butools.dmap.MarginalMomentsFromDMMAP¶
-
butools.dmap.
MarginalMomentsFromDMMAP
()¶ Matlab: moms = MarginalMomentsFromDMMAP(D, K, precision)
Mathematica: moms = MarginalMomentsFromDMMAP[D, K, precision]
Python/Numpy: moms = MarginalMomentsFromDMMAP(D, K, precision)
Returns the moments of the marginal distribution of a discrete marked Markovian arrival process.
Parameters: D : list/cell of matrices of shape(M,M), length(N)
The D0...DN matrices of the DMMAP
K : int, optional
Number of moments to compute. If K=0, 2*M-1 moments are computed. The default value is K=0.
precision : double, optional
Numerical precision for checking if the input is valid. The default value is 1e-14
Returns: moms : row vector of doubles, length K
The vector of moments.
Examples
For Matlab:
>>> D0 = [0.34, 0, 0; 0.06, 0.05, 0.03; 0.11, 0.13, 0]; >>> D1 = [0.3, 0, 0; 0.16, 0.18, 0.05; 0.15, 0.04, 0.09]; >>> D2 = [0, 0.01, 0; 0.1, 0.07, 0.08; 0.13, 0.12, 0.13]; >>> D3 = [0.35, 0, 0; 0, 0.18, 0.04; 0.06, 0.03, 0.01]; >>> moms = MarginalMomentsFromDMMAP({D0, D1, D2, D3}); >>> disp(moms); 1.5037 3.0278 8.4243 31.097 143.88
For Mathematica:
>>> D0 = {{0.34, 0, 0},{0.06, 0.05, 0.03},{0.11, 0.13, 0}}; >>> D1 = {{0.3, 0, 0},{0.16, 0.18, 0.05},{0.15, 0.04, 0.09}}; >>> D2 = {{0, 0.01, 0},{0.1, 0.07, 0.08},{0.13, 0.12, 0.13}}; >>> D3 = {{0.35, 0, 0},{0, 0.18, 0.04},{0.06, 0.03, 0.01}}; >>> moms = MarginalMomentsFromDMMAP[{D0, D1, D2, D3}]; >>> Print[moms]; {1.503697331491185, 3.027841857350894, 8.424305390832199, 31.097386717744087, 143.8804184010114}
For Python/Numpy:
>>> D0 = ml.matrix([[0.34, 0, 0],[0.06, 0.05, 0.03],[0.11, 0.13, 0]]) >>> D1 = ml.matrix([[0.3, 0, 0],[0.16, 0.18, 0.05],[0.15, 0.04, 0.09]]) >>> D2 = ml.matrix([[0, 0.01, 0],[0.1, 0.07, 0.08],[0.13, 0.12, 0.13]]) >>> D3 = ml.matrix([[0.35, 0, 0],[0, 0.18, 0.04],[0.06, 0.03, 0.01]]) >>> moms = MarginalMomentsFromDMMAP([D0, D1, D2, D3]) >>> print(moms) [1.503697331491185, 3.0278418573508938, 8.424305390832199, 31.097386717744087, 143.88041840101141]