butools.dmap.MarginalMomentsFromDMAP¶
-
butools.dmap.
MarginalMomentsFromDMAP
()¶ Matlab: moms = MarginalMomentsFromDMAP(D0, D1, K, precision)
Mathematica: moms = MarginalMomentsFromDMAP[D0, D1, K, precision]
Python/Numpy: moms = MarginalMomentsFromDMAP(D0, D1, K, precision)
Returns the moments of the marginal distribution of a discrete Markovian arrival process.
Parameters: D0 : matrix, shape (M,M)
The D0 matrix of the discrete Markovian arrival process
D1 : matrix, shape (M,M)
The D1 matrix of the discrete Markovian arrival process
K : int, optional
Number of moments to compute. If K=0, 2*M-1 moments are computed. The default value is K=0.
precision : double, optional
Numerical precision for checking if the input is valid. The default value is 1e-14
Returns: moms : row vector of doubles, length K
The vector of moments.
Examples
For Matlab:
>>> D0 = [0, 0.02, 0, 0; 0, 0.17, 0.2, 0.14; 0.16, 0.17, 0.02, 0.18; 0, 0, 0, 0.12]; >>> D1 = [0, 0.88, 0.1, 0; 0.18, 0.07, 0.14, 0.1; 0.13, 0.15, 0.15, 0.04; 0.31, 0.18, 0.12, 0.27]; >>> moms = MarginalMomentsFromDMAP(D0, D1); >>> disp(moms); Columns 1 through 6 1.4955 2.9542 7.8852 27.282 116.17 587.04 Column 7 3437
For Mathematica:
>>> D0 = {{0, 0.02, 0, 0},{0, 0.17, 0.2, 0.14},{0.16, 0.17, 0.02, 0.18},{0, 0, 0, 0.12}}; >>> D1 = {{0, 0.88, 0.1, 0},{0.18, 0.07, 0.14, 0.1},{0.13, 0.15, 0.15, 0.04},{0.31, 0.18, 0.12, 0.27}}; >>> moms = MarginalMomentsFromDMAP[D0, D1]; >>> Print[moms]; {1.4955358592094412, 2.9542479654368474, 7.885226907678561, 27.282328108669493, 116.17171481905851, 587.0447802480243, 3437.0301824147914}
For Python/Numpy:
>>> D0 = ml.matrix([[0, 0.02, 0, 0],[0, 0.17, 0.2, 0.14],[0.16, 0.17, 0.02, 0.18],[0, 0, 0, 0.12]]) >>> D1 = ml.matrix([[0, 0.88, 0.1, 0],[0.18, 0.07, 0.14, 0.1],[0.13, 0.15, 0.15, 0.04],[0.31, 0.18, 0.12, 0.27]]) >>> moms = MarginalMomentsFromDMAP(D0, D1) >>> print(moms) [1.4955358592094412, 2.9542479654368474, 7.885226907678561, 27.282328108669493, 116.17171481905851, 587.04478024802427, 3437.0301824147914]