butools.mc.CTMCSolve¶
-
butools.mc.
CTMCSolve
()¶ Matlab: pi = CTMCSolve(Q)
Mathematica: pi = CTMCSolve[Q]
Python/Numpy: pi = CTMCSolve(Q)
Computes the stationary solution of a continuous time Markov chain.
Parameters: Q : matrix, shape (M,M)
The generator matrix of the Markov chain
Returns: pi : row vector, shape (1,M)
The vector that satisfies \(\pi\, Q = 0, \sum_i \pi_i=1\)
Notes
The procedure raises an exception if
checkInput
is set totrue
andCheckGenerator
(Q) fails.Examples
For Matlab:
>>> Q = [-0.9, 0.5, 0.4; 0.9, -0.9, 0; 0.3, 0.3, -0.6]; >>> ret = CTMCSolve(Q); >>> disp(ret); 0.40909 0.31818 0.27273 >>> disp(ret*Q); -1.1102e-16 1.3878e-17 8.3267e-17
For Mathematica:
>>> Q = {{-0.9, 0.5, 0.4},{0.9, -0.9, 0},{0.3, 0.3, -0.6}}; >>> ret = CTMCSolve[Q]; >>> Print[ret]; {0.4090909090909091, 0.3181818181818182, 0.2727272727272727} >>> Print[ret.Q]; {-4.163336342344337*^-17, -1.3877787807814457*^-17, 5.551115123125783*^-17}
For Python/Numpy:
>>> Q = ml.matrix([[-0.9, 0.5, 0.4],[0.9, -0.9, 0],[0.3, 0.3, -0.6]]) >>> ret = CTMCSolve(Q) >>> print(ret) [[ 0.40909 0.31818 0.27273]] >>> print(ret*Q) [[ -4.16334e-17 -1.38778e-17 5.55112e-17]]