butools.ph.PHFromME¶
-
butools.ph.
PHFromME
()¶ Matlab: [beta, B] = PHFromME(alpha, A, precision)
Mathematica: {beta, B} = PHFromME[alpha, A, precision]
Python/Numpy: beta, B = PHFromME(alpha, A, precision)
Obtains a Markovian representation of a matrix exponential distribution of the same size, if possible.
Parameters: alpha : vector, shape (1,M)
The initial vector of the matrix-exponential distribution.
A : matrix, shape (M,M)
The matrix parameter of the matrix-exponential distribution.
precision : double, optional
A representation is considered to be a Markovian one if it is closer than the precision. The default value is 1e-14.
Returns: beta : vector, shape (1,M)
The initial probability vector of the Markovian monocyclic representation
B : matrix, shape (M,M)
Transient generator matrix of the Markovian monocyclic representation
References
[R41] G Horváth, M Telek, “A minimal representation of Markov arrival processes and a moments matching method,” Performance Evaluation 64:(9-12) pp. 1153-1168. (2007) Examples
For Matlab:
>>> a = [-0.4,1.4]; >>> A = [-3.8, 2; 2, -9]; >>> flag = CheckMERepresentation(a, A); >>> disp(flag); 1 >>> flag = CheckPHRepresentation(a, A); CheckProbVector: The vector has negative element (precision: 1e-12)! >>> disp(flag); 0 >>> [b, B] = PHFromME(a, A); >>> disp(b); 0.013037 0.98696 >>> disp(B); -3.2605 2.5924 0.34843 -9.5395 >>> flag = CheckPHRepresentation(b, B); >>> disp(flag); 1 >>> Cm = SimilarityMatrix(A, B); >>> err1 = norm(A*Cm-Cm*B); >>> err2 = norm(a*Cm-b); >>> disp(max(err1, err2)); 1.0162e-15 >>> a = [-0.5,1.5]; >>> A = [-3.8, 2; 2, -9]; >>> flag = CheckMERepresentation(a, A); >>> disp(flag); 1 >>> flag = CheckPHRepresentation(a, A); CheckProbVector: The vector has negative element (precision: 1e-12)! >>> disp(flag); 0 >>> [b, B] = PHFromME(a, A); >>> disp(b); 0.0057038 0.9943 >>> disp(B); -3.1279 3.0636 0.017405 -9.6721 >>> flag = CheckPHRepresentation(b, B); >>> disp(flag); 1 >>> Cm = SimilarityMatrix(A, B); >>> err1 = norm(A*Cm-Cm*B); >>> err2 = norm(a*Cm-b); >>> disp(max(err1, err2)); 3.0445e-15
For Mathematica:
>>> a = {-0.4,1.4}; >>> A = {{-3.8, 2},{2, -9}}; >>> flag = CheckMERepresentation[a, A]; >>> Print[flag]; True >>> flag = CheckPHRepresentation[a, A]; "CheckProbVector: The vector has negative element!" >>> Print[flag]; False >>> {b, B} = PHFromME[a, A]; >>> Print[b]; {0.013037109374999953, 0.9869628906249999} >>> Print[B]; {{-3.2604571906887756, 2.5924299798044217}, {0.3484263627325931, -9.539542809311223}} >>> flag = CheckPHRepresentation[b, B]; >>> Print[flag]; True >>> Cm = SimilarityMatrix[A, B]; >>> err1 = Norm[A.Cm-Cm.B]; >>> err2 = Norm[a.Cm-b]; >>> Print[Max[err1, err2]]; 1.1393205654608455*^-15 >>> a = {-0.5,1.5}; >>> A = {{-3.8, 2},{2, -9}}; >>> flag = CheckMERepresentation[a, A]; >>> Print[flag]; True >>> flag = CheckPHRepresentation[a, A]; "CheckProbVector: The vector has negative element!" >>> Print[flag]; False >>> {b, B} = PHFromME[a, A]; >>> Print[b]; {0.0057037812657654285, 0.9942962187342346} >>> Print[B]; {{-3.1278937744575632, 3.0635853844348873}, {0.017404720964309853, -9.672106225542432}} >>> flag = CheckPHRepresentation[b, B]; >>> Print[flag]; True >>> Cm = SimilarityMatrix[A, B]; >>> err1 = Norm[A.Cm-Cm.B]; >>> err2 = Norm[a.Cm-b]; >>> Print[Max[err1, err2]]; 2.30940485129664*^-15
For Python/Numpy:
>>> a = ml.matrix([[-0.4,1.4]]) >>> A = ml.matrix([[-3.8, 2],[2, -9]]) >>> flag = CheckMERepresentation(a, A) >>> print(flag) True >>> flag = CheckPHRepresentation(a, A) CheckProbVector: The vector has negative element (precision: 1e-12)! >>> print(flag) False >>> b, B = PHFromME(a, A) >>> print(b) [[ 0.01304 0.98696]] >>> print(B) [[-3.26046 2.59243] [ 0.34843 -9.53954]] >>> flag = CheckPHRepresentation(b, B) >>> print(flag) True >>> Cm = SimilarityMatrix(A, B) >>> err1 = la.norm(A*Cm-Cm*B) >>> err2 = la.norm(a*Cm-b) >>> print(np.max(err1, err2)) 1.18018326364e-15 >>> a = ml.matrix([[-0.5,1.5]]) >>> A = ml.matrix([[-3.8, 2],[2, -9]]) >>> flag = CheckMERepresentation(a, A) >>> print(flag) True >>> flag = CheckPHRepresentation(a, A) CheckProbVector: The vector has negative element (precision: 1e-12)! >>> print(flag) False >>> b, B = PHFromME(a, A) >>> print(b) [[ 0.0057 0.9943]] >>> print(B) [[-3.12789 3.06359] [ 0.0174 -9.67211]] >>> flag = CheckPHRepresentation(b, B) >>> print(flag) True >>> Cm = SimilarityMatrix(A, B) >>> err1 = la.norm(A*Cm-Cm*B) >>> err2 = la.norm(a*Cm-b) >>> print(np.max(err1, err2)) 2.23152066184e-15