butools.dmap.DMMAPFromDMRAP¶
-
butools.dmap.
DMMAPFromDMRAP
()¶ Matlab: D = DMMAPFromDMRAP(H, precision)
Mathematica: D = DMMAPFromDMRAP[H, precision]
Python/Numpy: D = DMMAPFromDMRAP(H, precision)
Obtains a Markovian representation of a discrete rational arrival process of the same size, if possible, using the procedure published in [R8].
Parameters: H : list/cell of matrices of shape(M,M), length(N)
The H0...HN matrices of the DMRAP to transform
precision : double, optional
A representation is considered to be a Markovian one if it is closer to it than this precision
Returns: D : list/cell of matrices of shape(M,M), length(N)
The D0...DN matrices of the DMMAP (if found)
References
[R8] (1, 2) András Horváth, Gábor Horváth, Miklós Telek, “A traffic based decomposition of two-class queueing networks with priority service”. COMPUTER NETWORKS 53:(8) pp. 1235-1248. (2009) Examples
For Matlab:
>>> H0 = [0.15, 0.2, 0.18; -0.20, 0.17, 0.22; 0.19, 0.15, 0.16]; >>> H1 = [0.01, 0.08, 0.16; 0.02, 0.2, 0.07; 0.02, 0.15, 0.17]; >>> H2 = [0.14, 0.07, 0.01; 0.19, 0.02, 0.31; 0.06, 0.1, 0.]; >>> H = {H0, H1, H2}; >>> moms = MarginalMomentsFromDMRAP(H); >>> disp(moms); 1.6264 3.6055 10.991 43.903 218.08 >>> jmom = LagkJointMomentsFromDMRAP(H, 3, 1); >>> G = DMMAPFromDMRAP(H); >>> disp(G{1}); 0.12149 0.28833 0.11968 5.6441e-06 0.17495 0.068392 0.14667 0.12596 0.18355 >>> disp(G{2}); 0.026095 5.788e-06 0.13053 0.069062 0.26926 1.1436e-05 0.073725 0.21205 0.084643 >>> disp(G{3}); 0.14939 0.0019471 0.16253 0.12377 0.010576 0.28397 0.047622 0.12573 3.4639e-05 >>> rmoms = MarginalMomentsFromDMMAP(G); >>> disp(rmoms); 1.6264 3.6055 10.991 43.903 218.08 >>> rjmom = LagkJointMomentsFromDMMAP(G, 3, 1); >>> err = norm(rjmom{1}-jmom{1})+norm(rjmom{2}-jmom{2}); >>> disp(err); 7.8933e-13
For Mathematica:
>>> H0 = {{0.15, 0.2, 0.18},{-0.20, 0.17, 0.22},{0.19, 0.15, 0.16}}; >>> H1 = {{0.01, 0.08, 0.16},{0.02, 0.2, 0.07},{0.02, 0.15, 0.17}}; >>> H2 = {{0.14, 0.07, 0.01},{0.19, 0.02, 0.31},{0.06, 0.1, 0.}}; >>> H = {H0, H1, H2}; >>> moms = MarginalMomentsFromDMRAP[H]; >>> Print[moms]; {1.6263896740154515, 3.6054695734649638, 10.991320699229345, 43.90287088124943, 218.07910677758852} >>> jmom = LagkJointMomentsFromDMRAP[H, 3, 1]; >>> G = DMMAPFromDMRAP[H]; >>> Print[G[[1]]]; {{0.12149271422840599, 0.288331581363331, 0.11967700564930148}, {5.644084212797836*^-6, 0.17495249080494266, 0.06839214007006354}, {0.14666783363741778, 0.12596472732550704, 0.1835547949666508}} >>> Print[G[[2]]]; {{0.026094910703667897, 5.787995863058259*^-6, 0.1305322742733941}, {0.06906174782798843, 0.269261673646175, 0.000011436233267865314}, {0.07372525075569406, 0.21205253223976755, 0.08464341565015684}} >>> Print[G[[3]]]; {{0.14938972761188077, 0.0019470730142651345, 0.16252892515988945}, {0.12377266142377177, 0.010575633044980423, 0.2839665728645965}, {0.047621973820317604, 0.1257348322613494, 0.000034639343138560594}} >>> rmoms = MarginalMomentsFromDMMAP[G]; >>> Print[rmoms]; {1.6263896740154504, 3.6054695734649584, 10.991320699229316, 43.902870881249264, 218.0791067775875} >>> rjmom = LagkJointMomentsFromDMMAP[G, 3, 1]; >>> err = Norm[rjmom[[1]]-jmom[[1]]]+Norm[rjmom[[2]]-jmom[[2]]]; >>> Print[err]; 8.133031677833887*^-13
For Python/Numpy:
>>> H0 = ml.matrix([[0.15, 0.2, 0.18],[-0.20, 0.17, 0.22],[0.19, 0.15, 0.16]]) >>> H1 = ml.matrix([[0.01, 0.08, 0.16],[0.02, 0.2, 0.07],[0.02, 0.15, 0.17]]) >>> H2 = ml.matrix([[0.14, 0.07, 0.01],[0.19, 0.02, 0.31],[0.06, 0.1, 0.]]) >>> H = [H0, H1, H2] >>> moms = MarginalMomentsFromDMRAP(H) >>> print(moms) [1.6263896740154515, 3.6054695734649633, 10.991320699229343, 43.902870881249427, 218.07910677758866] >>> jmom = LagkJointMomentsFromDMRAP(H, 3, 1) >>> G = DMMAPFromDMRAP(H) >>> print(G[0]) [[ 0.15737 0.31966 0.07273] [ 0.01095 0.22961 0.06546] [ 0.16355 0.1105 0.09302]] >>> print(G[1]) [[ 0.08443 0.03798 0.09227] [ 0.01529 0.2798 0.01004] [ 0.02635 0.39383 0.01577]] >>> print(G[2]) [[ 0.12909 0.09375 0.01271] [ 0.22947 0.01525 0.14412] [ 0.01002 0.1713 0.01567]] >>> rmoms = MarginalMomentsFromDMMAP(G) >>> print(rmoms) [1.6263896740154513, 3.6054695734649629, 10.991320699229343, 43.902870881249434, 218.07910677758866] >>> rjmom = LagkJointMomentsFromDMMAP(G, 3, 1) >>> err = la.norm(rjmom[0]-jmom[0])+la.norm(rjmom[1]-jmom[1]) >>> print(err) 6.76975985004e-14