
vectors of matrix W are a basis of the subspace L. The above constraints mean that the
residual vector is required to be orthogonal to the subspace L, so we may rewrite constraints
as

WT · (b − A · V · y) = 0

which yields, assuming the matrix WT · A · V is nonsingular,

y = [WT · A · V]−1 · WT · b .

Note that, the matrix inverse is applied to a smaller m dimension matrix (m ≪ n).
If an initial guess x0 to the solution of the linear system is known, then we may seek a

correction vector δ to the initial guess x0 such that the vector x0 + δ will be a solution of
the considered linear system. This approach gives the way to construct an iterative projection
method. One starts with an initial guess x0 of the solution then seeks the correction vector δ1

and constructs the new approximation of the solution x1 = x0 + δ1. In the k-th step, we use
the (k − 1)-th approximated solution xk−1 as an initial approximation to determine the k-th
approximation. Hence, each iteration step eliminates some components of the residual vector.

As a result, if we set rk−1 = b − A · xk−1, the projection step must be applied to the linear
system

A · δk = rk−1

to compute the unknown vector δk and the new approach of x. Table 2.2 shows the general
iterative projection method.

x := x0;
Repeat

Select a pair of subspaces K and L;
Choose bases V and W for the subspaces;
r := b − A · x;
y = (WT ·A · V)−1 ·WT · r;
x = x + V · y;

Until Convergence;

Table 2.2: Method : Prototype of a general iterative projection method

Rayleigh-Ritz method

Rayleigh-Ritz method extracts eigenvalue and eigenvector approximations from a given sub-
space. Table 2.3 shows the algorithm. The approximation to eigenvalues and eigenvectors of
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the matrix A are taken to be λi and y
i
, respectively. Let Λ = diag{λ1, λ2, . . . , λm} be a di-

agonal matrix of the eigenvalues of B and let Y = [y
1
, y

2
, . . . , y

m
]. It may be shown that this

approximations are optimal in the sense that ‖ A · Y − Y · Λ ‖F is less than the norm of the
residual matrix from any other set of orthonormal vectors in the same subspace (K) with any
approximate eigenvalues [Par82].

Select a subspace K;
Choose an orthonormal basis V;
B = VT · A · V;
Solve (B · xi = λixi, ‖ xi ‖2= 1);
y

i
= V · xi;

Table 2.3: Algorithm : Rayleigh-Ritz eigensystem approximation of matrix A

Arnoldi method

Arnoldi method may be used to compute approximations to the largest eigenvalues (λi) and the
corresponding eigenvectors (y

i
) of an unsymmetrix matrix A (Table 2.4). Unlike simultaneous

iteration, these eigenvalues are not necessarily the largest in modulus, but largest in an algebraic
sense. The basic idea is that we construct the m dimension Krylov subspace (Km) of the matrix
A and a nonzero vector v then uses the modified Gram-Schmidt ortogonalization procedure
to construct an orthonormal basis for this subspace. After that the solution of the considered
eigenproblem is selected from the constructed Krylov subspace, so that,

z · (A · y
i
− λi y

i
) = 0 ∀z ∈ Km .

In other words, the residual vector between the approximated and the exact eigenvector is
orthogonal to subspace Km.

The generalized minimal residual method (GMRES)

A disadvantage of Arnoldi method is that it does not satisfy an optimality property. The
GMRES method does not suffer from this disadvantage. The approximated solution xm of
the considered linear system is chosen from Krylov subspace in such a way as to minimize
‖ b − A · xm ‖2. The GMRES method is described in [MSS84] in detail.

The conjugate gradient method for the normal equation (CGNR)

The well-known conjugate gradient method has proven itself to be very effective at solving
linear system whose coefficient matrix A is symmetric and positive-definite. When A is a real,
nonsingular matrix, the matrix AT · A is symmetric and positive-definite, and so conjugate
gradient method may be used to compute the solution of A · x = b from

AT ·A · x = AT · b .

These are called the normal equations. Alternatively, the conjugate gradient method may be
applied to the linear system

AT · A · z = b

and the solution to A · x = b computed as x = AT · z. It is referred to this method as CGNR
(conjugate gradient for the normal equations). Table 2.5 shows the algorithm.
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Input

A, an unsymmetric matrix
m, the size of the Krylov subspace
v1, the initial vector for Krylov subspace

Output

λi, the approximated eigenvalues
y

i
, the approximated eigenvectors

v1 = v1/ ‖ v1 ‖2;
For j := 1 To m Do

Begin

w = A · vj ;
For i := 1 To j Do

Begin

hij = vT
i · w;

w = w − hijvi;
End;

hj+1,j =‖ w ‖2;
vj+1 = w/hj+1,j ;

End;
Solve (H · si = λisi);
y

i
= V · si;

Table 2.4: Algorithm : Arnoldi eigensystem approximation of matrix A

The biconjugate gradient method (BCG)

The BCG algorithm may be viewed as being related to GMRES, for both build approximations
in Krylov subspace. The BCG approximation is computed from simple three-term recurrence
relations and thus requires much less work than GMRES. However, the approximation com-
puted by BCG do not satisfy any optimality property. Table 2.6 shows the description of the
BCG algorithm.

2.2 Transient analysis of Markov chains

This section focuses on algorithms which compute the transient distribution of a homogeneous
Markov chain with finite states. This section based on [Ste94].

The transient behavior of a CTMC can be described by the following system of differential
equations.

dP T (t)

dt
= P T (t) · Q (2.2)

The solution of (2.2) has an explicit form P T (t) = P T (0) · eQt. Consequently, we concentrate
on the calculation of the solution numerically.

For performing transient analysis we can choose mainly from three types of methods. Meth-
ods from the first type are based on available differential equation solvers. Methods from the
second type use the advantages of randomization and methods from the third type follow a
relatively novel approach of using Krylov subspace.
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Input

A, an unsymmetric matrix
b, a column vector
x0, an initial approximated solution
ε, the required precision

Output

x, the approximated solution

r0 := b − A · x0;
v0 := 0;
β0 := 0;
j := 0;
While rT

j · rj > ε Do

Begin

j := j + 1;
vj := AT · rj−1 + βj−1 vj−1;
αj := rT

j−1 · rj−1/vT
j · vj ;

xj := xj−1 + αj vj ;
rj := rj−1 − αj · A · vj ;
βj := rT

j · rj/rT
j−1 · rj−1;

End;

Table 2.5: Algorithm : Conjugate gradient method for normal linear system

2.2.1 Ordinary differential equation solvers

The solution of ordinary differential equations (ODEs), in our context (2.2), has been a subject
of extensive research, and it is therefore appropriate for us to examine the possibilities of apply-
ing existing ODE solving techniques to the determination of transient solutions of CTMCs. An
immediate advantage of such an approach is that numerical methods for the solution of ODEs
are applicable to analyze nonhomogeneous CTCMs, i.e. CTMCs whose generator matrices are
functions of time, i.e., Q(t). The available literature on the numerical solution of differential
equations is vast, e.g. [HNW87, HW91].

2.2.2 The randomization method

The randomization method provides a stable way to calculate P T (t) = P T (0) · eQt, where
the row vector P T (t) is the distribution of the considered CTMC, Z(t), at time t when the
process Z(t) is defined with the generator matrix Q and the initial distribution P (0). One can
introduce a new matrix A as Q/q + I. Applying this notation

P T (t) = P T (0) · eQt = P T (0) · e(A−I)qt = P T (0) · eAqt e−qt .

Then using Taylor series of the matrix exponential results in

P T (t) = P T (0) ·
∞
∑

i=0

Ai (qt)i

i!
e−qt .

If q ≥ max |qii| then the matrix A is a stochastic matrix. The randomization method will
be used in the next chapters where it is described in detail including global error bounds and
implementation aspects.
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Input

A, an unsymmetric matrix
b, a column vector
x0, a initial approximated solution
ε, the required precision

Output

x, the approximated solution

r0 := b − A · x0;
s0 := r0;
v0 := r0;
w0 := r0;
j := 0;
While rT

j · rj > ε Do

Begin

j := j + 1;
αj := sT

j−1 · rj−1/wT
j−1 ·A · vj−1;

rj := rj−1 − αj · A · vj−1;
sj := sj−1 − αj · AT · sj−1;
xj := xj−1 − αjvj−1;
βj := sT

j · rj/sT
j−1 · vj−1;

vj := rj + βjvj−1;
wj := sj + βjwj−1;

End;

Table 2.6: Algorithm : Biconjugate gradient method for normal linear system

2.2.3 Krylov subspace approach

The objective of Krylov subspace approach is the computation of an optimal approximation of
a vector function. The approximation of the vector function has the form pm−1(A) · v, where
pm−1(A) is a polynomial of degree m − 1 in A.

Note that, if the matrix A is QT t, the row vector vT is P T (0) and row vector wT equals
P T (t) then P (t) = P (0) · eQt is equivalent to w = eA · v. One can recognize that the matrix
polynomial pm−1(A) is an element of Krylov subspace of A and v, i.e. pm−1(A) ∈ Km(A, v).
So our problem may be posed as that of finding the element of the considered Krylov subspace
which best approximates the vector eA · v. If the ”best” is taken to mean in the least squares
sense, then the best approximation ŵ of w in the Krylov subspace satisfies

‖ w − ŵ ‖2= min
x∈Km(A,v)

‖ x − w ‖2= min
y∈Rm

‖ Bm · y − eA · v ‖2

where Bm = {b1, b2, . . . , bm} is a set of orthonormal basis vectors for Km(A, v).
Because the vectors span Krylov subspace are not orthonormal we need to construct an

orthonormal basis Bm, we can use Gram-Schmidt method for doing that. With the matrix Bm

in the hand we can choose b1 = v/ ‖ v ‖2 and write identity matrix as I = Bm · BT
m and then

eA · v = Bm · BT
m · eA · v = Bm ·

[

BT
m · eA ·Bm

]

· ‖ v ‖2 ·e1

where e1 is the unit vector {1, 0, 0, . . . , 0}. The purpose of Krylov subspace approach, namely
to project the exponential of a large matrix approximately onto a small Krylov subspace, is
accomplished by approximating BT

m · eA · Bm. This gives the approximation as

eA · v ≈‖ v ‖2 Bm · eHm · e1
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which still involves the evaluation of the exponential of a matrix, but this time of small dimen-
sion m of a particular structure, namely upper Hessenberg Bm and Hm can be computed by
Arnoldi algorithm. Y. Saad [Saa92] shows that an a priori error bounds exists for the procedure

‖ (eA · v) − (‖ v ‖2 Bm · eHm · e1) ‖2 ≤ 2 ‖ v ‖2
(‖ A ‖2)

m · e‖A‖2

m!
.

2.3 Definition of Markov reward models

Two objects determine a Markov reward model (MRM), which are the underlying CTMC and
the reward structure of the model (see e.g. [TPF98]).

The underlying CTMC: Let the stochastic process {Z(t), t ≥ 0} be a continuous time
Markov chain over the finite state space S = {1, 2, . . . , M} with the generator matrix
Q = [qij ] and the initial distribution P = [pi].

The reward structure: A non-negative real constant ri, called rate reward, is associated
with each state of the underlying CTMC representing the reward rate in the state i. Let R
be the diagonal matrix of the reward rates, i.e., R = diag(r1, r2, . . . , rM). A non-negative
real random variable Dij, called impulse reward, is associated with each possible state
transition of the underlying CTMC representing the amount of reward gained at every
state transition from the state i to the state j.

I introduce Laplace transform description of the reward structure, because it simplifies the
further model analysis. Let Dij(w) be the distribution (i.e., Dij(w) = Pr{Dij ≤ w}) and D∼

ij(v)
be the Laplace-Stieltjes transform (i.e., D∼

ij(v) =
∫∞

0
e−vwdDij(w)) of the random variable Dij .

The associated matrix is D∼(v) =
[

D∼
ij(v)

]

and the matrices of the moments of impulse rewards
are

D(n) =
[

E(Dn
ij)
]

= (−1)n ∂nD∼(v)

∂vn

∣

∣

∣

∣

∣

v=0

.

If there is no impulse reward associated with the state transition from the state i to the state j
then Dij(w) = u[w] and D∼

ij(v) = 1. The diagonal elements are defined similarly Dii(w) = u[w]
and D∼

ii (v) = 1.

There are two main reward measures defined in a Markov reward model, which are the
accumulated reward and the completion time.

Definition 1 The accumulated reward, B(t), is the random variable which describes the
accumulation of reward in time

B(t) =

t
∫

0

(

rZ(τ) + δτDZ(τ−),Z(τ)

)

dτ .

By this definition, B(t) is a stochastic process that depends on Z(u) for 0 ≤ u ≤ t; and
without any restriction we will assume B(0) = 0. According to the Definition 1 this work
restricts the attention to the class of models in which no state transition can entail to a loss of
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the accumulated reward. This kind of accumulation is also referred to as preemptive resume.
The distribution of the accumulated reward is defined by

B(t, w) = Pr{B(t) ≤ w} and Bi(t, w) = Pr{B(t) ≤ w | Z(0) = i} .

Note that

B(t, w) =
∑

i∈S

pi Bi(t, w) = P T · B(t, w),

hence, in the rest of this work, we will use the initial state dependent measures; and the global
measures can always be evaluated by the mean of this relation. Because algorithms which
provide moments of reward measures based on their Laplace transform domain descriptions
will be presented the following notations are introduced

B∼(t, v) =





∞
∫

0

e−wvdBi(t, w)



 and m(n)(t) =

∞
∫

0

wndB(t, w) = (−1)n ∂nB∼(t, v)

∂vn

∣

∣

∣

v=0
.

The complementary reward measure of the accumulated reward is the completion time. The
completion time is defined only when all rate and impulse rewards are non-negative.

Definition 2 The completion time, C, is the random variable which describes the time to
accumulate the random amount of reward W

C = min[ t : B(t) ≥ W] .

The distribution of C is defined as

C(t) = Pr{C ≤ t} .

Let C(w) be the random variable which describes the time to accumulate w (fix) amount of
reward and C(t, w) its distribution, i.e.,

C(w) = min[ t : B(t) ≥ w] and Ci(t, w) = Pr{C(w) ≤ t | Z(0) = i} .

Let G(w) be the distribution of the random variable W with support on [0,∞). By the
Definition 2,

Ci(t) =

∞
∫

0

Ci(t, w) dG(w) . (2.3)

The Laplace transform and moments of the completion time are defined as

C∼(s, w) =





∞
∫

0

e−tsdCi(t, w)



 and s(n)(w) =

∞
∫

0

tndC(t, w) = (−1)n ∂nC∼(s, w)

∂sn

∣

∣

∣

s=0
.

The distribution of the completion time is closely related to the distribution of the accumu-
lated reward by the mean of the following relation (see Figure 2.1.)

Bi(t, w) = Pr{B(t) ≤ w | Z(0) = i} = Pr{C(w) ≥ t | Z(0) = i} = 1 − Ci(t, w) . (2.4)

Note that this relation is valid for only those models where all rate and impulse rewards are
non-negative.
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Figure 2.1: A sample path of the underlying CTMC and the accumulated reward

2.4 Steady-state analysis of Markov reward models

Basically, there are mainly two types of MRMs where steady-state analysis can be considered.

• MRMs with absorbing states where rate rewards are zeros; we can consider the accumu-
lated reward, i.e., B(t);

• MRMs without absorbing states; we can consider the normalized accumulated reward,
i.e., B(t)/t .

The first case requires the transient analysis of the MRM. The other, where the considered
steady-state reward measure is g = lim

t→∞
B(t)/t, does not require transient analysis. From the

steady-state distribution (P SS) of the underlying CTMC we can obtain g using the following
relation.

g = P T
SS · R · h .

2.5 Transient analysis of Markov reward models

This section provides a comprehensive review of the literature related to the transient analysis
of MRMs.

The transient distribution of reward measures can be described with a set of partial differ-
ential equations. The transient behavior of the accumulated reward fulfills the following system
of differential equations

∂B(t, w)

∂t
+ R · ∂B(t, w)

∂w
= Q ⊙D(w) · B(t, w) (2.5)

where ⊙ denotes the piecewise matrix multiplication ( [A ⊙ B]ij = aij · bij) and the initial
condition can be derived from the model assumptions as

B(0, w) = u[w] and B(t, 0) = 0 (2.6)
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assuming that all reward rates are positive.
The double Laplace-Stieltjes transform of the considered differential equations with the

given initial condition has the following form.

B∼∼(s, v) = s(sI + vR −Q ⊙ D∼(v))−1 · h

The lack of the explicit solution of (2.5) and (2.6) initiated strong research activity which has
been put on the determination of B(t, w) numerically. Among several methods the most efficient
methods are based on Laplace transform, randomization or direct probabilistic approaches.

Table 2.7 compares the available algorithms with respect to their computational efforts and
memory requirements. My aim was to propose a new algorithm which has lower computational
complexity. Table 2.7 also summarizes main properties of the algorithms. I used the complexity
of the CTMC transient analysis as a reference point. In the table t refers to the time point of
the analysis, M is the cardinality of the state space, T is the number of state transitions, K is
the number of different reward rates and n is the number of computed moments.

Method CPU time memory output

Iyer, Donatiello and Heidelberger [IDH86] O(M4 · n2) n.a. moments
Smith, Trivedi and Ramesh [STR88] O(M3) n.a. distr.
Donatiello and Grassi [DG91] O(T · K · t2) O(K · M · t) distr.
Nabli and Sericola [NS96] O(T · K · t2) O(K · M · t) distr.
Silva and Gail [SG98] O(T · t2) O(M · t2) distr.

Proposed new method O(T · n · t) O(M · n) moments

CTMC transient analysis O(T · t) O(M)

Table 2.7: Complexity of numerical analysis methods of MRMs

I provide the detailed description of the considered methods in the following subsections.

2.5.1 Method from Iyer, Donatiello and Heidelberger

In the paper [IDH86] authors obtained the double Laplace transform of performability (accu-
mulated reward) for systems that may be modelled by semi-Markov processes. For the special
case of Markovian models they inverted the transform in the formal parameter. To get the
distribution from here, standard numerical Laplace transform inversion techniques outlined in
the paper could be used. For Markovian models they obtained a recursion relating the (n+1)-
th moment to the n-th moment. Further, they gave expressions for all moments and provided
recursion for computing the coefficients involved in those expressions.

The first theorem of the paper provides the relation among the moments of the accumulated
reward as

m(n+1)(t) = (n + 1)

t
∫

0

eQ(t−τ) · R · m(n)(τ) dτ .

Before presenting their recursive computational formula for m(n)(t) they described a spectral
representation method for the matrix eQt. Let λ1 = 0, λ2, . . . , λM be the eigenvalues of the
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generator matrix Q. They assumed that all of the eigenvalues of Q are distinct. Then

eQt =
M
∑

i=1

Zi eλit where Zi =

M
∏

l=2

(Q − λlI)

M
∏

k=1,k 6=i

(λi − λk)

.

Using this spectral representation the other theorem of the paper results in the following formula

m(n)(t) =
M
∑

i=1

n
∑

j=0

vn(i, j) eλit tj

where the coefficient vector vn(i, j) depends on the matrix Zi and the diagonal reward matrix
R. This theorem is the main result of the paper.

Exclusive of eigenvalue and eigenvector computations, which is a computational intensive
task, the time complexity to compute first n moments of the accumulated reward is upper
bounded by O(M4n2).

2.5.2 Method from Smith, Trivedi and Ramesh

In the paper [STR88] authors described an O(M3) algorithm for computing the distribution
of the accumulated reward, where M is the number of states in the considered Markov reward
model.

The described method is based on Lapalce transform domain description of the accumulated
reward that is given as

B∗∼(s, v) = (sI + vR− Q)−1 · h .

They used Cramer’s rule to formulate B∗∼(s, v) as a rational function in s. When the underlying
CTMC is starting from state i then

B∗∼
i (s, v) =

d
∑

j=1

mj
∑

k=1

aijk(v)(s − λj(v))−k (2.7)

where the λj(v) , j = 1, 2, . . . , d are the d distinct eigenvalues of the matrix [Q−vR], each with
algebraic multiplicity mj . The QR algorithm was used to numerically determine eigenvalues
of the matrix [Q − vR] in O(M3) time. Using (2.7) they inverted B∗∼

i (s, v) analytically with
respect to s and obtained

B∼
i (t, v) =

d
∑

j=1

mj
∑

k=1

aijk(v)

(k − 1)!
tk−1eλj(v)t .

It remained to invert B∼
i (t, v) respect to v. The number of methods to numerically invert

Laplace transform have been developed. To avoid unnecessary notational complexity, they
defined V ∼(v) = B∼

i (t, v)/v. Then, they employed the following method to numerically obtain
V (w), the inverse Laplace transform of V ∼(v), using the well-known complex version formula

V (w) =
eaw

π

∞
∫

0

ℜ{V ∼(u)eiwx} dx
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where u = a + ix. They used trapezoidal rule and Fourier series approximation to evaluate
approximation of V (w) numerically.

The time complexity to compute the approximated distribution of the accumulated reward
is upper bounded by O(M3).

2.5.3 Method from Donatiello and Grassi

In the paper [DG91] authors described an algorithm for computing the distribution of the
accumulated reward. The algorithm determines the distribution at a given point (t1, w1), i.e.
determines Bi(t1, w1).

The proposed method is based on the concept of randomization. They studied the ran-
domized Markov reward process (i.e. X ′(n) , n = 1, 2, 3, . . . a Markov chain with one-step
transition matrix P = Q/q + I and a Poisson process N (t) with parameter q). They defined
the following probability

Bi(t, w | k) = Pr{Bi(t) ≤ w | N (t) = k}

this is the accumulated reward distribution conditioned on the occurrence of k transitions
starting the process from the state i. Consequently, we can write the unconditioned distribution
as

Bi(t, w) =
∞
∑

k=0

Bi(t, w | k) Pr{N (t) = k} .

To evaluate Bi(t, w) they needed determining Pr{N (t) = k} and Bi(t, w | k). Obviously, for
the former

Pr{N (t) = k} =
(qt)k

k!
e−qt

while an explicit form for the latter is given by the following relation which is the main result
of the paper (in this version of the relation it is assumed all rate rewards are different)

Bi(t, w | k) = α
(k)
i u[w − rit] +

k
∑

h=1

M
∑

j=1

(

k

j − 1

)

β
(k)
i (j, h)

(

w − rjt

t

)k−h+1

u[w − rjt]

where coefficients α
(k)
i and β

(k)
i (j, h) are independent of t and w. They presented a recursive

expression for these coefficients. The time complexity of the proposed algorithm is O(KTt2)
and the required memory is O(KMt).

2.5.4 Method from Nabli and Sericola

In the paper [NS96] authors described an algorithm for computing the distribution of the
accumulated reward. The algorithm determines the distribution at a given point (t1, w1), i.e.
determines Bi(t1, w1).

The proposed method is based on the concept of randomization. They studied the random-
ized Markov reward process. The main theorem of their paper has the following form

Bi(t, w) = 1 −
[

∞
∑

n=0

(qt)n

n!
e−qt

n
∑

k=0

K
∑

j=1

(

n

k

)

sk
j (1 − sj)

n−k b(j)(n, k)I{rj−1t≤w<rjt}

]
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where sj =
w − rj−1t

(rj − rj−1)t
and the coefficient b(j)(n, k) is given by a special recursive expression.

Since different states may have the same reward rate they denoted the K + 1 different reward
rates with r0 < r1 < . . . < rK . The time complexity of the proposed algorithm is O(KTt2) and
the required memory is O(KMt).

2.5.5 Method from Silva and Gail

In the paper [SG98] authors described an algorithm for computing the distribution of the
accumulated reward. Their proposed algorithm can also deal with MRMs with rate and impulse
reward. The algorithm determines the distribution at a given point (t1, w1), i.e. determines
B(t1, w1).

They applied the randomization technique to the determination of the distribution of
ACIR(t) = B(t)/t which is the distribution of the accumulated reward averaged over t when
both impulse and rate based rewards are present. Since different states may have the same
reward rate, they denoted the K + 1 different reward rates with r1 < r2 < . . . < rK+1. Given
n transitions recall that the interval (0, t) is split into n + 1 sub-intervals and they assigned
a reward rate to each of them. Let k =< k1, k2, . . . , kK+1 > be a vector whose i-th compo-
nent represents the number of the intervals in (0, t) associated with reward rate ri and define
‖ k ‖= k1 + k2 + . . . + kK+1. A specific vector k is referred to as a rate coloring. Similarly, an
impulse coloring is a vector k̂ =< k̂1, . . . , k̂K̂+1 > whose i-th component represents the number
of transitions with impulse reward r̂i.

For n = 0, 1, 2, . . . let Kn = {k : ‖ k ‖= n + 1} be the set of rate colorings corresponding
the case of n transitions and similarly let K̂n = {k̂ : ‖ k̂ ‖= n} be the corresponding set of
impulse colorings. Define Ln = {r̂(k̂) : k̂ ∈ K̂n} to be the set of impulse rewards that can be
gained from n transitions. Then, the distribution of the accumulated reward averaged over t is
given as follows

Pr{ACIR(t) < w} =
∞
∑

n=0

(qt)n

n!
e−qt

∑

r̂∈Ln

∑

k∈Kn

Θ(n,k, r̂) Pr{ACIR(t) ≤ w | n,k, r̂}

where Θ(n,k, r̂) is the probability, given n transitions, of a rate coloring k and an average

accumulated impulse reward of r̂ =
∑K̂+1

i=1 r̂ik̂i. The time complexity of the proposed algorithm
is O(Tt2) and the required memory is O(Mt2) without applying impulse rewards.

2.6 Conclusion

This chapter gave a brief insight into numerical techniques of Markovian models. Only homoge-
neous Markovian models with finite states was considered. Handling nonhomogeneous and/or
infinity states models requires different solution approaches [Neu81, Neu89].

Section 2.1 focused on the steady-state analysis of CTMCs and presented three main types
of methods (direct methods, iterative methods and projection methods). Section 2.2 gave a very
short overview on the transient analysis of CTMCs and described the main properties of three
solution approaches (ordinari differential equation solvers, randomization method and Krylov
subspace approaches). Section 2.3 introduced the Markov reward models and the considered
two reward measures (accumulated reward and completion time). Section 2.4 examined the
possibility of steady-state analysis of MRMs. Finally, Section 2.5 provided a comprehensive
review of the MRMs’ transient analysis.



Chapter 3

Transient analysis of Markov reward
models with only rate reward

The goal of this chapter is to describe my results in MRMs analysis. I have published this
work in [J3, C2, C10]. I have made a study of MRMs which do not use the modelling power
of impulse reward. Early studies focused on only this type of MRMs, because considering
impulse reward increases the complexity of the analysis. So my aim was to develop a stable
numerical algorithm for this type of MRMs. The proposed algorithm provides moments of the
accumulated reward and the completion time.

3.1 Transform domain description of reward measures

This section presents closed-form expressions for the Laplace transform of the accumulated
reward and the completion time derived from using a new approach. Detailed derivations in
[IDH86, KNT86] resulted in the same expressions. I have published the following theorem with
its proof in [J3].

Theorem 3.1 Laplace transform of the accumulated reward is as follows

B∼(t, v) = e(Q−vR)t · h . (3.1)

Proof: Consider an exponentially distributed work requirement, W with parameter m, which
is independent from the underlying CTMC.

On the one hand, the completion time of the work requirement is characterized by the
following distribution function

Ci(t) =

∞
∫

0

Ci(t, w) dG(w) =

∞
∫

0

(

1 − Bi(t, w)
)

dG(w)

= m

∞
∫

0

(

1 − Bi(t, x)
)

e−mx dx = 1 − B∼
i (t, v)

∣

∣

∣

v=m

which, in vector form, is

C(t) = h − B∼(t, v)
∣

∣

∣

v=m
.

23
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Note that, m is a non-negative real variable and v is a complex variable.
On the other hand, Ci(t) is phase type distributed and its distribution can be obtained by

the representation of the phase type distribution [BT90] as

C(t) = h − e(Q−mR)t · h . (3.2)

And since (3.1) is an analytical complex function for ℜ(v) ≥ 0 the theorem is given. ✷

Some further Laplace transforms of (3.1) with respect to t → s and w → v are

B∼∼(s, v) = s(sI + vR− Q)−1 · h , (3.3)

B∼∗(s, v) =
s

v
(sI + vR −Q)−1 · h ,

B∗∼(s, v) = (sI + vR− Q)−1 · h ,

B∗∗(s, v) =
1

v
(sI + vR −Q)−1 · h .

Detailed derivations in [IDH86] resulted in the same expression as (3.3) for the distribution of
the accumulated reward in Laplace transform domain based on a different approach.

Laplace transform of the completion time can be derived from Laplace transform of the
accumulated reward. From (2.4), (3.3) and using the fact Q · h = 0 we have

C∼∼(s, v) = h − B∼∼(s, v)

= [I − s(sI + vR −Q)−1] · h
= [(sI + vR− Q)−1 · (sI + vR −Q) − s(sI + vR− Q)−1] · h
= (sI + vR− Q)−1 · (vR −Q) · h
= v(sI + vR − Q)−1 · R · h

(3.4)

which was obtained through a different way of reasoning in [KNT86].
Some further Lapalce transforms of the completion time are

C∼∼(s, v) = v(sI + vR− Q)−1 · R · h ,

C∼∗(s, v) = (sI + vR− Q)−1 · R · h ,

C∗∼(s, v) =
v

s
(sI + vR − Q)−1 · R · h ,

C∗∗(s, v) =
1

s
(sI + vR− Q)−1 · R · h .

Suppose R−1 exists, i.e. ri > 0 ∀i, equation (3.4) can be inverse transformed with respect
to the reward variable as follows

C∼∼(s, v) = v(sI + vR− Q)−1 · (R−1)−1 · h = v(sR−1 + vI− R−1Q)−1 · h , (3.5)

from which
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System A System B

generator matrix Q R−1 · Q
reward matrix R R−1

initial distribution P P

B∼(t, v) e(Q−vR)t · h e(R−1·Q−vR−1)t · h
C∼(s, w) e(R−1·Q−sR−1)w · h e(Q−sR)w · h
time domain BA(t, w) = h − CA(t, w) BB(t, w) = h − CB(t, w)

Table 3.1: Dual Markov reward models

C∼(s, w) = e(R−1Q−sR−1)w · h . (3.6)

Note that, we did not restrict the class of MRMs till (3.5), hence the results are valid for
any reducible and irreducible underlying CTMC and any non-negative reward rates. In (3.6),
the only restriction is that R must be invertable, i.e., strictly positive reward rates are only
allowed.

3.2 Duality of reward measures

The duality of the accumulated reward and the completion time comes from the close relation
between them in time domain (2.4) as

B(t, w) = h − C(t, w)

which is valid in Laplace transform domain as well.

B∼(s, w) = h − C∼(s, w)

B∼(t, v) = h − C∼(t, v)

B∼∼(s, v) = h − C∼∼(s, v)

As we will see later, the single Laplace transform domain description of reward measures are
used during the analysis, i.e. B∼(t, v) and C∼(s, w). Unfortunately, there is no direct relation
between the two considered reward measures in single Laplace transform domain. But, we can
construct dual systems as Table 3.1 shows.

We can recognize that the accumulated reward in System A is equivalent to the completion
time in System B when the rule of the reward (w or v) and the time (t or s) are interchanged.
This property is valid in time domain as well. This means that BA(t, w) = CB(w, t) and
CA(t, w) = BB(w, t). So we will refer to the System B as the dual of the System A and
vice versa. Consequently, assume that we model a system with a MRM and the interesting
performance measure is the accumulated reward then there are two ways of analysis, i.e.,

• analyzing the original MRM with respect to the accumulated reward;

• analyzing the dual MRM with respect to the completion time.
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3.3 Moments of the accumulated reward

The column vector m(n)(t), which is the n-th moment of the reward accumulated in [0, t), can
be evaluated based on its Laplace transform domain description as

m(n)(t) = (−1)n ∂nB∼(t, v)

∂vn

∣

∣

∣

∣

∣

v=0

. (3.7)

The following theorem provides an iterative method for evaluating (3.7). I have published
the theorem with its proof in [J3].

Theorem 3.2 The n-th moment of the accumulated reward, m(n)(t), satisfies the following
equation

m(n)(t) = (−1)n
∞
∑

i=0

ti

i!
N(n)(i) · h

where the coefficient matrix N(n)(i) is defined as

N(n)(i) =















I , if i = 0, n = 0 ,
0 , if i = 0, n ≥ 1 ,
Qi , if i ≥ 1, n = 0 ,
Q · N(n)(i − 1) − n R ·N(n−1)(i − 1) , if i ≥ 1, n ≥ 1 .

Proof: From (3.1) and (3.7) the n-th moment is

m(n)(t) = (−1)n ∂ne(Q−vR)t

∂vn

∣

∣

∣

∣

∣

v=0

· h

= (−1)n ∂n

∂vn

∞
∑

i=0

ti

i!
(Q − vR)i

∣

∣

∣

∣

∣

v=0

· h

= (−1)n
∞
∑

i=0

ti

i!

∂n

∂vn
(Q − vR)i

∣

∣

∣

∣

∣

v=0

· h .

To avoid unnecessary notational complexity the following notations introduced

N(n)(i) =
∂n

∂vn
(Q − vR)i

∣

∣

∣

∣

∣

v=0

, for ∀n, i .

From Leibniz rule follows an iterative method for constructing the matrix N(n)(i) as

N(n)(i) = Q · N(n)(i − 1) − n R · N(n−1)(i − 1),

with the initial conditions N(0)(0) = I, N(0)(i) = Qi and N(n)(0) = 0. ✷

The iterative method to evaluate the matrix N(n)(i) has the following properties
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• it is not possible to evaluate the n-th moment itself, but to obtain the n-th moment all
the previous moments, or at least the associated N(n)(i) terms, must be computed;

• matrix-matrix multiplications are computed in each iteration step;

• numerical problems are possible due to the repeated multiplication with matrix Q, which
contains both positive and negative elements, hence Theorem 3.2 is not directly applicable
to numerical analysis. Section 3.5 will relax these problems.

3.4 Moments of the completion time

The method presented here is the dual version of the method derived for performing the accu-
mulated reward analysis in Section 3.3.

The column vector s(n)(w), which is the n-th moment of the completion time, can be
evaluated based on C∼(s, w) as

s(n)(w) = (−1)n ∂nC∼(s, w)

∂sn

∣

∣

∣

∣

∣

s=0

. (3.8)

I have published the following theorem with its proof in [J3].

Theorem 3.3 The n-th moment of the completion time, s(n)(w), satisfies the following equa-
tion

s(n)(w) = (−1)n

∞
∑

i=0

wi

i!
M(n)(i) · h

where the coefficient matrix M(n)(i) is defined as

M(n)(i) =















I, if i = 0, n = 0 ,
0, if i = 0, n ≥ 1 ,
(R−1 · Q)i, if i ≥ 1, n = 0 ,
R−1 · Q · M(n)(i − 1) − n R−1 · M(n−1)(i − 1), if i ≥ 1, n ≥ 1 .

Proof: Using

s(n)(w) = (−1)n ∂n

∂sn
e(R−1·Q−sR−1)w

∣

∣

∣

∣

∣

s=0

· h

the proof follows the same pattern as the proof of Theorem 3.2. ✷

This iterative method has the same properties as the one presented in Theorem 3.2. In
contrast with Theorem 3.2, the application of Theorem 3.3 is restricted to MRMs with strictly
positive reward rates.
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3.4.1 System with zero reward rates

In case of some of the reward rates are zero the Theorem 3.3 can not be applied for computing
moments of the completion time. This section gives a method which can handle this case as
well.

Let us partition the state space S into two disjoint sets S+ and S0. S+ (S0) contains the
states with associated positive (0) reward rate, i.e., ri > 0; ∀i ∈ S+ and ri = 0; ∀i ∈ S0. The
accumulated reward does not increase during the sojourn in S0. If S0 has an absorbing subset
then the distribution of the completion time is defective. In the subsequent analysis we do not
allow this case.

Without loss of generality, we can number the states in S such that i < j, ∀i ∈ S+, ∀j ∈ S0.
By this partitioning of the state space the reward matrix and the generator matrix have the
following sub-block structure

R =

(

R1 0
0 0

)

and Q =

(

Q1 Q2

Q3 Q4

)

.

Note that the matrix Q4 is invertable as a consequence of the requirement that S0 has no
absorbing subset. The partitioned form of the performance vectors are

C∼∼(s, v) =

(

C∼∼
1 (s, v)

C∼∼
2 (s, v)

)

and s(n)(w) =

(

s
(n)
1 (w)

s
(n)
2 (w)

)

.

I have published the following theorem with its proof in [J3].

Theorem 3.4 The n-th moment of the completion time, s(n)(w), satisfies the following equa-
tions

s
(n)
1 (w) = (−1)n

∞
∑

i=0

wi

i!
L(n)(i) · h and s

(n)
2 (w) = (−1)n

∞
∑

i=0

wi

i!
H(n)(i) · h

where

L(n)(i) =



































































0 , if i = 0, n > 0 ,

(R−1
1 · Q1 −R−1

1 · Q2 · Q−1
4 · Q3)

i , if i ≥ 0, n = 0 ,

−R−1
1 · Q2 · Q−2

4 · Q3 − R−1
1 , if i = 1, n = 1 ,

(−1)n+1 n! R−1
1 ·Q2 · Q−n−1

4 · Q3 , if i = 1, n ≥ 2 ,

n
∑

l=0

(

n

l

)

L(l)(1) · L(n−l)(i − 1) , if i ≥ 2, n ≥ 1 ,
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H(n)(i) =



































(−1)nQ
−(n+1)
4 · Q3 , if i = 0, n ≥ 0 ,

Q3 · Q−1
4

[

R−1
1

(

Q1 − Q2 · Q−1
4 · Q3

)]i
, if i ≥ 0, n = 0 ,

n
∑

l=0

(

n

l

)

H(l)(i − 1) · G(n−l) , if i ≥ 1, n ≥ 1 ,

G(n) =























R−1
1 · (Q1 −Q2 · Q−1

4 ·Q3) , if n = 0 ,

R1 · Q2 · Q−2
4 · Q3 − R1 , if n = 1 ,

(−1)n+1 n! R1 · Q2 · Q−n−1
4 ·Q3 , if n ≥ 2 .

Proof: Substituting the vectors and matrices in (3.4) with their partitioned form and using the
following form of matrix inverse

(

A B
C D

)−1

=

(

(A −BD−1C)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 D−1 + D−1C(A − BD−1C)−1BD−1

)

where

A = sI1 + vR1 −Q1 , B = −Q2 , C = −Q3 and D = sI4 −Q4

for the vector C∼∼
1 (s, v) we have

C∼∼
1 (s, v) = v

[

sI1 + vR1 − Q1 − Q2 · (sI4 −Q4)
−1 · Q3

]−1 · R1 · h . (3.9)

Since the matrix R1
−1 exists by its definition the inverse Laplace transform of (3.9) gives

C∼
1 (s, w) = eα(s)w · h =

∞
∑

i=0

α(s)i

i!
wi · h

where

α(s) = R−1
1 · Q1 + R−1

1 · Q2 · (sI4 − Q4)
−1 · Q3 − sR−1

1 .

The n-th moment of the completion time is

s
(n)
1 (w) = (−1)n ∂n

∂sn
C∼

1 (s, w)

∣

∣

∣

∣

∣

s=0

= (−1)n
∞
∑

i=0

wi

i!

∂n

∂sn
α(s)i

∣

∣

∣

∣

∣

s=0

· h

where the n-th deviate of the matrix α(s)i can be evaluated using Leibniz rule. Now L(n)(i) =
∂n

∂sn
α(s)i

∣

∣

∣

s=0
this completes the proof for the performance vector s

(n)
1 (w).
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The same partitioning of (3.4) gives

C∼
2 (s, w) = (sI4 + Q4)

−1 · Q3 · C1(s, w)

=

∞
∑

i=0

wi

i!
(sI4 + Q4)

−1 · Q3 · α(s)i · h

=
∞
∑

i=0

wi

i!
Q3 · Q4

−1
[

R1
−1
(

Q1 − sI1 + Q2 (sI1 − Q4)
−1 Q3 − sI4

)]i · h

and applying Leibniz rule as before

s
(n)
2 (x) = (−1)n · ∂n

∂sn
C∼

2 (s, x)

∣

∣

∣

∣

∣

s=0

= (−1)n
∞
∑

i=0

wi

i!
H(n)(i) · h

gives the theorem. ✷

3.5 Numerical algorithms based on randomization

In the previous sections iterative methods were provided to compute moments of reward mea-
sures, but due to the properties of digital computers using floating point numbers a direct ap-
plication of those methods would result in numerical problems such as instabilities, “ringing”
(negative probabilities), etc. The main reason of these problems is that matrices with positive
and negative elements like Q are multiplied several times. To avoid these problems modified
algorithms are proposed. The proposed algorithms utilize the advantage of the randomization.
First, we construct the following two matrices as

A =
Q

q
+ I and S =

R

qd

where q = maxi,j (|qij |) and d = maxi(ri)/q. By this definition A is a stochastic matrix
(0 ≤ ai,j ≤ 1, ∀i, j and

∑

j ai,j = 1, ∀i) and S is a diagonal matrix such that 0 ≤ si,i ≤ 1, ∀i.
The dimension of d is unit of reward. d can be considered as a scaling factor of the accumulated
reward. Using these matrices

B∼(t, v) = e(Q−vR)t · h = e(A−vdS)qt · h e−qt . (3.10)

I have published the following theorem with its proof in [J3].

Theorem 3.5 The n-th moment of the accumulated reward can be computed using only
matrix-vector multiplications and saving only vectors of size #S as follows

m(n)(t) = n! dn

∞
∑

i=0

U (n)(i)
(qt)i

i!
e−qt (3.11)
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where the coefficient vector U (n)(i) is defined as

U (n)(i) =







0 , if i = 0, n ≥ 1 ,
h , if i ≥ 0, n = 0 ,

A · U (n)(i − 1) + S · U (n−1)(i − 1) , if i ≥ 1, n ≥ 1 .
(3.12)

Proof: Starting from (3.10) the proof of Theorem 3.5 follows the same pattern as the proof of
Theorem 3.2. ✷

To demonstrate the iterative algorithm of computing the coefficient vector U (n)(i) the first
elements of U (n)(i) evaluated based on (3.12) are provided in Table 3.2.

U (n)(i) i=0 i=1 i=2 i=3

n=0 h h h h
n=1 0 Sh ASh + Sh AASh + ASh + Sh
n=2 0 0 SSh ASSh + SASh + SSh
n=3 0 0 0 SSSh

Table 3.2: First elements of the coefficient vector (only rate reward)

Suppose we are interested in the first 3 moments of the accumulated reward. To perform
the computation 3 vectors of size #S need to store U (n)(i), n = 1, 2, 3. In each iteration
step i = 1, 2, 3, . . . matrix-vector multiplications and vector summations must be performed
according to (3.12) using the vectors of the previous iteration step and the constant matrices
A and S. Figure 3.1. shows the dependency structure of the computation. We can recognize
that only the (i − 1)-th column (iteration) of U is used for calculating the i-th column of U .
Note that S is a diagonal matrix and the matrix A is as sparse as the matrix Q is. Further
3 vectors of the same size need to store the “actual value” of m(n)(t), n = 1, 2, 3 according to
(3.11).

i=0 i=1 i=2 i=3 i=4

n=0

n=1

n=2

n=3

U(n)(i)

multiplying with  A

multiplying with  S

h hhhh

Figure 3.1: The dependency structure of iteration steps (only rate reward)

The following theorem provides a global error bound for the algorithm. I have published the
theorem with its proof in [J3].
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Theorem 3.6 The n-th moment of the accumulated reward can be calculated as a finite sum
and an error part, where the maximum allowed error is ε

m(n)(t) = n! dn
G−1
∑

i=0

U (n)(i)
(qt)i

i!
e−qt + ξ(G)

where the value of G can be determined by

G = min
g∈N

(

g
∣

∣

∣

g−2
∑

i=0

(qt)i

i!
e−qt > 1 − ε

(qt) n! dn

)

and the 0 ≤ ξ(G) ≤ h ε inequality holds for all the elements of the vectors.

Proof: By the definition of S and A

0 ≤ S · h ≤ h and 0 ≤ A · S · h ≤ h

hold piece-wise (as all the subsequent vector inequalities), hence U (n)(i) is bounded by

0 ≤ U (n)(i) ≤ i h . (3.13)

The error ξ(G) incurred when eliminating the tail of the infinite sum is also bounded by

ξ(G) = n!dn
∞
∑

i=G

U (n)(i)
(qt)i

i!
e−qt ≤ n!dn

∞
∑

i=G

h i
(qt)i

i!
e−qt ≤ qtn!dn

∞
∑

i=G−1

h
(qt)i

i!
e−qt (3.14)

which gives the theorem. ✷

The same approach can be applied for the analysis of the completion time, when all the
reward rates are positive, i.e., R−1 exists. Introduce the following two matrices as

B =
R−1 · Q

z
+ I and T =

R−1

zf
(3.15)

where z = maxi,j (|qij/ri|) and f = maxi(1/ri)/z. By this definition B is a stochastic matrix
and T is a diagonal matrix such that 0 ≤ ti,i ≤ 1, ∀i. f is a number with no dimension. Using
these matrices

C∼(s, w) = e(R−1Q−sR−1)w · h = e(B−sfT)zw · h e−zw .

I have published the following theorem with its proof in [J3].



3.5. NUMERICAL ALGORITHMS BASED ON RANDOMIZATION 33

Theorem 3.7 The n-th moment of the completion time can be computed using only matrix-
vector multiplications and saving only vectors of size #S as follows

s(n)(w) = n! fn
∞
∑

i=0

V (n)(i)
(zw)i

i!
e−zw

where the coefficient vector V (n)(i) is defined as

V (n)(i) =







0 , if i = 0, n ≥ 1 ,
h , if i ≥ 0, n = 0 ,

B · V (n)(i − 1) + T · V (n−1)(i − 1) , if i ≥ 1, n ≥ 1 .

Proof: Starting from (3.15) the proof of Theorem 3.7 follows the same pattern as the proof of
Theorem 3.3. ✷

Theorem 3.8 The n-th moment of the completion time can be calculated as a finite sum and
an error part, where the maximum allowed error is ε

s(n)(w) = n! fn

G−1
∑

i=0

V (n)(i)
(zw)i

i!
e−zw + ξ(G)

where the value of G can be determined by

G = min
g∈N

(

g
∣

∣

∣

g−2
∑

i=0

(zw)i

i!
e−zw > 1 − ε

(zw) n! fn

)

and the 0 ≤ ξ(G) ≤ h ε inequality holds for all the elements of the vectors.

Proof: The proof of Theorem 3.8 follows the same pattern as the proof of Theorem 3.6. ✷.

The numerical analysis of completion time in large models when states with zero reward rate
are present is more complicated. A numerical algorithm similar to the one in the Theorem 3.8
can be obtained as well, but on the one hand it is very complicated and on the other hand its
applicability is strongly limited by the cardinality of S0. The Q4 matrix of cardinality #S0 has
to be inverted in this case. In general, the complexity of inverting a matrix of cardinality 104

has higher computational complexity and memory requirement than the proposed numerical
algorithm with 106 states.

3.5.1 Algorithm description

Table 3.3 shows a Pascal like description of the algorithm described by the Theorem 3.6.
The description makes the implementation of the algorithm easy. This algorithm calculates
moments of the accumulated reward, but using the duality property the same algorithm can
be used calculating moments of the completion time, i.e. substituting the first three input
parameters as Q → Q · R−1, R → R−1 and t → w results in the algorithm described by the
Theorem 3.8.
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Input

Q, generator matrix of the underlying CTMC
R, diagonal matrix of the rate rewards
t, the time of accumulation
n, number of required moments
ε, required precision

Output

m(1)(t), the first moment of the accumulated reward
m(2)(t), the second moment of the accumulated reward

...
m(n)(t), the n-th moment of the accumulated reward

Memory requirement (disregarding the input data)
∣

∣

2 n + 1 [Vectors of size dim(Q)]
∣

∣

Required operations
∣

∣

2 (G − 1) (n + 1) [Matrix-vector multiplications]
∣

∣

(G − 1) (2 n + 1) [Vector-vector additions]
∣

∣

2 (G − 1) [Scalar-vector multiplications]
∣

∣

q := maxi,j(|qij|); d := maxi(ri)/q;
A := Q/q + I; S := R/(q d);
i := 0;
C := q t n! dn;
x := Poisson(0; qt);
While x < (1 − ε/C) Do

Begin
i := i + 1;
x := x + Poisson(i; qt);

End;
G := i + 2;

U (0) = h;

For i := 1 To n Do U (i) := 0;
For i := 1 To n Do m(i)(t) := 0;
For i := 1 To G − 1 Do

∣

∣

Begin
∣

∣

For j := n DownTo 0 Do
∣

∣

U (j) := S · U (j−1) + A · U (j);
∣

∣

∣

For k := 1 To n Do
∣

∣

m(k)(t) := m(k)(t) + U (k) · Poisson(i; qt);
∣

∣

∣

End;
∣

∣

For i := 1 To n Do
∣

∣

m(i)(t) := i! di · m(i)(t);
∣

∣

Table 3.3: Algorithm : First moments of the accumulated reward (only rate reward)

3.6 Numerical example

In this example, a performance parameter of a Carnegie-Mellon multiprocessor system is eval-
uated by the proposed algorithm. The system is similar to the one presented in [STR88]. The
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system consists of P processors, M memories and an interconnection network composed by
switches which allows any processor to access any memory. The failure rates per hour for the
system are set to be µP = 0.5, µM = 0.05 and µS = 0.02 for the processors, memories and
switches respectively.

Input

P = 16 number of processors
M = 16 number of memories
S = 8 number of switches
µP = 0.5 failure rate of a processor
µM = 0.05 failure rate of a memory
µS = 0.02 failure rate of a switch
µG = 0.1 preventive maintenance rate
λP = 2 repair rate of processors
λM = 1 repair rate of memories
λS = 0.5 repair rate of switches
λG = 1 preventive repair rate
GR = True enable/disable preventive maintenance

State space

a : 0 To P number of active processors
b : 0 To M number of active memories
c : 0 To S number of active switches

Extra state = { F } extra state
Generator matrix

(a, b, c) → (a + 1, b, c) = λP processor repair
(a, b, c) → (a, b + 1, c) = λM memory repair
(a, b, c) → (a, b, c + 1) = λS switch repair

GR : (F ) → (P, M, S) = λG global repair

(a, b, c) → (a − 1, b, c) = a · µP processor failure
(a, b, c) → (a, b − 1, c) = b · µM memory failure
(a, b, c) → (a, b, c − 1) = c · µS switch failure

GR : (a, b, c) → (F ) = µG global failure
Diagonal reward matrix

(a, b, c) = Min(a, b, c) processing power in state (a,b,c)
Initial distribution

(P, M, S) = 1 starting form the perfect state

Table 3.4: High-level description of the MRM of a Carnegie-Mellon multiprocessor system

Viewing the interconnecting network as S switches and modelling the system at the
processor-memory-switch level, the system performance depends on the minimum of the num-
ber of operating processors, memories and switches. Each state is thus specified by a triple
(a, b, c) indicating the number of operating processors, memories and switches, respectively.
We augment the preventive maintenance with state F . Events that decrease the number of
operational units are the failures and events that increase the number of operational elements
are the repairs. When a component fails, a recovery action must be taken (e.g., shutting down
the failed processor, etc.).

Two kinds of repair actions are possible, preventive maintenance is initiated with rate
µG = 0.1 per hour which restores the system to state (N, M, S) with rate λG = 1.0 per hour
from state F and local repair which can be thought of as a repair person beginning to fix a
component of the system as soon as a component failure occurs. We assume that there is only
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one repair person for each component type. Let the local repair rates be λP = 2.0, λM = 1.0
and λS = 0.5 for processors, memories and switches, respectively.

The system starts from the perfect state (P, M, S). The studied system has 16 processors,
16 memories and 8 switches, thus the state space consists of 2, 602 states. The performance
of the system is proportional to the number of cooperating processors and memories, whose
cooperation is provided by one switch. The reward rate is defined as the minimum number of
the operational processors, memories and switches. The minimal operational configuration is
supposed to have one processor, one memory and one interconnection switch. We consider the
processing power of the system averaged over a given time interval. Therefore we will study the
accumulate reward averaged over the time which gives the processing power. In this example
the processing power is always between 0 and 8 processors because the system has 8 switches.

Table3.4 defines the considered MRM using a high-level description. We developed a nu-
merical tool called MRMSolve [C2, C10] which determines moments of the accumulated reward
starting from this type of high-level MRM description.
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Figure 3.2: Mean and variance of the processing power

The mean and the variance of the processing power of the two cases, enabling or disabling
preventive maintenance, are compared in Figure 3.2. As it was expected, the mean processing
power of the case without preventive maintenance is less. The variance curves show that the
preventive maintenance causes higher variance in the processing power. Consequently, applying
preventive maintenance results in a higher mean processing power.

3.7 Conclusion

This chapter described an algorithm which calculates the moments of the accumulated reward
and the completion time. The algorithm can deal with MRMs with more than 106 states.

Section 3.1 gave a new approach to derive the Laplace transform domain description of the
reward measures. Section 3.2 studied the duality of the accumulated reward and the comple-
tion time. Section 3.3 and Section 3.4 presented the basic method which derived moments of
a reward measure from its Laplace transform domain description. Section 3.5 provided the
stable numerical algorithm for moments calculation. Finally, in Section 3.6 a Carnegie-Mellon
multiprocessor system was evaluated by the proposed algorithm.



Chapter 4

Transient analysis of Markov reward
models with rate and impulse reward

I address this chapter for presenting my results in the analysis of MRMs with rate and impulse
reward. I have published this work in [C1, C3]. Compare to the literature of MRMs with
only rate reward there are very few results available for the analysis of MRMs with rate and
impulse reward. So my aim was to develop a stable numerical algorithm which can deal with
this type of MRMs. The proposed algorithm provides moments of the accumulated reward and
the completion time.

The duality of reward measures plays an important role of MRMs analysis. The duality
of the completion time and the accumulated reward of a MRM with only rate reward was
discussed in Section 3.2. This chapter extends the duality concept for MRMs with rate and
impulse reward.

4.1 Transform domain description of the accumulated

reward

This section gives the distribution of the accumulated reward in single Laplace transform do-
main applying a new analysis approach that utilizes the duality of the considered reward mea-
sures.

The description of the accumulated reward is given by the following theorem. I have pub-
lished the theorem with its proof in [C3].

Theorem 4.1 Laplace transform of the accumulated reward is as follows

B∼(t, v) = e[Q⊙D∼(v)−vR]t · h
where ⊙ denotes the piecewise matrix multiplication ( [A⊙ B]ij = aij · bij).

The proof of the theorem is readable from the following two lemmas.

Lemma 4.1 Let Cm(t) be the column vector of the distribution of the completion time
when the work requirement is exponentially distributed with parameter m, i.e. Cm(t) =
[Ci(t) | G(w) = 1 − e−mw], and Ĉm(t) is the analytical continuation of Cm(t). The B∼(t, v)
satisfies

B∼(t, v) = h − Ĉm(t)
∣

∣

∣

m=v
.

37
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Proof of Lemma 4.1 From (2.3) and (2.4) we have

Ci(t) =

∞
∫

0

(

1 − Bi(t, w)
)

dG(w) = m

∞
∫

0

(

1 − Bi(t, x)
)

e−mx dx . (4.1)

Equation (4.1) can be rewritten using Laplace transform of the accumulated rewards

Ci(t) = 1 − vB∗
i (t, v)

∣

∣

∣

v=m
= 1 − B∼

i (t, v)
∣

∣

∣

v=m

which, in vector form, is

Cm(t) = h − B∼(t, v)
∣

∣

∣

v=m
.

Since B∼(t, v) is an analytical complex function for ℜ(v) ≥ 0 the lemma is given. ✷

Lemma 4.2 The completion time of an exponentially distributed work requirement with pa-
rameter m is a phase type distributed random variable, even with generally distributed impulse
rewards, and its distribution function can be evaluated as

Cm(t) = h − e[Q⊙D∼(m)−mR]t · h (4.2)

where the matrix [Q ⊙ D∼(m) − mR] is the generator of a phase type distribution.

Proof of Lemma 4.2 Due to the memoryless property of the exponentially distributed work
requirement the remaining work to complete is exponentially distributed with the same param-
eter at any instance of time before completion. At a state transition from the state i to the
state j the completion occurs if the impulse reward Dij is not less than the remaining work to
complete, Wr, i.e., the completion occurs with the following probability

Pr{completion} = Pr{Dij > Wr} =

∞
∫

0

Pr{Dij > w} dG(w) =

1 −
∞
∫

0

Pr{Dij ≤ w} dG(w) = 1 −
∞
∫

0

Dij(w) dG(w) =

1 − m

∞
∫

0

Dij(w) e−mw dw = 1 − m D∗
ij(m) = 1 − D∼

ij(m) .

(4.3)

Assuming the process stays in the state i at time t before completion the following cases
can occur in the interval (t, t + dt)

• no state transition and no completion occurs with probability 1 + (qii − rim)dt + σ(dt),

• no state transition and completion occurs with probability rimdt + σ(dt),
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Figure 4.1: A simple two-state MRM (impulse and rate rewards)

• state transition to j and no completion occurs with probability D∼
ij(m)qijdt + σ(dt),

• state transition to j and completion occurs with probability (1 − D∼
ij(m))qijdt + σ(dt),

• any other cases occur with probability σ(dt).

Based on this behavior a new CTMC can be defined by adding an absorbing state, M +1, to
the state space of the underlying CTMC, defining state transitions from ∀i ∈ S to M + 1 with
the rate mri +

∑

j,j 6=i qij(1 − D∼
ij(m)) and setting the transition rates between the states in S

according to the above described behavior. The absorbing state represents the completion of the
exponentially distributed work requirement. The new CTMC defines a phase type distribution
of order #S. Its #S ×#S generator is [Q⊙D∼(m)−mR], and its time to absorption is given
by (4.2). ✷

Lemma 4.2 is demonstrated through a simple example of a two-state system shown in Figure
4.1. The considered MRM is defined by the generator matrix of the underlying CTMC, the
rate reward matrix and the impulse reward matrix.

Q =

(

q11 q12

q21 q22

)

, R =

(

r1 0
0 r2

)

and D∼(v) =

(

1 D∼
12(v)

D∼
21(v) 1

)

.

The generator of the CTMC with the additional absorbing state, which describes the phase
type distribution, is





q11 − mr1 q12D
∼
12(m) mr1 + q12(1 − D∼

12(m))
q21D

∼
21(m) q22 − mr2 mr2 + q12(1 − D∼

21(m))
0 0 0





whose #S × #S (2 × 2) upper left submatrix has the form [Q ⊙ D∼(m) − mR].

4.2 Transform domain description of the completion

time

This section provides the distribution of the completion time in single Laplace transform domain
applying a new analysis approach which utilizes the duality of the accumulated reward and the
completion time.

The main theorem is provided for MRMs with strictly positive rate and phase type dis-
tributed impulse rewards, but comments are also made on the analysis of MRMs which have
states with zero reward rates and generally distributed holding times.
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4.2.1 MRM with positive rate and phase type distributed impulse

reward

Theorem 4.2 Laplace transform of the completion time of a MRM with positive rate and
phase type distributed impulse rewards can be computed by the following expression

C∼(s, w) = Γ ·
(

e(T−sF)w · h
)

(4.4)

where

• T is a generator matrix of a modified Markov chain over an enlarged state space G (S ⊂
G), that is composed by the state space of the original CTMC and the phase type structures
of the impulse rewards. The matrix elements representing state transitions between states
in S are maintained if there is no impulse reward associated with them and the rate of
these state transitions are set to Tij = qij/ri. If there is an impulse reward associated with
the state transition from i ∈ S to j ∈ S the Tij matrix element is 0 and there is a state
transition with rate qij/ri to the phase type structure of the associated impulse reward.
The exit of this phase type structure is directed to state j.

(This way the enlarged CTMC is such that the rate of the state transitions in S are
rescaled and the state transition from state i to j goes through the phase type structure
of the associated impulse reward, if any, i.e., a phase type distributed time, equal the
associated impulse reward, is added to the rescaled time of state transition.)

The structure of T is shown in Figure 4.2.

• F is a diagonal matrix of cardinality #G whose diagonal element associated with i ∈ S
equals 1/ri and with i ∈ G \ S equals 0.

( F can be viewed as the reward matrix of the enlarged Markov chain.)

• Γ = [ I | 0 ] is a filter matrix of size #S ×#G composed by a unity matrix of cardinality
#S and a #S × (#G − #S) matrix of zeros.

(The only role of the Γ matrix is that the multiplication with Γ eliminates the #G − #S
extra vector elements.)

I have published this theorem with its proof in [C1]. The proof of the theorem is provided
through the following two lemmas. First, the counterpart of Lemma 4.1 is provided.

Lemma 4.3 The column vector of the distribution of the completion time in Laplace transform
domain satisfies

C∼(s, w) = h − B̂u(w)
∣

∣

∣

u=s

where Bu(w) is the distribution of reward accumulated during an interval which is exponentially
distributed with parameter u, i.e., Bu(w) = [Bi(T , w) | T is exp. with parameteru], and B̂u(w)
is the analytical continuation of Bu(w).



4.2. TRANSFORM DOMAIN DESCRIPTION OF THE COMPLETION TIME 41

ββ01

ββ10

ββ31

0

0

00

(q 01/r0)α01

q 34/r 3

ββ34

[q ij/r i]
(q 10/r1) α10

(q 31/r3)α31

β'01

β'10

β'31

β34

1/r0

1/r1

1/r2

1/r3

1/r4

Figure 4.2: The structure of the generator and reward matrices of the enlarged Markov chain

Proof of Lemma 4.3 Using the properties of Laplace transform and equation (2.4) C∼(s, w)
can be written as

C∼(s, w) = s C∗(s, w) = s

∞
∫

0

C(t, w)e−stdt = h − s

∞
∫

0

B(t, w)e−stdt .

When s takes the positive real value u we have

C∼(u, w) = h −
∞
∫

0

B(t, w)ue−utdt = h − Bu(w)

and since C∼(s, w) is an analytical complex function for ℜ(s) ≥ 0 the lemma is given. ✷

Note that the role of the accumulated reward and the completion time are interchanged in
the Lemma 4.1 and Lemma 4.3.

Based on Lemma 4.3 the remaining task to obtain Theorem 4.2 is to determine the amount
of reward accumulated by a MRM with positive rate and phase type distributed impulse reward
during an exponentially distributed period of time.

Lemma 4.4 The amount of reward accumulated by a MRM with positive rate and phase
type distributed impulse reward during an exponentially distributed period of time is phase type
distributed and the generator matrix of this phase type distribution is T − uF, i.e.,

Bu(w) = Γ ·
(

h − e(T−uF)w · h
)

where u is the parameter of the exponential distribution of the accumulation period.
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Proof of Lemma 4.4 The proof is based on the fact that the accumulation period is exponen-
tially distributed, hence at any instant of time of the accumulation the remaining time till the
end of the accumulation period is exponentially distributed with the same parameter.

According to (2.3) Bi(T ) denotes the (random) amount of reward accumulated during the
exponentially distributed period T when Z(0) = i. Let τi be the first sojourn time in state
i. To evaluate the reward accumulated during a T long period starting from the state i the
following cases have to be considered

• T ≤ τi:
the probability of this case is

Pr{T ≤ τi} =
u

u + qi

where qi = −qii. Under this condition the accumulation period is exponentially dis-
tributed with parameter (u + qi), because

Pr{T ≤ t|T ≤ τi} = 1 − e−(u+qi)t .

The amount of reward accumulated in this case is also exponentially distributed with
parameter (u + qi)/ri.

• T > τi:
the probability of this case is

Pr{T > τi} =
qi

u + qi

.

Under this condition the sojourn time is exponentially distributed with parameter (u+qi),
since

Pr{τi ≤ t|T > τi} = 1 − e−(u+qi)t .

The amount of reward accumulated when T > τi is composed by three parts: the reward
accumulated in the state i, the phase type distributed impulse reward associated with the
state transition from the state i to the state j, and the reward accumulated starting from
the state j, Bj(T ), since the remaining time T − τi is also exponentially distributed with
the same parameter. Assuming T > τi the reward accumulated in state i is exponentially
distributed with parameter (u+qi)/ri, as before, since τi is exponentially distributed with
parameter (u + qi).

Considering these cases Laplace-Stieltjes transform of Bi(T ), B∼
i (T , v) = E(e−vBi(T )), satisfies

B∼
i (T , v) =

u

u + qi

u+qi

ri

v + u+qi

ri

+
qi

u + qi

(

u+qi

ri

v + u+qi

ri

∑

j∈S,j 6=i

qij

qi
D∼

ij(v) B∼
j (T , v)

)

=
u

riv + u + qi
+
∑

j∈S,j 6=i

qij

riv + u + qi
D∼

ij(v) B∼
j (T , v) .

(4.5)

Now, we can evaluate the initial state dependent time to absorption of the phase type
distribution characterized by the matrix T − uF. The random variable Ki denotes the time
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Figure 4.4: A simple two-state MRM with a phase type distributed impulse reward

to absorption starting from the state i. One can utilize that due to the given structure of the
matrix T and matrix F a phase type distributed time Dij is spent in G \ S if j is the next
state in S that is visited after a sojourn in the state i ∈ S. Further more, the row sum of the
matrix T−uF equals 0 for the states in G \S, i.e., there is no direct transition to the absorbing
state from G \ S. Figure 4.3 shows the schematic structure of the phase type distribution
characterized by the matrix T− uF. Based on this structure Laplace transform of Ki, K∼

i (v),
can be provided as a function of Laplace transform of Kj; j ∈ S as follows

K∼
i (v) =

u/ri

v + (u + qi)/ri
+
∑

j∈S,j 6=i

qij/ri

v + (u + qi)/ri
D∼

ij(v) K∼
j (v) . (4.6)

By the equavivalence of (4.5) and (4.6) the lemma is given. ✷

Lemma 4.4 is demonstrated through the following example of a two-state MRM (see Figure
4.4.), where a phase type distributed impulse reward (characterized by the vector α12 and the
matrix β12) is associated with the state transition from the state 1 to the state 2.

Q =

(

−q12 q12

q21 −q21

)

, α12 =
(

1 0
)

, β12 =

(

−(γ1 + γ2) γ1

0 −γ3

)

and β
′

12
=

(

γ2

γ3

)

.

By the Theorem 4.2 the T and F matrices are as follows

T =









−q12/r1 0 q12/r1 0
q21/r2 −q21/r2 0 0

0 γ2 −(γ1 + γ2) γ1

0 γ3 0 −γ3









and F =









1/r1 0 0 0
0 1/r2 0 0
0 0 0 0
0 0 0 0









.
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For easier understanding of the phase type characteristic of the matrix T−uF an absorbing
state (state 5) is also depicted in Figure 4.4. Note that the case of exponentially distributed
impulse reward can be captured as a special case, as a phase type distribution of order 1.

Potential state space reduction

In some special cases the number of additional states, resulted by the phase type structure of
the impulse rewards, can be reduced. These special cases can be classified as follows

• common impulse reward when entering state i: if βji = βki it is enough to represent
βji = βki once in T and the row vectors qji/rj αji and qki/rk αki must be saved at the

same positions of the j-th and k-th rows of T, respectively. β
′

ji
= β

′

ki
is saved once in

column i (left side of Figure 4.5). Note that αji and αki can be different in this case.

• common impulse reward when leaving state i: if βij = βik and αij = αik then it
is enough to represent βji = βki once in T and the row vector describing the enter of
this phase type structure has to be (qij + qik)/ri αij . The column vector describing the
exit of this phase type structure must be save twice. In column j it must be saved as
qij/(qij + qik) β

′

ij
and in column j as qik/(qij + qik) β

′

ik
(right side of Figure 4.5).
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Figure 4.5: The structures of the generator of the enlarged Markov chain

4.2.2 MRM with non-negative rate and phase type distributed im-

pulse reward

The case of zero reward rates can be viewed as the limiting case when the reward rate tends
to zero. Assuming that the reward rate of the state i (i ∈ S) decreases to zero the associated
transition rate of the matrix T increases to infinity. The limiting case when ri = 0 can be
handled based on the concept of Generalized Stochastic Petri Nets [ABC84] that has two kinds
of “states” (referred to as marking)
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• regular state – that is visited for an exponentially distributed period of time (referred to
as tangible marking),

• immediate state – that is visited instantaneously (referred to as vanishing marking).

If ri = 0 (i ∈ S) the state i became an immediate state, which performs only a random
switching, i.e., the process stays in the state i for zero time and after it visits

• the absorbing state – with probability
u

u + qi
,

• the state j, if there is no impulse reward associated with the i to j state transition – with

probability
qij

u + qi
,

• the phase type structure of the i to k state transition (if there is an impulse reward

associated with the i to k state transition) – with probability
qik

u + qi

.

Note that similar argument can be used to support states with zero rate rewards and
generally distributed holding times. The obtained Laplace transform domain description of the
completion time has the following form

C∼(s, w) = Γ ·
(

e(T⊙H∼(s)−sF)w · h
)

where the matrix H∼(s) describes the generally distributed holding times.
As it is shown in [ABC84] the obtained stochastic process is a CTMC, hence the amount

of reward accumulated by a MRM with non-negative rate and phase type distributed impulse
reward during an exponentially distributed period of time is phase type distributed as well.

4.3 Numerical analysis of MRMs with impulse and rate

reward

In this section numerical methods are introduced which provide moments of the accumulated
reward and the completion time based on their Laplace transform domain descriptions.

4.3.1 Moments of the accumulated reward

The column vector m(n)(t) can be evaluated based on B∼(t, v) as

m(n)(t) = (−1)n ∂nB∼(t, v)

∂vn

∣

∣

∣

∣

∣

v=0

. (4.7)

I have published the following theorem with its proof in [C3].

Theorem 4.3 The n-th moment of the accumulated reward, m(n)(t), satisfies the following
equation

m(n)(t) =

∞
∑

i=0

ti

i!
· N(n)(i) · h
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where the coefficient matrix N(n)(i) is defined as

N(n)(i) =



































Qi , if i ≥ 0, n = 0 ,
0 , if i = 0, n ≥ 1 ,
Q ⊙D(1) + R , if i = 1, n = 1 ,
Q ⊙D(n) , if i = 1, n ≥ 2 ,

n
∑

l=0

(

n

l

)

N(l)(1) · N(n−l)(i − 1) , if i ≥ 2, n ≥ 1 .

(4.8)

Proof: From (4.7) and Theorem 4.1 the n-th moment is

m(n)(t) = (−1)n ∂n

∂vn
e[Q⊙D∼(v)−vR]t

∣

∣

∣

∣

∣

v=0

· h

= (−1)n ∂n

∂vn

∞
∑

i=0

ti

i!
[Q ⊙ D∼(v) − vR]i

∣

∣

∣

∣

∣

v=0

· h

= (−1)n
∞
∑

i=0

ti

i!

∂n

∂vn
[Q ⊙ D∼(v) − vR]i

∣

∣

∣

∣

∣

v=0

· h .

We introduce the following notation

N(n)(i) =
∂n

∂vn
[Q ⊙ D∼(v) − vR]i

∣

∣

∣

∣

∣

v=0

for ∀n, i .

From Leibniz rule it follows

N(n)(i) = [N(0)(1) ·N(0)(i − 1)](n) =
n
∑

l=0

(

n

l

)

N(l)(1) · N(n−l)(i − 1) if i ≥ 2, n ≥ 1

with the initial conditions

N(0)(0) = I ,
N(0)(i) = Qi , if i > 0 ,
N(n)(0) = 0 , if n ≥ 1 ,
N(1)(1) = Q ⊙D(1) + R ,
N(n)(1) = Q ⊙ D(n) , if n ≥ 2 .

This completes the proof. ✷

Based on (4.8) the n-th moment of the accumulated reward is finite if all the moments of the
impulse rewards from the 1st to the n-th one are finite (independent of the higher moments);
and the n-th moment of the accumulated reward can become infinite if at least one moment of
the impulse reward is infinite.
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4.3.2 Moments of the completion time

The column vector s(n)(w) can be evaluated based on C∼(s, w) as

s(n)(w) = (−1)n ∂nC∼(s, w)

∂sn

∣

∣

∣

∣

∣

s=0

. (4.9)

I have published the following theorem with its proof in [C1].

Theorem 4.4 The n-th moment of the completion time, s(n)(w), satisfies the following equa-
tion

s(n)(w) = (−1)n Γ ·
(

∞
∑

i=0

ti

i!
·M(n)(i) · h

)

where the coefficient matrix M(n)(i) is defined as

M(n)(i) =















I , if i = 0, n = 0 ,
0 , if i = 0, n ≥ 1 ,
Ti , if i ≥ 1, n = 0 ,
T ·M(n)(i − 1) − n F · M(n−1)(i − 1) , if i ≥ 1, n ≥ 1 .

Proof: From (4.9) and (4.4) the n-th moment is

s(n)(w) = (−1)n Γ ·
(

∂ne(T−sF)w

∂sn

∣

∣

∣

∣

∣

s=0

· h
)

= (−1)n Γ ·
(

∂n

∂sn

∞
∑

i=0

wi

i!
(T − sF)i

∣

∣

∣

∣

∣

s=0

· h
)

= (−1)n Γ ·
(

∞
∑

i=0

wi

i!

∂n

∂sn
(T − sF)i

∣

∣

∣

∣

∣

s=0

· h
)

.

We introduce the following notation

M(n)(i) =
∂n

∂sn
(T − sF)i

∣

∣

∣

∣

∣

s=0

for ∀n, i .

From Leibniz rule it follows

M(n)(i) = [M(0)(1) · M(0)(i − 1)](n) =
n
∑

l=0

(

n

l

)

M(l)(1) · M(n−l)(i − 1) if i ≥ 2, n ≥ 1

with the initial conditions M(0)(0) = I, M(0)(i) = Ti and M(n)(0) = 0 n ≥ 1. This completes
the proof. ✷
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4.4 Numerical algorithms based on randomization

The iterative methods presented above are not tuned to have nice numerical properties. To
avoid numerical problems like instability, “ringing” (negative probabilities), etc., modified al-
gorithm is proposed.

4.4.1 Moments of the accumulated reward

The concept of randomization is adopted for avoiding numerical instabilities. We introduce two
matrices as follows

A =
Q

q
+ I and S =

R

q

where q = maxi,j (|qij|). By this definition A is a stochastic matrix. Using these matrices we
have

B∼(t, v) = e[Q⊙D∼(v)−vR]t · h = e[(A−I)⊙D∼(v)−vS]qt · h = e[A⊙D∼(v)−vS]qt · h · e−qt. (4.10)

I have published the following theorem with its proof in [C3].

Theorem 4.5 The n-th moment of the accumulated reward can be computed using only
matrix-vector multiplications and saving only vectors of size #S as follows

m(n)(t) =
∞
∑

i=0

U (n)(i) · (qt)i

i!
e−qt (4.11)

where the coefficient vector U (n)(i) is defined as

U (n)(i) =



















h , if i ≥ 0, n = 0 ,
0 , if i = 0, n ≥ 1 ,

n
∑

k=0

(

n

k

)

V(k) · U (n−k)(i − 1) , if i ≥ 1, n ≥ 1 ,
(4.12)

and the matrix V(n) is defined as

V(n) =







A if n = 0 ,
A ⊙ D(1) + S if n = 1 ,
A ⊙ D(n) if n ≥ 2 ,

where D(n) is the matrix of the n-th moment of impulse reward.

Proof: Starting from (4.10) the proof of the Theorem 4.5 follows the same pattern as the
proof of the Theorem 4.3. ✷

To demonstrate the iterative algorithm of computing U (n)(i) first elements of the iteration
are provided in Table 4.1 and the dependence of the consecutive term is depicted in Figure 4.6.
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V(n) U (n)(0) U (n)(1) U (n)(2) U (n)(3)

n = 0 A h h h h

n = 1 A⊙ D(1) + S 0 V(1) · h V(0) · U (1)(1)+

V(1) · U (0)(1)

V(0) · U (1)(2)+

V(1) · U (0)(2)

n = 2 A⊙ D(2) 0 V(2) · h
V(0) · U (2)(1)+

2 ·V(1) · U (1)(1)+

V(2) · U (0)(1)

V(0) · U (2)(2)+

2 · V(1) · U (1)(2)+

V(2) · U (0)(2)

n = 3 A⊙ D(3) 0 V(3) · h
V(0) · U (3)(1)+

3 ·V(1) · U (2)(1)+

3 ·V(2) · U (1)(1)+

V(3) · U (0)(1)

V(0) · U (3)(2)+

3 · V(1) · U (2)(2)+

3 · V(2) · U (1)(2)+

V(3) · U (0)(2)

Table 4.1: First elements of the coefficient vector (rate and impulse reward)

i=1 i=4i=3i=2

n=1

n=3

n=2

U(n)(i)

Figure 4.6: The dependency structure of iteration steps (rate and impulse reward)

An accuracy control is proposed to eliminate the infinity sum from (4.11). To evaluate the
error incurred by applying a finite summation instead of (4.11) the following vector norms are
introduced

d1 = max
j

[(A ⊙D(1) + S) · h]j and dn = max
j

[(A⊙ D(n)) · h]j , n ≥ 2 .

The norm of U (n)(i) is upper bounded by u(n)(i) ≥ maxj [U (n)(i)]j , which can be calculated
iteratively in a similar manner like U (n)(i)

u(n)(i) =



















1 , if i ≥ 0, n = 0 ,
0 , if i = 0, n ≥ 1 ,

n
∑

k=0

(

n

k

)

dk · u(n−k)(i − 1) , if i ≥ 1, n ≥ 1 .
(4.13)

Let an = max
ℓ∈{1,... ,n}

dℓ be the largest of the norms d1, . . . , dn. From (4.13) it can be seen that

max
j

[U (n)(i)]j ≤ u(n)(i) ≤ an(an2n)i−1 . (4.14)
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Theorem 4.6 gives a procedure of accuracy control based on (4.11) and (4.14). I have published
the theorem with its proof in [C3].

Theorem 4.6 The n-th moment of the accumulated reward can be calculated as a finite sum
and an error part, where the maximum allowed error is ε

m(n)(t) =

G−1
∑

i=0

U (n)(i) · (qt)i

i!
e−qt + ξ(G)

where the value of G can be determined by

G = min
g∈N

(

g
∣

∣

∣

g−2
∑

i=0

(qt(1 − an2n))i

i!
e−qt(1−an2n) > 1 − ε

2−ne−qt(1−an2n)

)

and the 0 ≤ ξ(G) ≤ ε · h inequality holds for all the elements of the vectors.

Proof: The error vector ξ(G) piecewise satisfies the following inequality

ξ(G) =

∞
∑

i=G+1

U (n)(i) · (qt)i

i!
e−qt ≤

∞
∑

i=G+1

an(an2n)i−1 (qt)i

i!
e−qt · h

= 2−ne−qt(1−an2n)

∞
∑

i=G+1

(qtan2n)i

i!
e−qtan2n · h .

From which the theorem comes. ✷

4.4.2 Moments of the completion time

The concept of randomization is used to avoiding numerical instabilities. We introduce the
following notations

H =
T

z
+ I and L =

F

z f

where z = maxi,j∈G (|tij|) and f = maxi∈G(ri)/z. By this definition H is a stochastic matrix
and S is a diagonal matrix such that 0 ≤ si,i ≤ 1, ∀i ∈ S. Using these matrices

C∼(s, w) = Γ · e(T−sF)w · h = Γ · e(H−sfS)zw · h e−zw . (4.15)

I have published the following theorem with its proof in [C1].

Theorem 4.7 The n-th moment of the completion time can be computed using only matrix-
vector multiplications and saving only vectors of size #G as follows

s(n)(w) = n! fn · Γ ·
∞
∑

i=0

U (n)(i)
(zw)i

i!
e−zw
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where the coefficient vector U (n)(i) is defined as

U (n)(i) =







0 , if i = 0, n ≥ 1 ,
h , if i ≥ 0, n = 0 ,

H · U (n)(i − 1) + L · U (n−1)(i − 1) , if i ≥ 1, n ≥ 1 .

Proof: Starting from (4.15) the proof of Theorem 4.7 follows the same pattern as the proof of
Theorem 4.4. ✷

The following theorem provides a global error bound of the procedure. I have published the
theorem with its proof in [C1].

Theorem 4.8 The n-th moment of the completion time can be calculated as a finite sum and
an error part, where the maximum allowed error is ε

s(n)(w) = n! fn · Γ ·
G−1
∑

i=0

U (n)(i)
(zw)i

i!
e−zw + ξ(G)

where the value of G can be determined by

G = min
g∈N

(

g
∣

∣

∣

g−2
∑

i=0

(zw)i

i!
e−zw > 1 − ε

(zw) n! fn

)

and the 0 ≤ ξ(G) ≤ h ε inequality holds for all the elements of the vectors.

Proof: By the definition of the matrix H and the matrix L

0 ≤ L · h ≤ h and 0 ≤ H · L · h ≤ h

hold piece-wise (as all the subsequent vector inequalities), hence U (n)(i) is bounded by

0 ≤ U (n)(i) ≤ i h .

The error ξ(G) incurred when eliminating the tail of the infinite sum is also bounded by

ξ(G) = n! fn
∞
∑

i=G

U (n)(i)
(zw)i

i!
e−zw ≤ n! fn

∞
∑

i=G

h i
(zw)i

i!
e−zw = (zw) n! fn

∞
∑

i=G−1

h
(zw)i

i!
e−zw

which gives the theorem. ✷

4.4.3 Algorithm description

Numerical algorithms are given in the previous sections, with their formal derivations, which
are appropriate to analyze MRMs with rate and impulse reward. Table 4.2 shows a Pascal like
description of the proposed algorithm. The algorithm which calculates moments of the accu-
mulated reward in MRM with rate and impulse rewards is presented, because the completion
time analysis could be done as an accumulated reward analysis after the model transformation
described in previous sections.
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Input

Q, generator matrix of the underlying CTMC
R, diagonal matrix of the rate rewards
D(1), . . . ,D(n), moments of impulse rewards
t, the time of accumulation
n, number of required moments
ε, required precision

Output

m(1)(t), the first moment of the accumulated reward

m(2)(t), the second moment of the accumulated reward
...

m(n)(t), the n-th moment of the accumulated reward

Memory requirement (disregarding the input data)
∣

∣

2n + 1 [Vectors of size dim(Q)]
∣

∣

Required operations
∣

∣

(G − 2)
n(n + 3)

2
[Matrix-vector multiplications]

∣

∣

∣

∣

∣

(G − 2)
n(n + 3)

2
+ (G − 2)n [Vector-vector additions]

∣

∣

∣

∣

G − 2 [Scalar-vector multiplications]
∣

∣

q := maxi,j(|qij |);
A := Q/q + I; S := R/q;

d1 := maxj [(A ⊙ D(1) + S) · h]j ;
For k := 2 To n Do

dk := maxj [(A ⊙ D(k)) · h]j ;

an := maxl∈{1,...n} dl; C := 2−ne−qt(1−an2n);
i := 0; x := Poisson(0; qt(1 − an2n));
While x < (1 − ε/C) Do

Begin

i := i + 1;
x := x + Poisson(i; qt(1 − an2n));

End;
G := i + 2;

V(0) := A; V(1) := A⊙ D(1) + S;
For i := 2 To n Do

V(i) := A ⊙ D(n);
For j := 0 To n Do

Begin

U (j) := V(j) · h; m(j) := U (j)Poisson(1; qt);
End;

For i := 2 To G − 1 Do
∣

∣

For j := n DownTo 0 Do
∣

∣

Begin
∣

∣

U (j) := Binomial(j, 0) U (j);
∣

∣

∣

For k := 1 To j Do
∣

∣

U (j) := U (j) + Binomial(j, k) V(k) · U (j−k);
∣

∣

∣

m(j)(t) := m(j)(t) + U (j) Poisson(i; qt);

∣

∣

∣

∣

End;
∣

∣

Table 4.2: Algorithm : First moments of the accumulated reward (rate and impulse reward)
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4.5 Numerical example

In this example, a performance parameter of a dependable equipment is evaluated by the
proposed algorithm.

Input

S = P

State space

States = { LS1, LS2, P, G, A, S1, S2 }
Generator matrix

(LS1) → (P ) = 3
(P ) → (LS1) = 0.1
(LS2) → (G) = 3
(G) → (LS2) = 0.1
(P ) → (G) = 0.05
(P ) → (S1) = 0.01
(S1) → (P ) = 1
(G) → (A) = 0.05
(G) → (S1) = 0.01
(A) → (S1) = 0.11
(S1) → (S2) = 0.5
(S2) → (P ) = 0.5

Diagonal reward matrix

(LS1) = 1
(LS2) = 1.5
(G) = 0.1
(A) = 0.2
(S1) = 10
(S2) = 20

Impulse reward matrix (mean value)

(P ) → (LS1) = 0.2
(P ) → (S1) = 10
(G) → (LS2) = 0.2
(G) → (S1) = 10
(A) → (S1) = 10
(S1) → (S2) = 5

Initial distribution

(S) = 1

Table 4.3: High-level description of the MRM of the considered dependable equipment

A dependable equipment (a computer or a machine producing goods) is operated accord-
ing to the following rules. Three operational conditions (states) are distinguished, namely
perfect, good and adequate. The system degradation (transition form the state perfect

to the state good, and from the state good to the state adequate) occurs at a constant rate.
The equipment is periodically stopped for a preventive maintenance. If the system state is
adequate a complete repair is initiated instead of a preventive maintenance. System failure
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rate reward impulse reward

rLS1 = 1 dLS1 = 0.2
rLS2 = 1.5 dLS2 = 0.2
rS1 = 10 dS1 = 10
rS2 = 20 dS2 = 5
rG = 0.1
rA = 0.2

Table 4.4: Reward structure of the considered dependable equipment

can occur in any operational states at the same constant failure rate. A system failure results
in a complete repair as well, i.e, at the end of the repair the system is restored to the “as good
as new” condition represented by the state perfect.

The cost of preventive maintenance has a fix and a time dependent component which can
depend on the system state as well. The cost of complete repair also has a fix and a time
dependent component, but there is a correlation between the repair time and the associated
fix cost. An additional fix cost is assigned to the longer repair periods (e.g., in some cases
the complete repair requires the renewal of some special parts that is expensive and time
consuming). Some cost can be associated with the system performance degradation in the
state good and in the state adequate.

Assuming all the mentioned state transitions occur at a constant rate the system behavior
can be described by an MRM with impulse and rate reward as it is shown in Figure 4.7; and
the high-level description of the MRM of the considered equipment is given in Table 4.3.

Perfect Good
(rG)

Adequate
(rA)

Local Service 1
(rLS1)

Local Service 2
(rLS2)

Service 1
(rS1)

Service 2
(rS2)

(dLS1) (dLS2)

(dS1)

(dS2)

30.1 30.1

(dS1) (dS1)
0.01 0.01 0.11

0.5

1

0.5

0.05 0.05

Figure 4.7: The state structure of the considered dependable equipment
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E{B(t)} E{B(t)2} E{B(t)3} E{B(t)4)}
0.1918 2.6511 56.22 1404

t = 1 0.3298 3.1877 65.65 1608
1.7694 28.56 613.50 15382

3.9198 164.29 12890 1341083
t = 10 7.9019 325.25 24579 2462323

21.50 1149 98501 10945246

83.04 10271 1720854 362927485
t = 100 94.95 12627 2213071 482081341

106.91 15440 2869241 653702868

913.24 869967 863458021 8.91 · 1011

t = 1000 925.15 892099 895609345 9.35 · 1011

937.11 914768 929167155 9.81 · 1011

9215 85283872 7.92 · 1011 7.39 · 1015

t = 10000 9227 85503760 7.95 · 1011 7.43 · 1015

9239 85724994 7.98 · 1011 7.47 · 1015

Table 4.5: Example : First four moments of the accumulated reward with different initial state

Based on the MRM of the system the following performance parameters can be evaluated :
the interval availability, the operational cost during a time interval and the number of different
failures during a time interval. Among these performance parameters the analysis of the opera-
tional cost requires the use of impulse and rate rewards at the same time. I have evaluated the
first four moments of the operational cost assuming the state transition rates shown in Figure
4.7. All states except the perfect have an associated rate reward and the transitions drawn as
thick arrows have an associated impulse reward. In each case the impulse reward is assumed
to be deterministic. The impulse and rate reward values were used is shown in Table 4.4.
Table 4.5 contains the moments of the operational cost for different time intervals and initial
states. The three data of each boxes are calculated assuming the initial state is the perfect,
the good, and the adequate state, respectively.

4.6 Conclusion

This chapter described an algorithm which determines the moments of reward measures in
MRMs with rate and impulse reward. The algorithm can deal with large MRMs with more
than 106 states.

Section 4.1 an Section 4.2 gave a novel approach to derive the Laplace transform domain
description of the reward measures. Section 4.3 presented the basic method which derived
moments of a reward measure from its Laplace transform domain description. Section 4.4
provided the stable numerical algorithm for moments calculation. Finally, in Section 4.5 a
performance parameter of a dependable equipment was evaluated by the proposed algorithm.
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Chapter 5

Moment based distribution estimation

I address this chapter to describe a distribution estimation algorithm which I can use in MRMs
analysis. My aim was to develop an algorithm which starts from the moments of a reward
measure and then provides lower as well as upper bounds on their distribution. Here I focus on
only the algorithm description. I applied my achieved results in [J2, C4, C8, C10].

The problem of inversely characterizing distribution from their moments has been studied for
over 100 years. Stieltjes, [Sti1894a, Sti1894b], established necessary and sufficient conditions for
the existence of a real valued, bounded and non-decreasing function, for example a distribution
function, on the interval [0,∞) such that its moments match given values. An excellent overview
of the moment problem and some variations can be founded in [AK62]. My contribution of this
line of work is that I have put strong effort on developing an applicable numerical algorithm.

The research activities on this field cover several areas of the application of distribution
estimation. Numerous attempts have been made to obtain continuous or discrete distribution
from their moments [AK62, Lie, Tagl00, SKR00]. Before the deeper discussion we need to
classify the distribution estimation methods. An estimation method can provide mainly two
different results.

• A reconstructed distribution function. It means that the mission of the estimation method
is to make a choice among the distribution functions which match the available informa-
tion (e.g. if the only information is the mean value then the estimation method has to
choose a distribution function which has the given mean value). The maximum entropy
principle is widely used in this context [FT97, Tagl00]. The idea of maximum entropy is
simply to choose the distribution function from the feasible distribution functions which
maximizes some measure of entropy. In [SKR00] the authors derive the maximum and the
minimum entropy distribution functions. In contrast to maximum entropy distribution
the minimum entropy distribution represents the most biased and least uniform distri-
bution consistent with the available information. In [MH00] the authors used Chebyshev
polynomials to obtain an approximation for the investigated probability density function
based on its moments. (This work does not study this case.)

• The domain which contains all feasible distribution functions. It means practically that
the method gives upper and lower bounds on the feasible distribution functions (e.g. if
the only information from a non-negative random variable is its mean value (µ1) then the

ideal estimator gives the domain 1 ≥ F (x) ≥ 1 − µ1

x
based on the Markov-inequality).

We can realize that this type of estimation methods give the best and the worst cases for
the examined measure.

57
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In the selected MRMs analysis approach, first calculating the moments of the examined
reward measure and then determining upper and lower bounds on its distribution, the analysis
requires an estimation method from the second type, which provides the feasible domain for
the considered distribution. It is necessary that a distribution estimation algorithm uses the
information coded in the moments totally because calculating new moments results in additive
computational effort and memory requirement. For example, the calculation of the first 4
moments instead of the first 2 moments requires approximately 2 times more memory and
CPU time. So the best way to reduce analysis complexity is to improve the estimation method
as far as possible.

5.1 The moment problem and its solution

The solution of the moment problem [AK62] provides the basic component of the distribution
estimation algorithm which will be presented in the next sections.

The moment problem may be stated as follows. Given a sequence of numbers {µn}∞n=0,
under what conditions is it possible to determine a positive bounded non-decreasing function
F (x) in the interval [a, b] such that

µn =

b
∫

a

xndF (x) , for n = 0, 1, 2, . . . .

Such a sequence is called a moment sequence, and Hausdorff (1921) was the first to obtain
necessary and sufficient conditions for a sequence to be a moment sequence [Hau21a, Hau21b].

By varying the definition interval of F (x) we can consider three types of the classical moment
problem as

• Hamburger moment problem x ∈ (−∞,∞)

• Stieltjes moment problem x ∈ [0,∞)

• Hausdorff moment problem x ∈ [0, 1]

Before presenting the solution of the moment problem we can introduce Hankel determinant
of real numbers as the equation shows below.

α(aa, a1, . . . , a2n) = Det







a0 . . . an
...

. . .
...

an . . . a2n







In the case of Hamburger moment problem the sequence {µn}∞n=0 is a moment sequence if
and only if

α(µ0, µ1, . . . , µ2k) ≥ 0 , for k = 0, 1, 2, 3, . . . .

In order for a solution exist whose spectrum is not reducible to a finite set of points is necessary
and sufficient that

α(µ0, µ1, . . . , µ2k) > 0 , for k = 0, 1, 2, 3, . . . .
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In order for a solution exist whose spectrum consists of precisely n distinct points is necessary
and sufficient that

α(µ0, µ1, . . . , µ2k) > 0 , for k = 0, 1, . . . , n − 1

and

α(µ0, µ1, . . . , µ2k) = 0 , for k = n, n + 1, n + 2, . . . .

Figure 5.1 shows the feasible value of moments in a particular case. The moments given
by a point of the surface determine a discrete distribution. The moments given by the points
under the surface can not be derived from any distribution function and the point above the
surface can be derived from a distribution function.
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P2 -40

-20

0

20

40
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1500
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10

20

30

P2

Figure 5.1: Feasible second, third and fourth moments assuming µ0 = 1 and µ1 = 1

Similar manner in the case of Stieltjes moment problem the sequence {µn}∞n=0 is a moment
sequence if and only if

α(µ0, µ1, . . . , µ2k) ≥ 0 , for k = 0, 1, 2, 3, . . .

α(µ1, µ1, . . . , µ2k+1) ≥ 0 , for k = 0, 1, 2, 3, . . . .

The most complicated case is the Hausdorff moment problem. So in the case of Hausdorff
moment problem the sequence {µn}∞n=0 is a moment sequence if and only if

α(µ0, µ1, . . . , µ2k) ≥ 0 , for k = 0, 1, 2, 3, . . .

α(µ1, µ2, . . . , µ2k+1) ≥ 0 , for k = 0, 1, 2, 3, . . .

α(µ0 − µ1, µ1 − µ2, . . . , µ2k − µ2k+1) ≥ 0 , for k = 0, 1, 2, 3, . . .

α(µ1 − µ2, µ2 − µ3, . . . , µ2k−1 − µ2k) ≥ 0 , for k = 1, 2, 3, . . . .
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5.2 Theoretical background

In fact, in general a distribution is not uniquely determined by its moments. An interesting
example is due to C. C. Heyde (e.g. [Fel66, pp 227]). We can construct a class of density
functions with parameter −1 ≤ a ≤ 1 as

fa(x) =
1

x
√

2π
e−

1
2
(ln x)2 (1 + a sin(2π ln(x))) .

Setting a = 0 results in the density function of the log-normal distributed random variable.

1 2 3 4 5

0.2

0.4

0.6

0.8

Figure 5.2: Three density functions with the same moments

It can be proved that fa(x) is a probability density and its moments do not depend on the
parameter a. The first six moments equal {√e, e2, e9/2, e8, e25/2, e18}. Figure 5.2 shows the
density function f−1/2(x), f−1/4(x) and the log-normal density function f0(x). Consequently,
we have defined different distributions with the same moment sequence.

There are several methods to check whether the infinity sequence of moments determines
an unique distribution function. The best results is a theorem of Carleman to the effect that a
distribution on (−∞,∞) is uniquely determined by its moments if

∞
∑

n=1

1
2n
√

µ2n
= ∞

that is, if the series on the left diverges. A weaker condition is that a distribution is uniquely
determined by its moments whenever the power series

∞
∑

n=0

µ2nt
n

(2n)!

converges in some interval.
Now, we introduce some notations which we will use to formulate the investigated problem.

First, I introduce the set of distribution functions which have the same first moments.
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Definition 3 The set of distribution functions which have the same moments from µ0 to µn

and their definition interval is [a, b] is denoted by M[a,b]
{µ0,µ1,... ,µn}

.

M[a,b]
{µ0,µ1,... ,µn}

=

{

F (x) :

∫ b

a

xkdF (x) = µk , k = 0, 1, . . . , n

}

Second, the extreme points of M[a,b]
{µ0,µ1,... ,µn}

are defined as follows.

Definition 4 The upper and the lower bound of the set M[a,b]
{µ0,... ,µn}

is defined as

L[a,b](C; µ0, . . . , µn) = inf
F∈M

[a,b]
{µ0,... ,µn}

F (C)

U [a,b](C; µ0, . . . , µn) = sup
F∈M

[a,b]
{µ0,... ,µn}

F (C)

The following section gives a numerical algorithm to determine the considered upper and
lower bound.

5.3 Algorithm for determining the upper and lower

bounds

This section proposes a numerical algorithm to construct U [a,b](C; µ0, . . . , µn) and
L[a,b](C; µ0, . . . , µn). The algorithm which determines the value of L and U numerically is
depicted in Table 5.1 and Table 5.2 and the required other functions are summarized in Table
5.3-5.7. Broadly speaking calculating a point of the function U and L, if we have the first n
moments, requires to find all roots of a polynomial of degree about n/2 and some algebraic
manipulations.

The construction algorithm has two main steps. First, it determines the maximal mass at C.
Second, the impact of the determined mass will be eliminated from the given moment sequence
and using the modified moment sequence a discrete distribution construction is applied. Both
steps are based on the solution of the moment problem.

5.4 Conclusion

This chapter gave a very short insight into distribution estimation. We identified two types
of estimation methods (providing a reconstructed distribution function or providing a domain
which contains all feasible distribution functions). This chapter focused on the second type
methods. Section 5.1 presented the moment problem and its solution. Section 5.2 contains
some theoretical results and definitions. Finally, Section 5.3 proposed a distribution estimation
algorithm which provides upper and lower bounds on distribution functions which have the
same first n moments.

I think this field of my research requires further activity. First of all the theoretical back-
ground of the algorithm should be improved.
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Function name : UL Normal

Input

{µ0, µ1, . . . , µn} # n = 2, 4, 6, . . .
C

Output

U, L

{µ0, µ1, . . . , µn} := Move(µ0, µ1, . . . , µn, 1,−C);
{µ′

0, µ
′
1, . . . , µ′

n−1, p} := Mass Normal(µ0, µ1, . . . , µn);
m := n/2;
{x1, p1, . . . , xm, pm} := Discrete Construction(µ′

0, µ
′
1, . . . , µ′

n−1);
L := 0; U := 0;
For I := 1 To m Do

If xI < 0 Then L := L + pI ;
U := L + p;

Table 5.1: Algorithm : Determining values of functions L and U at C ∈ (−∞,∞)

Function name : UL Positive

Input

{µ0, µ1, . . . , µn} # n = 1, 3, 5, . . .
a
C

Output

U, L

{µ0, µ1, . . . , µn} := Move(µ0, µ1, . . . , µn, 1/(C − a),−a/(C − a));
{µ′

0, µ
′
1, . . . , µ′

n−2, p, pA} := Mass Positive(µ0, µ1, . . . , µn);
m := (n − 1)/2;
{x1, p1, . . . , xm, pm} := Discrete Construction(µ′

0, µ
′
1, . . . , µ′

n−2);
If p > 0 And pA > 0 Then

Begin

L := pA; U := 0;
For I := 1 To m Do

If xI < 0 Then L := L + pI ;
U := L + p;

End

Table 5.2: Algorithm : Determining values of functions L and U at C ∈ [a,∞)
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Function name : Discrete Construction
Input

{µ0, µ1, . . . , µ2n−1}
Output

{x1, x2, . . . , xn}
{p1, p2, . . . , pn}

Complexity

Finding the roots of a n-th degree polynomial (distinct real roots)

P (λ) := Det











µ0 µ1 . . . µn

...
...

. . .
...

µn−1 µn . . . µ2n−1

1 λ . . . λn











;

{x1, x2, . . . , xn} := Roots(P (λ));

{p1, p2, . . . , pn} := Solve

({

n
∑

i=1

xk
i pi = µk ; k = 0, 1, . . . , n − 1

}

, {p1, p2, . . . , pn}
)

;

Table 5.3: Algorithm : Discrete distribution construction

Function name : Move

Input

{µ0, µ1, . . . , µn}
A
B

Output

{µ′
0, µ

′
1, . . . , µ′

n}
For I := 0 To n Do

µI := µI AI ;
For I := 0 To n Do

For j := 0 To I Do

µ′
I := µ′

I + Binomial(I, j) µj BI−j ;

Table 5.4: Algorithm : Distribution moving

Function name : Alpha

Input

{a0, a1, . . . , a2n}
Output

x

x := Det







a0 . . . an

...
. . .

...
an . . . a2n






;

Table 5.5: Algorithm : Hankel determinant
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Function name : Mass Normal
Input

{µ0, µ1, . . . , µ2n}
Output

{µ′
0, µ

′
1, . . . , µ′

2n−1}
p

p := Alpha(µ0, µ1, . . . , µ2n)/Alpha(µ2, µ3, . . . , µ2n);
µ′

0 := µ0 − p;
For I := 1 To 2n Do

µ′
I := µI ;

Table 5.6: Algorithm : Determining maximal mass at 0

Function name : Mass Positive
Input

{µ0, µ1, . . . , µ2n+1}
Output

{µ′
0, µ

′
1, . . . , µ′

2n−1}
p
pA

X := Det











µ1 µ2 . . . µn+1

µ2 − µ1 µ3 − µ2 . . . µn+2 − µn+1

...
. . .

. . .
...

µn+1 − µn µn+2 − µn+1 . . . µ2n+1 − µ2n











;

Y := Det











1 1 . . . 1
µ2 − µ1 µ3 − µ2 . . . µn+2 − µn+1

...
. . .

. . .
...

µn+1 − µn µn+2 − µn+1 . . . µ2n+1 − µ2n











;

p := X/Y ;

For I := 0 To 2n + 1 Do

µ′
I := µI − p;

pA := Alpha(µ′
0, µ

′
1, . . . , µ′

2n)/Alpha(µ′
2, µ

′
3, . . . , µ′

2n);
µ′

0 = µ′
0 − pA;

Table 5.7: Algorithm : Determining maximal mass at 1



Chapter 6

Modelling Multi-service Environment

This chapter summarizes the main ideas published in my telecommunication related papers [J2,
J4, J5, J6, J7, C4, C6, C8]. The general aim of these papers is to provide a method to perform
quantitative analysis of call level models which support stream as well as elastic traffic.

6.1 Introduction

In recent years there have been significant advances in researching and standardizing mech-
anisms that are capable of providing service differentiation in the Internet. While there still
seems to be a wide span of the methods which aim at providing QoS differentiation between con-
tending flows, it is widely accepted that there is a need for traffic engineering mechanisms which
control the access of the different traffic classes to network bandwidth resources. In particular,
there is a growing interest in devising bandwidth sharing algorithms which can cope with a high
utilization in the network and at the same time take into account the different traffic classes’
throughput and blocking probability requirements. Recent research results indicate that it is
meaningful to exercise call admission control (CAC) even for elastic traffic, because CAC algo-
rithms (and consequently the blocking of some arriving flows) provide a means to prevent e.g.
TCP sessions from excessive throughput degradation [MR99b, MR99c]. From this perspective
it is important to develop models and computational techniques that make analytical studies
of the behavior of such future types of networks possible.

Generally the issue of bandwidth sharing should be considered in the context of dynamically
arriving and departing flows, which naturally calls for the application of the classical multi-rate
loss models. These models have proved useful in the dimensioning and performance evaluation
of circuit switched as well as ATM networks. Thus, they provide motivation for extending the
applicability of this modelling paradigm to Internet context. Unfortunately, a direct application
of the multi-rate models for traffic engineering in the Internet is non-trivial, because:

• By definition, it is not possible to associate a constant bandwidth with elastic services,
like the best effort (without minimum rate guarantee) or the ”better than best effort”
(with minimum rate guarantee) type of services. The bandwidth occupied by the elastic
flows depend on the current load on the link and on the scheduling and rate control
algorithms applied in the network nodes.

• The notion of blocking, when applied to elastic flows, needs to be reconsidered because
an arriving elastic flow might get into service even if at the arrival instant there is no (or
very small) bandwidth available.

65
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• For many services, we need to take account of the fact that the actual residency time of
the elastic flows depend on the throughput which the flow receives. For instance, an ftp
session would last longer if its throughput decreases. (Real-time services’ holding time,
on the other hand, is insensitive to the throughput, which is the case, for instance, with
a flow associated with an adaptive video codec. As specified later, we will refer to these
services as adaptive stream services.)

Since we cannot directly use the reservation based multi-rate models, we seek the meaningful
extensions so as to allow the inclusion of both QoS-assured and elastic traffic into a common
framework. After putting our work into context, in Section 6.3 we consider a single link where
flows belonging to three service classes arrive. Non-adaptive stream (also called rigid) calls
require peak bandwidth allocation. Adaptive stream calls and elastic calls are modelled as
being associated with both a peak- and a minimum bandwidth requirement, and they are
allowed into service as long as their respective minimum bandwidth requirements are fulfilled.
Furthermore, we allow the bandwidth given to these flows to fluctuate in time, depending on the
instantaneous available capacity of the link. While the actual residency time of adaptive calls
does not depend on the acquired throughput, the elastic calls’ holding time is determined by
the actual throughput that the flow receives. Specifically, in the case of Poisson arrivals, these
assumptions lead naturally to the application of Markov reward models (MRM). We argue that
the completion time [BT90] of the MRM corresponds to the flow residency times of elastic flows
that depend on the throughput. Next, in Section 6.4 we adopt the well known partial overlap
(POL) link bandwidth sharing policy [SVVP91] to our model. Also in Section 6.4 we introduce
the notion of the throughput threshold constraint, which is a constraint on the probability that
the user-perceived throughput during the transfer of a file of size x drops below a certain level.
Also in this section, we consider a simple yet efficient link capacity sharing method, which
allows for the tuning of the blocking probability vs. throughput trade-off for each traffic class.

In Sections 6.5 and 6.6 we are concerned with the computation of blocking probabilities
and throughputs, exploring the limitations of our modelling method in terms of the size of the
state space. A recent result [J1] allows us to study large state spaces. We find that in order
for the dimensioning to take into account the throughput threshold constraint, the steady state
analysis of the associated MRM is not sufficient, and therefore we seek methods for finding the
higher moments of the completion time. Section 6.7 gives an example of the application of the
model.

We conclude by outlining some possibilities for further applications of our model in Internet-
related questions.

6.2 Related Works

The theory of multi-rate loss models is covered by for instance [Kau81], [Rob96] and [Ros95].
Application examples of this modelling paradigm include those concentrating on routing and
call admission algorithms for QoS assured traffic classes in [DM94] and [SVVP91] and also those
that are concerned with the optimal sharing of link bandwidth resources as in [CLW95] and
in [BM98, MRW98, MMR96]. However, none of these models addresses the issue of applying
this model to cases where elastic traffic is also present in the network, as detailed by the three
bullet items in the Introduction.

The notion of call admission control for elastic traffic and fairness issues are discussed
in a number of publications, see [MR99a], [MR99b], [MR99c] and [Rob98]. In fact, we feel
that our present work here is in line with these papers, and extend them by proposing a
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computational model to arrive at specific performance measures on the throughputs and the
blocking probabilities. The blocking probability vs. throughput tradeoff is also emphasized
and directly connected to the issue of charging in [GK99, Kel97].

The extension of the multi-rate model to include elastic services was proposed independently
of each other in [BF96] and in [AAT97]. The application of the MRM to compute the mean
transfer time of files with exponentially distributed sizes and the blocking probabilities for the
complete sharing method and assuming two traffic classes was proposed already in [ABFT97].
Those results have been extended for the partial overlap link allocation strategy (”mixed sce-
nario”) in [QBM99], where the authors are concerned with the computation of the blocking
probabilities and also of first moment of the transfer time of a file of size x.

The impact of pricing on the optimal bandwidth sharing strategies, again assuming two
traffic classes is considered in [AAT97] and in [C8].

From a more practical point of view, specifically examining the TCP traffic (which is the
predominant example on the elastic traffic class in the Internet), Feng et al. find it beneficial to
provide a minimum throughput for TCP connections, because in that case the TCP algorithm
can be modified such that the “goodput” of TCP connections is much improved [FKSS99].

Our contribution to this line of works is twofold. First, by applying the multi-rate loss
framework with three traffic classes and assuming the partial overlap link allocation technique
we formulate the trade-off between the blocking probabilities and the throughput as an op-
timization task. We will find that the we need the higher moments of the file transmission
time for any file size x as well. Second, we propose an efficient computational technique to de-
rive numerical results on the single link level with large state spaces. The proposed numerical
approach allows to consider models with ∼106 states.

6.3 The Multi-class Model of a Single Link : Assump-

tions and Notations

In this section we formulate the Markovian model of a single transmission link serving peak-
bandwidth assured (rigid), adaptive stream and elastic traffic classes. In the presentation we
restrict ourselves to these three traffic classes, noting that the model can be extended to more
general cases.

Similarly to [AAT97] and [QBM99], we will assume that calls of all three classes arrive
at the link according to independent Poisson processes. That is, we assume that the arrival
process of requests for document transfer on a given network route is Poisson. As pointed
out in [MR99b], this process results naturally when a large population of users emits requests
independently, each at a relatively low intensity. Poisson statistics at the call (flow) level have
been confirmed in observations of Web traffic in [AW96]. We note, however, that refinements
of this assumption are the topic of current research, see for instance Section 3.2 of [MR99b].

The system under consideration consists of a transmission link of capacity C. Calls arriving
at the link belong to one of the following three traffic classes:

• Non-adaptive stream or rigid traffic class flows are characterized by their peak bandwidth
requirement b1, flow arrival rate λ1 and departure rate µ1;

• Adaptive stream class flows are characterized by their peak bandwidth requirement b2,
minimum bandwidth requirement bmin

2 , flow arrival rate λ2 and departure rate µ2. Al-
though the bandwidth occupied by adaptive flows may fluctuate as a function of the link
load, their actual holding time is not influenced by the received throughput throughout
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their residency in the system. This is the case for instance with an adaptive video codec,
which, in case of throughput degradation decreases the quality of the video images and
thereby occupies less bandwidth.

• Elastic class flows are characterized by their peak bandwidth requirement b3, minimum
bandwidth requirement bmin

3 , flow arrival rate λ3, and their ideal departure rate µ3. The
ideal departure rate is experienced when the peak bandwidth is available. The actual
instantaneous departure rate is proportional to the bandwidth of the flows. Note that this
class can be further classified into two subclasses. If the minimum accepted bandwidth
is 0, then this class is the model of the best effort traffic class. If the minimum accepted
bandwidth is greater than zero, then this class corresponds to the ”better-than-best-
effort” traffic class. A typical example of this class is the file transfer protocol (ftp).

We denote the actual bandwidth associated with a flow of class-2 and class-3 in a given system
state with br

2 and br
3, both of which vary in time as flows arrive and depart. We will also use the

quantity rmin := bmin/b associated with elastic flows with minimum bandwidth requirements.
All three types of flows arrive according to independent Poisson processes, and the (ideal)
holding time for the rigid, adaptive and elastic flows are exponentially distributed. As we will
see, the moments of the actual holding time of the elastic flows can be determined using the
theory of Markov reward processes.

To ensure a given QoS of the different flows (that, in general, differ in their peak and
minimum bandwidth, i.e. b2 6= b3, bmin

2 6= bmin
3 ) we need to establish some policy which governs

the bandwidth sharing among the adaptive stream and elastic classes. For this reason, we
define the following bandwidth sharing rules between these two classes.

• If there is enough bandwidth for all flows to get their respective peak bandwidth demands,
then class-2 and class-3 flows occupy b2 and b3 bandwidth units respectively.

• If there is a need for bandwidth compression, i.e. n1 · b1 + n2 · b2 + n3 · b3 > C, then the
bandwidth compression of the flows is such that r2 = r3, where r2 = br

2/b2 and r3 = br
3/b3,

as long as the minimum rate constraint is met for both classes (i.e. bmin
2 /b2 ≤ r2 ≤ 1 and

bmin
3 /b3 ≤ r3 ≤ 1).

• If there is still need for further bandwidth compression, but either one of the two classes
does not tolerate further bandwidth decrease, (i.e. ri is already bmin

i /bi for either i = 2
or i = 3) at the time of the arrival of a new flow, then the service class which tolerates
further compression decreases equally the bandwidth occupied by its flows, as long as the
minimum bandwidth constraint is kept for this traffic class.

Three underlying assumptions of the above model are noteworthy. First, we assume that both
the adaptive and the elastic flows are greedy, in the sense that they always occupy the maximum
possible bandwidth on the link, which is the smaller of their peak bandwidth requirement (b2

and b3 respectively) and the equal share (in the above sense) of the bandwidth left for them
by the rigid flows (which will depend on the link allocation policy). Second, we assume that
all adaptive and elastic flows in progress share proportionally equally the available bandwidth
among themselves, i.e. the newly arrived flow and the in-progress flows will be squeezed to the
same ri value. (This assumption actually corresponds to a weighted max-min fair allocation
the weights being determined by the peak rates of the flows. By associating a minimum and
maximum bandwidth requirements with the flows we in this paper focus on the throughput
and blocking probability performance measures.) If a newly arriving flow decreased the flow
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bandwidth below bmin
2 and bmin

3 (i.e. both the adaptive and the elastic classes were compressed
to their respective minima), that flow is not admitted into the system, but it is blocked and
lost. Note that all arriving flows are allowed to ”compress” the in-service adaptive and elastic
flows, as long as the minimum bandwidth constraints are kept. Third, the model assumes
that the rate control of the adaptive and elastic flows in progress is ideal, in the sense that an
infinitesimal amount of time after any system state change (i.e. flow arrival and departure) these
sources readjust their current bandwidth on the link. We realize that the connection between
packet level mechanisms and the call level model we consider here needs further research, but
it is not the topic of this paper.

It is intuitively clear that the residency time of the elastic flows in this system depends not
only on the amount of data they want to transmit (which is a random variable), but also on the
bandwidth they receive during their holding times. Similarly, the amount of data transmitted
through an adaptive elastic flow depends on the received bandwidth. In order to specify this
relationship we define the following quantities:

• θ2(t) and θ3(t) defines the instantaneous throughput of adaptive and elastic flows of at
time t, respectively, (e.g., if there are n1, n2, n3 rigid, adaptive, and elastic flows in the
system at time t, respectively, the instantaneous throughput are min(b2, (C−n1 · b1−n3 ·
r3(n1, n2, n3) · b3)/n2) and min(b3, (C − n1 · b1 − n2 · r2(n1, n2, n3) · b2)/n3)) for adaptive
and elastic flows, respectively. Note that θ2(t), and θ3(t) are discrete random variables
(r.v.) for any t ≥ 0.

• θ̃t = 1
t

∫ t

0
θ2(τ)dτ defines the throughput of the adaptive flow whose holding time is t.

• θ̃ =
∫∞

0
θ̃τ dF (τ) = µ2

∫∞

0
θ̃τ e−µ2τ dτ (r.v.) defines the throughput of the adaptive flow,

where F (t) is the exponentially distributed flow holding time.

• Tx = inf{t |
∫ t

0
θ3(τ)dτ ≥ x} (r.v.) gives the time it takes for the system to transmit x

amount of data through an elastic flow,

• θ̂x = x/Tx defines the throughput of the elastic flow during the transmission of x data
unit. Note that θx is a continuous r.v.

• θ̂ =
∫∞

0
θ̂x dG(x) = µ3/b3

∫∞

0
θ̂x e−x µ3/b3 dx (r.v.) defines the throughput of the elastic

flow, where the amount of transmitted data is exponentially distributed with parameter
µ3/b3.

In addition, we associate the maximum accepted blocking probability with all three traffic
classes i.e., Bmax

1 , Bmax
2 and Bmax

3 , respectively, and the minimum accepted throughput θ̃min,
θ̂min with the adaptive and elastic classes respectively. (The meaning of the minimum accepted
throughput and their relation with the random variables, θ̃, θ̂ are discussed later.)

We refer to the set of the arrival (λ1, λ2, λ3) and departure rates (µ1, µ2, µ3)
1, the band-

widths (b1, b2, b3) and minimum bandwidth demands (bmin
2 , bmin

3 ), the blocking probabilities
(Bmax

1 ,Bmax
2 ,Bmax

3 ) and throughput constraints (θ̃min, θ̂min) as the input parameters of the sys-
tem.

1µ3 is the maximum departure rate of the elastic class assuming that the bandwidth of the elastic flow equals
to b3.
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6.4 The Partial Overlap Link Allocation Strategy

6.4.1 System Description

The system under investigation (with the above assumptions regarding the arrival processes and
holding times/transmission requirements) is a continuous time Markov chain (CTMC) whose
state is uniquely characterized by the triple (n1, n2, n3), where n1 is the number of rigid flows,
n2 and n3 are the number of adaptive and elastic flows in the system, respectively.

It is clear that in order to obtain the performance measure of this system we need to
determine the CTMC’s generator matrix Q and its steady state solution, P = {P(n1,n2,n3)}.

We would like to define the link allocation policy such that it is able to provide predefined
call blocking probability for the adaptive and for the elastic flows, while it is able to take
into account the GoS (blocking probability) constraints for the rigid flows and the minimum
throughput constraint for the adaptive and elastic flows. Because of its flexibility (in that
it is able to take into account the above constraints) and simplicity (in that the performance
measures of interest can be determined even for large systems) we in this paper adopt the partial
overlap, POL link allocation policy from the multi-rate circuit switched modelling paradigm
[SVVP91].

According to the POL policy, the link capacity C is divided into two parts, the CCOM

common part and the CELA part, which is reserved for the adaptive and elastic flows only, such
that C = CCOM + CELA. Under the considered POL policy the number of flows in progress on
the link is subject to the following constraints:

n1 · b1 ≤ CCOM (6.1)

N2 · bmin
2 + N3 · bmin

3 ≤ CELA (6.2)

n2 ≤ N2 (6.3)

n3 ≤ N3 (6.4)

where N2 and N3 stand for the maximum number of adaptive and elastic flows in the system
(sometimes referred to as the cut-off parameter [SM88]) and will be determined later. Note
that this policy has only three free parameters, (CCOM , N2 and N3) which allows for the easy
dimensioning of a system with blocking and throughput constraints.

The set of such (n1, n2, n3) triples that satisfies these constraints constitutes the set of
feasible states of the system which we denote by S. The cardinality of the state space can be
determined as:

#S ≤
(

CCOM

b1

+ 1

)

· (N2 + 1) · (N3 + 1) (6.5)

In (6.1) the adaptive and elastic flows are protected from rigid flows. In (6.2-6.4) the maximum
number of adaptive and elastic flows is limited by three constraints. Eq. (6.2) protects the
rigid flows, while (6.3-6.4) protect the in-progress adaptive and elastic flows from the arriving
new flows, because if too many such flows were admitted into the system then either θ̃ or θ̂
could decrease below θ̃min or θ̂min respectively. Clearly, the θ of the i-th class can be modified
by changing the value of the NELi’s.

The generator matrix, Q, possesses a nice structure, because only transitions between
”neighboring states” are allowed in the following sense. Let q(n1, n2, n3 → n′

1, n
′
2, n

′
3) denote the

transition rate from state (n1, n2, n3) to state (n′
1, n

′
2, n

′
3). Then, taking into account the above

constraints associated with the proposed POL policy, the non-zero transition rates between the
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feasible states are:

q(n1, n2, n3 → n1 + 1, n2, n3) = λ1

q(n1, n2, n3 → n1, n2 + 1, n3) = λ2

q(n1, n2, n3 → n1, n2, n3 + 1) = λ3

q(n1, n2, n3 → n1 − 1, n2, n3) = n1 · µ1

q(n1, n2, n3 → n1, n2 − 1, n3) = n2 · µ2

q(n1, n2, n3 → n1, n2, n3 − 1) = n3 · r3(n1, n2, n3) · µ3

The first three equations represent the state transitions due to call arrivals, while the second
three equations represent the transitions due to call departures. The n3·r3(n1, n2, n3)·b3 quantity
denotes the total bandwidth of the elastic flows when the system is in state (n1, n2, n3). The
generator matrix of the CTMC is constructed automatically based on the above set of equations
using the MRMSolve tool [C2, C10].

The POL policy as described above is fully determined by specifying the following param-
eters: the capacity of the common part, CCOM , and the maximum number of adaptive and
elastic flows, N2 and the N3. We refer to the CCOM , the N2 and the N3 parameters of the POL
policy as the output parameters of the system.

For illustration purposes we consider a small system with a link of capacity C = 7 and for
ease of presentation n1 = 1 is kept fixed, i.e. the available bandwidth for the adaptive and the
elastic flows is 6 bandwidth unit. Further more b2 = 3 and b3 = 2. The adaptive and the
elastic flows are further characterized by their minimum accepted bandwidth, which we set to
bmin
2 = 1.8 and bmin

3 = 0.8. The cut-off parameters are N2 = 2 and N3 = 3. This setting gives
rise to 12 feasible states, out of which there are 5 (gray) states where at least one of the flows is
compressed below the peak bandwidth specified by b2 and b3. The Markov chain that describes
the system behavior is depicted in Figure 6.1. The states are identified by the number of active
flows (n1, n2, n3). The number below the state identifier indicates the bandwidth compression
of the adaptive and elastic traffic (r2, r3). The last state (1, 2, 3) is the only one where the
bandwidth compression of the adaptive and elastic class differs due to the different minimum
bandwidth requirement (rmin

2 = 0.6, rmin
3 = 0.4).

1,0,0
(-;-)

1,1,2
(0.85;0.85)

1,2,2
(0.6;0.6)

1,2,3
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1,2,1
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1,2,0
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1,1,1
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2µ12µ12µ1
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1.2µ3

1.7µ3  2µ3

Figure 6.1: Part of the state space where n1 = 1 is kept fixed
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6.4.2 Constraints for Determining the Output Parameters of the

POL Policy

The POL policy is easy to dimension, since its performance can be tuned by its three output
parameters. At the same time it guarantees call level GoS for rigid, adaptive and elastic flows
and throughput level for adaptive and elastic services. The GoS of rigid flows is guaranteed by
the proper setting of CCOM . In the case of a change in the adaptive and/or elastic traffic load
(i.e. the call arrival intensity or the lengths of the flows), the N2 and N3 parameters have to be
adjusted to keep the required throughput and blocking probabilities. We divide the problem
of determining the output parameters of the POL policy into two steps. In the first step we
determine the minimum required capacity (CCOM) for rigid flows, that guarantees the required
blocking probability:

min
{

CCOM : B1 ≤ Bmax
1

}

(6.6)

where B1 is the blocking probability of the rigid flows. The Erlang-B formula can be applied
for solving this problem. In the second step we determine the maximum number of adaptive
and elastic flows (N2,N3) simultaneously present in the system.

In fact, we determine the pairs of maximum number of adaptive/elastic flows (i.e. (N2;N3))
where the system can provide the required throughput and blocking probabilities. It is in-
tuitively clear that if we increase the maximum number of adaptive flows (N2) the blocking
probability of adaptive flows (B2) decreases and its throughput decreases. Moreover, unfortu-
nately, changing N2 might affect both the blocking probability (B3) and the throughput of the
elastic flows and vice-versa.
The following two constraints are considered:

• constraint on the average throughput:

The (N2;N3) pair fulfills the blocking probability and the throughput constraints if

B2 ≤ Bmax
2 , B3 ≤ Bmax

3 , E(θ̃) ≥ θ̃min, E(θ̂) ≥ θ̂min

To make a plausible interpretation of this constraint let us assume that the distribution
of θ is fairly symmetric around E(θ), i.e. the median of θ is close to E(θ). In this
case the probability that an adaptive or elastic flow obtains less bandwidth than θmin is
around 50%. Users (even with adaptive or elastic traffic) often prefer more informative
throughput constraints like the next one.

• constraint on throughput threshold:

The (N2;N3) pair fulfills the blocking probability and the throughput constraints if

B2 ≤ Bmax
2 , B3 ≤ Bmax

3

Pr(θ̃t ≥ θ̃min) ≥ ε2, ∀t; Pr(θ̂x ≥ θ̂min) ≥ ε3, ∀x;

This throughput threshold constraint requires that the throughput of adaptive and elastic
flows be greater than θ̃min and θ̂min with predefined probabilities ε2 and ε3 independent
of the associated service requirements (x) or holding times (t). Hence, if the (input) pa-
rameter θmin is much less than E(θ) then this second constraint is much more informative
for the user about the expected minimum level of the elastic flow throughput.
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In the case of applying the throughput threshold constraint ε2 and ε3 are also input
parameters of the model2.

In general, N2 and N3 have to increase to fulfill the blocking probability constraints and N2 and
N3 have to decrease to fulfill the throughput constraints. Depending on the model parameters
and the bounds it can occur that the constraints cannot be satisfied at the same time, which
means that the link is overloaded with respect to the GoS and QoS requirements.

6.5 Analysis of Call Blocking Probabilities

The call blocking probabilities are obtained from the steady state distribution (P ) of the CTMC
specified by its generator matrix Q. Considering the model size of practically interesting cases
iterative analysis methods are applicable for steady state analysis [Ste94]. Iterative methods
begin from an initial guess and produce a sequence of intermediate results, which converge
to the solution. The number of required iteration steps to achieve a given precision depends
on the model properties, the applied iterative scheme and the initial guess. We applied the
Gauss-Seidel algorithm for the iteration and an initial guess that is fairly close to the solution.
The initial guess is computed utilizing the fact that the system with only non-adaptive and
adaptive traffic classes can be closely approximated by a product form solution [J2].

Based on the steady state distribution of the CTMC, the call blocking probabilities of the
different classes are obtained as the sum of the steady state probability of blocking states3.

6.6 Analysis of Throughput Measures of Elastic Flows

6.6.1 Average Throughput Constraint

The calculation of the average throughput of the adaptive and the elastic flows is straightforward
based on the steady state distribution of the CTMC, since

E(θ̃) = b2 ·
∑

(n1,n2,n3)∈S

P2(n1, n2, n3) · r2(n1, n2, n3)

where the probability that an adaptive flow is compressed to r2(n1, n2, n3) is

P2(n1, n2, n3) =
n2 · p(n1,n2,n3)

∑

(n′
1,n′

2,n′
3)∈S

n′
2 · p(n′

1,n′
2,n′

3)

Similarly,

E(θ̂) =

∑

(n1,n2,n3)∈S

n3 · p(n1,n2,n3) · b3 · r3(n1, n2, n3)

∑

(n′
1,n′

2,n′
3)∈S

n3 · p(n′
1,n′

2,n′
3)

.

2In practical cases, the value of ε2 (ε3) is between 50% and 100%. Setting ε2 (ε3) to 50% provides approx-
imately the average throughput constraint. Higher value of ε2 (ε3) gives tighter throughput guarantee. The

case when ε2 = 100% (ε3 = 100%) is equivalent with setting bmin
2 equal to θ̃min (bmin

3 to θ̂min).
3Blocking states of a given traffic class are those states in which a new arrival of that class would result in

an infeasible state.
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6.6.2 Throughput Threshold Constraint

Unfortunately, it is harder to check the throughput threshold constraint, since neither the
distribution nor the higher moments of θ̃t and θ̂x can be analyzed based on the steady state
distribution of the above studied Markov chain. Hence, a new analysis approach is applied to
analyze the system with the throughput threshold constraint.
The throughput threshold constraint on adaptive flows can be check based on the distribution
of θ̃t and on the elastic flows based on the distribution of Tx, because:

Pr
(

θ̂x ≥ θ̂min
)

= Pr

(

x

Tx
≥ θ̂min

)

= Pr

(

Tx ≤ x

θ̂min

)

.

Since it is computationally too hard to evaluate the distribution of Tx and θ̃t for realistic models,
but there are effective numerical methods to obtain their moments, as discussed later, we check
the throughput threshold constraint applying moment based distribution estimation methods.
The applied estimation method uses the first three moments of θ̃t and Tx and provides upper
and lower bounds of their distribution.

6.6.3 Customer Tagging and System Behavior During Adap-

tive/Elastic Traffic Service

The method we follow to evaluate the moments of θ̃t and Tx is based on tagging an adaptive
or an elastic flow arriving to the system, and carefully examining the possible transitions from
the moment this tagged call enters the system until it leaves the system. The system behavior
during the service of the tagged flow can be described by a slightly modified Markov chain. To
analyze θ̃t a tagged adaptive flow is considered while to analyze Tx a tagged elastic flow is used.

Here we detail the analysis of a tagged adaptive flow and at the end of this section we
consider the analysis of a tagged elastic flow. The system introduced in Section 6.3, is specified
by a CTMC over the state space S with generator matrix Q. The modified system used to
evaluate θ̃t has the following properties:

• Since we assume that at least the tagged adaptive flow is in the system we exclude states
where n2 = 0.

• With each state of the state space there is an associated entrance probability, which
is the probability of the event that the modified CTMC starts from that state. When
the tagged adaptive flow finds the system in state (n1, n2, n3) it will bring the system
into state (n1, n2 + 1, n3) unless (n1, n2, n3) happens to be a blocking state of the tagged
adaptive flow.

Let {Z2+(t), t ≥ 0} be the modified CTMC assuming that the tagged adaptive flow never
leaves the system over the finite state space S2+ with generator Q2+. The state space S2+ can
be defined as:

0 ≤ n1 · b1 ≤ CCOM (6.7)

1 ≤ n2 ≤ N2 (6.8)

0 ≤ n3 ≤ N3 . (6.9)
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Indeed, S2+ = S\S2+
0 where S2+

0 is the states in S where n2 = 0. The transition rates in
Q2+ are closely related to the appropriate rates in Q and they differ only in (6.10):

q2+(n1, n2, n3 → n1 + 1, n2, n3) = λ1

q2+(n1, n2, n3 → n1, n2 + 1, n3) = λ2

q2+(n1, n2, n3 → n1, n2, n3 + 1) = λ3

q2+(n1, n2, n3 → n1 − 1, n2, n3) = n1 · µ1

q2+(n1, n2, n3 → n1, n2 − 1, n3) = (n2 − 1) · µ2 (6.10)

q2+(n1, n2, n3 → n1, n2, n3 − 1) = n3 · r3(n1, n2, n3) · µ3

The initial probability of the modified Markov chain, p2+
(n1,n2,n3)

, is obtained by considering the
system state immediately after the tagged adaptive flow joints the system in steady state. i.e.
the probability that the system is in state (n1, n2, n3) after the tagged adaptive flow arrival is
proportional to the steady state probability of state (n1, n2 − 1, n3). Hence

p2+
(n1,n2,n3)

=
p(n1,n2−1,n3)
∑

(n′
1,n′

2,n′
3)∈S

2+

p(n′
1,n′

2,n′
3)

Figure 6.2 depicts the modified Markov chain that describes the system behavior during the
service of a tagged adaptive flow assuming the same system as in Figure 6.1. The numbers
in brackets under the state identifier indicate the bandwidth of the tagged adaptive flow in
the given state. The initial probabilities of the states are evaluated based on the steady state
probability of the ”original” states that are related with the states with dashed arrows.
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Figure 6.2: Tagging an adaptive flow

To obtain the moments of θ̃t a Markov reward model [J1] is defined over {Z2+(t), t ≥
0}. θ̃t is a random variable which depends on the (random) arrival and departure of the
rigid, adaptive and elastic flows as described by Q2+. The reward rate associated with the
states of the modified Markov chain represents the bandwidth of the tagged adaptive flow
in that state. Let r2+(n1, n2, n3) be the reward rate (the bandwidth of the tagged adaptive
flow) in state (n1, n2, n3) and R2+ the diagonal matrix composed by the r2+(n1, n2, n3) entries.
r2+(n1, n2, n3) = r2(n1, n2, n3) · b2, where r2(n1, n2, n3) is the bandwidth compression in state
(n1, n2, n3). This way the dynamics of the number of flows in the system during the service
of the tagged adaptive flow is described by the Modified Markov chain and the instantaneous
bandwidth of the tagged flow by the instantaneous reward rate. If there are more flows in the
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system the bandwidth of the tagged adaptive flow decreases toward bmin
2 and if there are less

flows it increases to b2. The generator matrix Q2+ and the reward matrix R2+ define the Markov
reward model that accumulates t·θ̃t amount of reward in the (0, t) interval. It can be interpreted
as the reward accumulated in the (0, t) interval represents the amount of data transmitted
through the tagged adaptive flow in this interval, i.e. θ̃t = amount of transferred data / t.

The tagging of an elastic flow follows the same pattern as the tagging of an adaptive one.
The appropriate measures are denoted by p3+

(n1,n2,n3)
, Q3+ and R3+. Tx is the (random) amount

of time it takes to transmit x unit of data through the tagged elastic flow. Defining a Markov
reward model as before the reward accumulated in (0, t) represents the (random) amount of
data transmitted through the tagged flow, hence Tx is the (random) time the Markov reward
model takes to accumulate x amount of reward. This measure is commonly referred to as
completion time.

Having the initial probability distributions p2+
(n1,n2,n3)

, and p3+
(n1,n2,n3)

, the generator matrices

Q2+, and Q3+ and the reward matrices R2+ and R3+, we applied the numerical analysis method
proposed in [J1] to evaluate the moments of θ̃t and Tx, which is applicable for Markov reward
models with large state spaces (∼106 states).

6.6.4 The Complete Link Allocation Procedure

Finally, the steps of the link allocation procedure is summarized (Figure 6.3). Here we discuss
the procedure which maximize the throughput of adaptive and elastic flows.

1) CCOM : CCOM is calculated using Erlang’s loss formulae from λ1, µ1, b1, B
max
1 such that

the blocking probability of the rigid flows, B1, is less than Bmax
1 . If the obtained CCOM

is larger than the link capacity, C, the link is overloaded by the rigid flows and the
requirements can not be satisfied.

2) Initial value of N2: The number of adaptive flows in the system is independent of the
other flows as long as the system stays in the non-blocking region, i.e., the bandwidth
of the adaptive flows is greater than bmin

2 such that a new adaptive flow can enter the
system. Assuming this independent property is dominant, we calculate the initial value
of N2 independent of N3. Actually, we calculate the initial value of N2, when N3 =
0. In this case a reversible, “two dimensional” Markov chain characterize the blocking
probabilities, hence it is fast and easy to calculate N2 [J2]. Due to the above mentioned
independence of the adaptive and elastic load, N2 hardly changes during the consecutive
iterative procedure when B2 and B3 take practically interesting values (< 15%).

3) Initial value of N3: We apply the following heuristic relation for the initial value of N3:

N3 =
C − CCOM − N2 θ̃min

θ̂min
(6.11)

4) Iterative refinement of N2 and N3:

4A) Calculation of B2 and B3: The calculation of B2 and B3 with the given N2, N3

pair (N2 > 0, N3 > 0) is rather expensive, since it requires the analysis of a (non-
reversible) “3 dimensional” Markov chain (Section 6.5).

4B) Optimization of N3: The blocking probability of elastic flows, B3, is a monotone
function of N3 for a given fixed N2. In this step we search for the minimal N3 which
results in a blocking probability B3 less than Bmax

3 .
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Minimize : N2

Constraints : B2 ≤  B2
max  and  N3 = 0

Minimize : CCOM

Constraint : B1 ≤  B1
max

Determine :  B2 , B3

B2 ≤  B2
max

Optimize :  N3

Constraint : B3 ≤  B3
max

Increase : N2

Check throughput constraints

N3
 = (C - CCOM - N2 θ min) / θ min~ ^

Input : C, B1
max, B2

max, B3
max, θ min, θ min

CCOM < C

Yes

Determine :  throughput measures

Output : CCOM , N2 , N3 Output : Overloaded link

Yes

OK

No

No

No

~ ^

Figure 6.3: The block diagram of the link allocation procedure

4C) Refinement of N2: If B2 > Bmax
2 with the given N2, N3 pair then we increase N2 and

go back to step A).

5) Throughput check: The above iterative procedure obtains the minimal N2, N3 pair which
fulfills the blocking constraints. This minimal N2, N3 pair results in the maximal through-
put for the adaptive and elastic flows with the given blocking constraints. Hence a final
check of the throughput constraints (Sec. 6.6) decides if the obtained set of output pa-
rameters fulfills all requirements or the link is overloaded and the requirements cannot
be fulfilled.
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6.6.5 The Computational Complexity of the Link Allocation Proce-

dure

The only computationally intensive step of the link allocation procedure is the analysis of the “3
dimensional” Markov chain. Unfortunately, this computationally intensive step is repeated in
the iterative loop for the analysis of the blocking probabilities as long as a proper N2, N3 pair is
obtained. Using the notation NRIG = CCOM/b1, in each cycle of the iteration a Markov chain of
size NRIG×N2×N3 has to be analyzed. The blocking probabilities and the average throughput
of adaptive and elastic flows are evaluated based on the steady state behavior of this Markov
chain. Instead, in case of applying the throughput threshold constraint the reward analysis
provided in [J1] has to be completed. Calculating the first n moments of reward measures, the
complexity of this procedure (regarding both, the number of matrix-vector multiplication and
the memory requirement) is n times more than the transient analysis of the underlying Markov
chain. Fortunately, the throughput analysis step is performed only once when we optimize for
the throughput of adaptive and elastic flows, as it is discussed in section 6.6.4.

6.7 Numerical Examples on the POL Link Allocation

Policy

In this Section we present and discuss a numerical example which demonstrates the use of the
average throughput- and the throughput threshold constraints.

6.7.1 Input Parameters

In the following we will refer to the quantity Si = bi · λi/µ1 as the class-i offered load to the
system, i = 1 . . . 3. The class-1 traffic may represent a voice or a fax over IP application that
requires peak allocation. We choose this bandwidth requirement to be our bandwidth unit [BU].
Class-2 traffic may correspond to an adaptive video codec (requiring three times the bandwidth
of the voice application). We assume that the application tolerates a temporary throughput
degradation down to 20% of the peak bandwidth requirement (rmin

2 = 0.2). Finally, class-3
represents a wide band (three times the bandwidth of the voice application) file transfer (ftp)
application where a minimum bandwidth demand is associated with the application, which,
also in this case is 20% of the peak data rate demand (rmin

3 = 0.2). Note that for the sake
of this example we have chosen the parameters such that the class-wise offered traffic is the
same for all three classes (λi/µi = 15, i = 1 · · ·3), which makes an intuitive interpretation of
the results more straightforward. For our time unit [TU], we have chosen the equal holding
times of the three traffic classes. Note that we set the throughput constraints of the adaptive
and the elastic traffic classes to 2.5 [BU], which is somewhat lower than the maximum required
3 [BU], but higher than the minimum required 0.6 [BU]. Recall that the minimum required
bandwidth is the one, which must be ensured for all in-progress class flows at all times, whereas
the interpretation of the θ̃min, θ̂min, ǫ2 and ǫ3 values is throughput definition dependent, as
discussed in Section 6.6. We will return to these definitions in the subsequent subsections.

6.7.2 Determining the CCOM Parameter

Recall from Section 6.6 and from the Figure 6.3 that both under the average throughput
constraint and under the throughput threshold constraint the first step is to determine the
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System Input Parameter Interpretation Value Unit

C Link capacity 100 [BU]

b1 Rigid traffic class bandwidth demand 1 [BU]

b2
Adaptive traffic class maximum bandwidth

demand
3 [BU]

bmin
2

Adaptive traffic class minimum bandwidth
demand

0.6 [BU]

b3
Elastic traffic class maximum bandwidth

demand
3 [BU]

bmin
3

Elastic traffic class minimum bandwidth
demand

0.6 [BU]

λ1 = λ2 = λ3
Rigid/Adaptive/Elastic traffic flows’ arrival

intensity
15 1/[TU]

1/µ1 = 1/µ2 = 1/µ3
Rigid/Adaptive/Elastic (ideal) mean holding

time
1 [TU]

B1 Rigid traffic class blocking probability 2 %

B2 Adaptive traffic class blocking probability 10 (10) %

B3 Elastic traffic class blocking probability 10 (10) %

θ̃min Adaptive traffic class throughput constraint 2.5 (2.0) [BU]

θ̂min Elastic traffic class throughput constraint 2.5 (2.0) [BU]

ǫ2
Adaptive traffic class throughput threshold

constraint
(90) %

ǫ3
Elastic traffic class throughput threshold

constraint
(90) %

Table 6.1: The input parameters of the example system, consisting of a single transmission
link and three traffic classes (rigid, adaptive and elastic). The link capacity is specified in
bandwidth units [BU], the time unit [TU] is explicitly chosen to s.

common part of the link, CCOM . From the offered traffic load of the rigid traffic class, applying
the Erlang-B formula, it directly follows that CCOM must at least be 23 [BU] in order to meet
the B1 ≤ 2% blocking probability constraint. (B1 = 1.35% when CCOM = 23 and B1 = 2.1%
when CCOM = 22).

6.7.3 Determining the N2 and N3 Parameters with Average

Throughput Constraints

The feasible N2, N3 pairs (cut-off parameters) are limited by the following constraints:

• B2 ≤ Bmax
2 , B3 ≤ Bmax

3

• throughput constraints for adaptive and elastic flows

• Eq. (6.2)
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The blocking probability constraints define the lower bounds of the feasible N2 and N3 values.
An upper bound of the feasible region is defined by Eq. (6.2). If the throughput constraints are
too loose, e.g., θ̃min ≤ bmin

2 and θ̂min ≤ bmin
3 , Eq. (6.2) limits the feasible N2, N3 pairs. (In our

example, Eq. (6.2) yields that N2 + N3 ≤ 128.) In case of meaningful throughput constraints
the feasible N2, N3 region is further restricted.

The impact of the average throughput constraint and of the maximum blocking probabilities
of the adaptive and the elastic classes on the feasible cut-off parameters is shown in Figures 6.4
- 6.7.
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Figure 6.4: Feasible N2, N3 region with aver-
age throughput constraints (Bmax

2 = Bmax
3 =

10%, θ̃min = θ̂min = 2.5)
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Figure 6.5: Feasible N2, N3 region with
average throughput constraints (Bmax

2 =
10%, Bmax

3 = 5%, θ̃min = θ̂min = 2.5)

In Figure 6.4 the minimum average throughput for the adaptive and elastic classes is set as in
Table 6.1, E(θ̃) ≥ 2.5 and E(θ̂) ≥ 2.5. The set of N2 and N3 pairs that fulfill this throughput
constraint and at the same time meet the blocking probability constraints (B2 ≤ 10% and
B3 ≤ 10%) is shown as the ”interior” (dark part) of the framed area.

For instance, the pairs (N2 = 18, N3 = 19) and (N2 = 28, N3 = 26) both meet the
throughput constraint, but (not surprisingly), the blocking probabilities are minimized under
the highest possible cut-off parameters (i.e. under the second cut-off parameter pair). On the
other hand, when the blocking probability constraints (B2 ≤ 10% and B3 ≤ 10% are ”just
kept”, the throughput values are maximized when keeping the admitted calls to the minimum,
in this example under the N2 = 18 and N3 = 19 cut-off parameter pair.

Figure 6.5 and 6.6 investigate the effect of required minimal blocking probabilities. In Figure
6.5 the same area is depicted when reducing the maximum blocking probabilities of the elastic
class to Bmax

3 = 5% and leaving Bmax
2 and the minimum average throughput, θ̃min = θ̂min = 2.5,

unchanged. Figure 6.6 shows the case when the blocking probability of the adaptive class is
reduced to Bmax

2 = 5% and all the other parameters are as in Figure 6.4. It can be seen that the
independent behavior of the lower bounds of N2 and N3 (which we utilize in our link allocation
procedure in section 6.6.4) is verified in this example. The maximum blocking probability of the
adaptive (elastic) class affects only the lower bound of N2 (N3) and leaves the other boundaries
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Figure 6.6: Feasible N2, N3 region with
average throughput constraints (Bmax

2 =
5%, Bmax

3 = 10%, θ̃min = θ̂min = 2.5)
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Figure 6.7: Feasible N2, N3 region with aver-
age throughput constraints (Bmax

2 = Bmax
3 =

10%, θ̃min = 2.5, θ̂min = 0.6)

of the feasible cut-off parameter set unchanged.
Figure 6.7 illustrates the effect of throughput constraints. Starting from the parameters

of Figure 6.4, we relaxed the throughput constraint on the adaptive class first. We obtained
the same feasible region as in Figure 6.4 even for meaningless low throughput constraint (i.e.,
θ̃min = bmin

2 ). It means that, in this example, the upper bound of the feasible cut-off parameter
region is determined by the throughput constraint of the elastic class. Starting again from the
parameters of Figure 6.4, we relaxed the throughput constraint on the elastic class (θ̂min = bmin

3 )
second. The obtained enlarged feasible region is depicted in Figure 6.7. Thus, the upper
boundary in Figure 6.4 comes from the E(θ̂) ≥ θ̂min = 2.5 throughput constraints (independent
of the E(θ̃) ≥ θ̃min constraint as long as θ̃min ≤ 2.5), and the higher upper boundary in Figure
6.7 comes from the E(θ̃) ≥ θ̃min = 2.5 throughput constraints. The lower one of these two
upper boundaries limits the feasible cut-off parameter region, as it is in Figure 6.4.

Our algorithm is capable of determining the ”framed” area, that is the set of feasible (N2;N3)
pairs including the case when the set is empty. Once this finite set is determined, it is straight-
forward to select the one pair which is desirable (i.e. maximizing the throughput or minimizing
the blocking probabilities). In subsection 6.7.8 we consider an example when we are inter-
ested in maximizing the average throughput of adaptive and elastic flows under the blocking
probability constraints.

6.7.4 Determining the N2 and N3 Parameters with Throughput

Threshold Constraints

In our example the adaptive and elastic throughput fluctuate between 0.6 and 3 [BU]. The mean
throughput parameter indicates only the average behavior of this fluctuation. For example,
the average throughput is 2.5 when the adaptive and elastic flows always receive 2.5 [BU]
throughput, and also when they receive the maximum throughput with probability ∼0.8 and
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Figure 6.8: Feasible N2, N3 region with
throughput threshold constraints (Bmax

2 =
Bmax

3 = 10%, θ̃min = θ̂min = 2, ǫ2 = ǫ3 =
90%)
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Figure 6.9: Feasible N2, N3 region with
throughput threshold constraints (Bmax

2 =
Bmax

3 = 10%, θ̃min = θ̂min = 2, ǫ2 = ǫ3 =
99%)

the minimum throughput with probability ∼0.2. The real throughput fluctuation is always
between these two extreme cases. For some applications it could be important to limit the
probability that the flow receives “low” throughput. For example, we may want to require that
the throughput of adaptive and elastic flows are higher than 2 [BU] with probability 0.9.

Figure 6.8 specifies the set of (N2; N3) pairs which satisfy the same blocking probability
constraints for B2 and B3 as above (B2 ≤ 10%, B3 ≤ 10%) and the ”90%-threshold constraints”
(Pr(θ̃ ≥ 2) ≥ 0.9 and Pr(θ̂ ≥ 2) ≥ 0.9). With the cut-off parameters inside the framed area
the throughput for the adaptive and elastic connections are higher than 2 [BU] with probability
0.9 and the blocking probabilities are less than 10%. Figure 6.9 shows the same (N2; N3) set
under the ”99%-threshold constraint”, where we observe that the set of such cut-off parameter
pairs that satisfy this constraint ”shrinks” significantly as compared to the ”90%-threshold”
constraint.

6.7.5 Blocking Probabilities

In this subsection we study the dependency of the class-wise blocking probabilities on the
system output parameters N2, N3. Figure 6.10 shows how the adaptive traffic class blocking
probability depends on the cut-off parameters. As expected, as the maximum number of simul-
taneously admitted adaptive calls increases, the blocking probability decreases, at the expense
of decreasing this class’ throughput (Figure 6.12). For instance, at N2 = 28; N3 = 26, the
average throughput constraints are kept (both average throughput values are above 2.5), and
the blocking probabilities are minimized (B2 < 0.29% and B3 < 2%).

Two observations are noteworthy. First, we note that B2 is strongly dependent on N2, but
basically independent from N3 (Figure 6.10). On the other hand, B3 does depend on both cut-
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Figure 6.10: Adaptive class blocking probabil-
ity as the function of the cut-off parameters
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Figure 6.11: Elastic class blocking probability
as the function of the cut-off parameters

off parameters when N2 ≤ 22), as it is in Figure 6.11. This observation verifies the assumptions
used in the proposed link allocation procedure for this example.

Secondly, under the given input parameters (i.e., bmin
2 = bmin

3 ) it is clear that without the
cut-off parameters, B2 would be equal B3, since the blocking states of the underlying Markov
chain for the two class are the same. However, as we observe, with the cut-off parameters,
the elastic class blocking probability is significantly higher. This significant difference of the
blocking probabilities comes from the different nature of the adaptive and elastic flows. The
adaptive flows “reduce” their load, i.e., they transmit less data, in case of link saturation and
depart from the system at the same rate as the link is not saturated. In contrast, the elastic
flows transmit the same amount of data independently of the actual link load (since they tend
to increase their holding time if the received throughput decreases). Thus, in the case of link
saturation elastic the flows stay much longer in the system, which results in a higher blocking
probability for the incoming flows.

6.7.6 Average Throughput

With respect to the proposed link allocation procedure the most important feature is the
monotonicity of the average throughput of adaptive and elastic flows as a function of the cut-
off parameters. In figure 6.12 and 6.13 we can see that both average throughput surfaces are
monotone with respect to both cut-off parameters. The mean throughput of adaptive and
elastic flows are very close, because the same throughput is assigned with the adaptive and
elastic flows in each state of the Markov process. The slice difference is due to the different
distribution of the number of adaptive and elastic flows in the system.

6.7.7 Throughput Thresholds

Figures 6.14 depicts the 99%-threshold plane of adaptive flows’ throughput, i.e., the probabil-
ity that the throughput of adaptive flows, θ̃, is greater than the given surface point is 99%.
Similarly, the 90%-threshold plane of adaptive flows’ throughput is shown in Figures 6.15. The
significant difference of the two surfaces indicates that a small reduction of the GoS require-
ments results in significant gain with respect to acceptable system load. The nature of the
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Figure 6.12: Average throughput of the adap-
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Figure 6.13: Average throughput of the elastic
class

same threshold planes of elastic flows’ throughput is the same, as it is in Figure 6.16 and 6.17.
Similarly to the mean throughput surfaces (Figure 6.12 and 6.13) the threshold planes show
monotone behavior.

6.7.8 The Link Allocation Procedure

We applied the proposed link allocation procedure (section 6.6.4) for the considered example.
The first step provided CCOM = 23 (as it is already mentioned above). In the second step,
the analysis of the “two dimensional” Markov chain (with N3 = 0) resulted N2 = 18 and
B2 = 8.61%. Using (6.11), 13 is the initial value of N3. The steps of the iterative refinement
of N2 and N3 are provided in Table 6.2. We applied the interval bisection method to find the
minimal N3 parameter which still fulfills the blocking constraint. Due to the independence of
B2 and N3 the N2 parameter remained unchanged during the iterative refinement. The optimal
cut-off parameter pair is N2 = 18 and N3 = 19. The very last step of the iterative analysis
checks if N3 can be reduced below 19. Finally, the mean throughput of adaptive and elastic
flows with the optimal cut-off parameters are E(θ̃) = 2.82 and E(θ̂) = 2.82, respectively. The
evaluation of this complete link allocation procedure with 6 iteration steps (i.e., analysis of 6
“3 dimensional” Markov chains) required 6 min running time on a 500 Mhz Pentium PC.

(N2, N3) (B2, B3)

(18, 13) (8.61%; 26.86%)

(18, 26) (8.61%; 2.18%)

(18, 20) (8.61%; 7.78%)

(18, 17) (8.61%; 13.65%)

(18, 19) (8.61%; 9.43%)

(18, 18) (8.61%; 11.37%)

Table 6.2: The steps of the iterative refinement of the cut-off parameters



6.8. CONCLUSION 85

16 19 22 25 28 31 34 37 40
16

25

34

1.50

1.70

1.90

2.10

2.30

2.50

2.70

2.90

Th

N3

N2

ADAPTIVE - 99%

Figure 6.14: The 99%-threshold plane of the
adaptive class

16 19 22 25 28 31 34 37 40
16

25

34

1.50

1.70

1.90

2.10

2.30

2.50

2.70

2.90

Th

N3

N2

ADAPTIVE - 90%

Figure 6.15: The 90%-threshold plane of the
adaptive class

6.8 Conclusion

In this chapter we argued that providing QoS in the Internet necessitates the use of models that
allow us to quantitatively study the impact of admission control on flow throughput and block-
ing. Indeed, there seems to be a growing consensus regarding the necessity of traffic engineering
[IETF] and the use of analytical models for the quantifying the relationship between demand,
capacity and performance for both streaming and elastic flows [Rob01]. Therefore, we proposed
the extension of the classical loss model - successfully applied for the dimensioning of circuit and
ATM networks - such that it takes into account the properties of peak allocated stream (rigid),
adaptive stream and elastic flows. Our flow differentiation at this abstraction level attempts to
capture the fundamental distinguishing characteristics of three broad categories of applications.
Under not too limiting assumptions at the call level, we have also shown that a relatively simple
link partial overlap allocation scheme used in concert with appropriate cut-off parameters can
be very flexible in the sense that by determining a few parameters (link division and the two
cut-off parameters), the system can meet different performance objectives. Specifically, this link
capacity division method can take into account blocking probability constraints and maximize
the stream and elastic throughputs. Alternatively, it can meet the stream and elastic through-
put constraints and minimize the blocking probabilities. During the construction of the model
and analyzing the numerical results of a specific example we also found that it is important to
realize the (often overlooked) differences between the streaming and the elastic flows in terms
of how their actual carried traffic is impacted by the system load. Streaming flows will suffer
from quality degradation (but their holding time remains unchanged), while elastic flows will
remain for a longer time in the system in case of overload. This distinguishing characteristics of
these two class of flows in turn leads to different blocking probability behavior when admission
control (by enforcing cut-off parameters) is exercised in the system. (As discussed in details
in Section 6.7.5.) Furthermore, we have also argued and shown that the throughput threshold
constraint can be a more informative performance measure than the simple average through-
put. From the user perspective, it provides more information on the expected quality of e.g.
a video session, while from the network engineer it may result in different admission control
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parameters. Thus, we believe that our extension of the multi-rate model and the associated
capacity sharing algorithm together with the numerical examples provide some insights and
provide arguments for applying traffic engineering methods in IP networks. It is an interesting
future research topic how the proposed high level classification can be used for various future
applications, including adaptive applications. Also, simulation could be used at the network
level to evaluate the behavior of this link sharing method at the network level. Finally, the
impact of the fact that real rate control methods (e.g. TCP) and scheduling algorithms can
only provide an approximation of our ideal model requires further studies.
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[J3] Miklós Telek and Sándor Rácz, ”Numerical analysis of large Markov reward models”,
Performance Evaluation, Vol. 36&37, pp 95 − 114, August 1999.
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”Virtual Path Layout Design”, Networks ’98, In proc., International Telecommunication
Network Planing Symposium, Sorrento, Italy, October 1998.
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