butools.map.MarginalMomentsFromMRAP¶
-
butools.map.
MarginalMomentsFromMRAP
()¶ Matlab: moms = MarginalMomentsFromMRAP(H, K, precision)
Mathematica: moms = MarginalMomentsFromMRAP[H, K, precision]
Python/Numpy: moms = MarginalMomentsFromMRAP(H, K, precision)
Returns the moments of the marginal distribution of a marked rational arrival process.
Parameters: H : list/cell of matrices of shape(M,M), length(N)
The H0...HN matrices of the MRAP
K : int, optional
Number of moments to compute. If K=0, 2*M-1 moments are computed. The default value is K=0.
precision : double, optional
Numerical precision for checking if the input is valid. The default value is 1e-14
Returns: moms : row vector of doubles, length K
The vector of moments.
Examples
For Matlab:
>>> x = 0.18; >>> H0 = [-5., 0.1+x, 0.9, 1.; 1., -8., 0.9, 0.1; 0.9, 0.1, -4., 1.; 1., 2., 3., -9.]; >>> H1 = [0.1-x, 0.7, 0.1, 0.1; 0.1, 1., 1.8, 0.1; 0.1, 0.1, 0.1, 0.7; 0.7, 0.1, 0.1, 0.1]; >>> H2 = [0.1, 0.1, 0.1, 1.7; 1.8, 0.1, 1., 0.1; 0.1, 0.1, 0.7, 0.1; 0.1, 1., 0.1, 0.8]; >>> moms = MarginalMomentsFromMRAP({H0, H1, H2}); >>> disp(moms); Columns 1 through 6 0.33951 0.24583 0.27424 0.41206 0.77677 1.7594 Column 7 4.6515
For Mathematica:
>>> x = 0.18; >>> H0 = {{-5., 0.1+x, 0.9, 1.},{1., -8., 0.9, 0.1},{0.9, 0.1, -4., 1.},{1., 2., 3., -9.}}; >>> H1 = {{0.1-x, 0.7, 0.1, 0.1},{0.1, 1., 1.8, 0.1},{0.1, 0.1, 0.1, 0.7},{0.7, 0.1, 0.1, 0.1}}; >>> H2 = {{0.1, 0.1, 0.1, 1.7},{1.8, 0.1, 1., 0.1},{0.1, 0.1, 0.7, 0.1},{0.1, 1., 0.1, 0.8}}; >>> moms = MarginalMomentsFromMRAP[{H0, H1, H2}]; >>> Print[moms]; {0.33950747762450084, 0.2458255719823656, 0.2742374276605113, 0.4120601813350093, 0.7767718404933559, 1.7594286078546524, 4.651534763161781}
For Python/Numpy:
>>> x = 0.18 >>> H0 = ml.matrix([[-5., 0.1+x, 0.9, 1.],[1., -8., 0.9, 0.1],[0.9, 0.1, -4., 1.],[1., 2., 3., -9.]]) >>> H1 = ml.matrix([[0.1-x, 0.7, 0.1, 0.1],[0.1, 1., 1.8, 0.1],[0.1, 0.1, 0.1, 0.7],[0.7, 0.1, 0.1, 0.1]]) >>> H2 = ml.matrix([[0.1, 0.1, 0.1, 1.7],[1.8, 0.1, 1., 0.1],[0.1, 0.1, 0.7, 0.1],[0.1, 1., 0.1, 0.8]]) >>> moms = MarginalMomentsFromMRAP([H0, H1, H2]) >>> print(moms) [0.33950747762450084, 0.24582557198236554, 0.27423742766051129, 0.41206018133500932, 0.7767718404933559, 1.7594286078546524, 4.6515347631617807]