butools.dph.DPH3From5Moments¶
-
butools.dph.
DPH3From5Moments
()¶ Matlab: [alpha, A] = DPH3From5Moments(moms, prec)
Mathematica: {alpha, A} = DPH3From5Moments[moms, prec]
Python/Numpy: alpha, A = DPH3From5Moments(moms, prec)
Returns an order-3 discrete phase-type distribution which has the same 5 moments as given.
Parameters: moms : vector of doubles, length(5)
The moments to match
prec : double, optional
Numerical precision, default value is 1e-14
Returns: alpha : matrix, shape (1,3)
The initial probability vector of the DPH(3)
A : matrix, shape (3,3)
Transition probability matrix of the DPH(3)
Notes
Raises an error if the moments are not feasible with a DPH(3).
This procedure first calls ‘MGFromMoments’, then transforms it to DPH(3) by ‘CanonicalFromDPH3’.
Examples
For Matlab:
>>> a = [0.7,0.1,0.2]; >>> A = [0.2, 0.51, 0.1; 0.58, 0.41, 0; 0.1, 0.4, 0.3]; >>> moms = MomentsFromDPH(a, A); >>> disp(moms); 9.3096 175.1 4968.7 1.8805e+05 8.8966e+06 >>> [b, B] = DPH3From5Moments(moms); >>> disp(b); 0.73989 0.076837 0.18327 >>> disp(B); 0.89971 0.10029 0 0 0.010293 0.98971 0 0.050581 0 >>> phmoms = MomentsFromMG(b, B, 5); >>> disp(phmoms); 9.3096 175.1 4968.7 1.8805e+05 8.8966e+06
For Mathematica:
>>> a = {0.7,0.1,0.2}; >>> A = {{0.2, 0.51, 0.1},{0.58, 0.41, 0},{0.1, 0.4, 0.3}}; >>> moms = MomentsFromDPH[a, A]; >>> Print[moms]; {9.3096349745331, 175.10327171027384, 4968.663522150066, 188050.43861214988, 8.896632715174045*^6} >>> {b, B} = DPH3From5Moments[moms]; "Ordered eigenvalues:"{0.8997069306212445, 0.22894830561223567, -0.21865523626858424} >>> Print[b]; {0.7398925149830309, 0.07683743218204545, 0.18327005283492365} >>> Print[B]; {{0.8997069306212445, 0.10029306937875548, 0}, {0, 0.010293069343651429, 0.9897069306563486}, {0, 0.05058138354526465, 0}} >>> phmoms = MomentsFromMG[b, B, 5]; >>> Print[phmoms]; {9.309634974533111, 175.10327171027419, 4968.66352215008, 188050.43861215067, 8.89663271517409*^6}
For Python/Numpy:
>>> a = ml.matrix([[0.7,0.1,0.2]]) >>> A = ml.matrix([[0.2, 0.51, 0.1],[0.58, 0.41, 0],[0.1, 0.4, 0.3]]) >>> moms = MomentsFromDPH(a, A) >>> print(moms) [9.3096349745331022, 175.10327171027393, 4968.6635221500701, 188050.43861215009, 8896632.7151740566] >>> b, B = DPH3From5Moments(moms) >>> print(b) [[ 0.73989 0.07684 0.18327]] >>> print(B) [[ 0.89971 0.10029 0. ] [ 0. 0.01029 0.98971] [ 0. 0.05058 0. ]] >>> phmoms = MomentsFromMG(b, B, 5) >>> print(phmoms) [9.3096349745330773, 175.10327171027262, 4968.6635221500082, 188050.4386121468, 8896632.7151738554]