butools.dmap.MarginalMomentsFromDMRAP¶
-
butools.dmap.
MarginalMomentsFromDMRAP
()¶ Matlab: moms = MarginalMomentsFromDMRAP(H, K, precision)
Mathematica: moms = MarginalMomentsFromDMRAP[H, K, precision]
Python/Numpy: moms = MarginalMomentsFromDMRAP(H, K, precision)
Returns the moments of the marginal distribution of a discrete marked rational arrival process.
Parameters: H : list/cell of matrices of shape(M,M), length(N)
The H0...HN matrices of the DMRAP
K : int, optional
Number of moments to compute. If K=0, 2*M-1 moments are computed. The default value is K=0.
precision : double, optional
Numerical precision for checking if the input is valid. The default value is 1e-14
Returns: moms : row vector of doubles, length K
The vector of moments.
Examples
For Matlab:
>>> H0 = [0.15, 0.2, 0.18; -0.23, 0.17, 0.22; 0.19, 0.15, 0.16]; >>> H1 = [0.01, 0.08, 0.16; 0.02, 0.2, 0.07; 0.02, 0.15, 0.17]; >>> H2 = [0.14, 0.07, 0.01; 0.19, 0.02, 0.34; 0.06, 0.1, 0]; >>> moms = MarginalMomentsFromDMRAP({H0, H1, H2}); >>> disp(moms); 1.5948 3.4185 9.9595 37.742 177.13
For Mathematica:
>>> H0 = {{0.15, 0.2, 0.18},{-0.23, 0.17, 0.22},{0.19, 0.15, 0.16}}; >>> H1 = {{0.01, 0.08, 0.16},{0.02, 0.2, 0.07},{0.02, 0.15, 0.17}}; >>> H2 = {{0.14, 0.07, 0.01},{0.19, 0.02, 0.34},{0.06, 0.1, 0}}; >>> moms = MarginalMomentsFromDMRAP[{H0, H1, H2}]; >>> Print[moms]; {1.5947682612697014, 3.418532063993288, 9.959485592524356, 37.74236950164582, 177.12501064870213}
For Python/Numpy:
>>> H0 = ml.matrix([[0.15, 0.2, 0.18],[-0.23, 0.17, 0.22],[0.19, 0.15, 0.16]]) >>> H1 = ml.matrix([[0.01, 0.08, 0.16],[0.02, 0.2, 0.07],[0.02, 0.15, 0.17]]) >>> H2 = ml.matrix([[0.14, 0.07, 0.01],[0.19, 0.02, 0.34],[0.06, 0.1, 0]]) >>> moms = MarginalMomentsFromDMRAP([H0, H1, H2]) >>> print(moms) [1.5947682612697014, 3.4185320639932879, 9.9594855925243557, 37.742369501645818, 177.12501064870213]