butools.dmap.CanonicalFromDMAP2¶
-
butools.dmap.
CanonicalFromDMAP2
()¶ Matlab: [G0, G1] = CanonicalFromDMAP2(D0, D1, prec)
Mathematica: {G0, G1} = CanonicalFromDMAP2[D0, D1, prec]
Python/Numpy: G0, G1 = CanonicalFromDMAP2(D0, D1, prec)
Returns the canonical form of an order-2 discrete Markovian arrival process.
Parameters: D0 : matrix, shape (2,2)
The D0 matrix of the DMAP(2)
D1 : matrix, shape (2,2)
The D1 matrix of the DMAP(2)
prec : double, optional
Numerical precision to check the input, default value is 1e-14
Returns: G0 : matrix, shape (1,2)
The D0 matrix of the canonical DMAP(2)
G1 : matrix, shape (2,2)
The D1 matrix of the canonical DMAP(2)
Examples
For Matlab:
>>> D0 = [0.46, 0.28; 0.35, 0.23]; >>> D1 = [0.08, 0.18; 0.14, 0.28]; >>> [H0, H1] = CanonicalFromDMAP2(D0, D1); >>> disp(H0); 0.6785 0.31704 0 0.011496 >>> disp(H1); 0 0.004455 0.6285 0.36 >>> Cm = SimilarityMatrix(H0, D0); >>> err1 = norm(H0*Cm-Cm*D0); >>> err2 = norm(H1*Cm-Cm*D1); >>> disp(max(err1, err2)); 8.9731e-14 >>> D0 = [0.26, 0.28; 0.35, 0.23]; >>> D1 = [0.28, 0.18; 0.14, 0.28]; >>> [H0, H1] = CanonicalFromDMAP2(D0, D1); >>> disp(H0); 0.49 0.38875 0.098265 0 >>> disp(H1); 0.12125 0 0.46299 0.43875 >>> Cm = SimilarityMatrix(H0, D0); >>> err1 = norm(H0*Cm-Cm*D0); >>> err2 = norm(H1*Cm-Cm*D1); >>> disp(max(err1, err2)); 1.2787e-14 >>> D0 = [0.14, 0.34; 0.35, 0.23]; >>> D1 = [0.22, 0.3; 0.28, 0.14]; >>> [H0, H1] = CanonicalFromDMAP2(D0, D1); >>> disp(H0); 0.37 0.51734 0.16778 0 >>> disp(H1); 0 0.11266 0.47222 0.36 >>> Cm = SimilarityMatrix(H0, D0); >>> err1 = norm(H0*Cm-Cm*D0); >>> err2 = norm(H1*Cm-Cm*D1); >>> disp(max(err1, err2)); 1.2567e-15
For Mathematica:
>>> D0 = {{0.46, 0.28},{0.35, 0.23}}; >>> D1 = {{0.08, 0.18},{0.14, 0.28}}; >>> {H0, H1} = CanonicalFromDMAP2[D0, D1]; >>> Print[H0]; {{0.6785041229130464, 0.31704085460114795}, {0, 0.011495877086969752}} >>> Print[H1]; {{0, 0.004455022485805612}, {0.6285041229130266, 0.3600000000000036}} >>> Cm = SimilarityMatrix[H0, D0]; >>> err1 = Norm[H0.Cm-Cm.D0]; >>> err2 = Norm[H1.Cm-Cm.D1]; >>> Print[Max[err1, err2]]; 8.953600966260704*^-14 >>> D0 = {{0.26, 0.28},{0.35, 0.23}}; >>> D1 = {{0.28, 0.18},{0.14, 0.28}}; >>> {H0, H1} = CanonicalFromDMAP2[D0, D1]; >>> Print[H0]; {{0.4900000000000001, 0.38874507866387564}, {0.09826490956822952, 0}} >>> Print[H1]; {{0.12125492133612426, 0}, {0.462990011767894, 0.4387450786638765}} >>> Cm = SimilarityMatrix[H0, D0]; >>> err1 = Norm[H0.Cm-Cm.D0]; >>> err2 = Norm[H1.Cm-Cm.D1]; >>> Print[Max[err1, err2]]; 2.6634419263318992*^-14 >>> D0 = {{0.14, 0.34},{0.35, 0.23}}; >>> D1 = {{0.22, 0.3},{0.28, 0.14}}; >>> {H0, H1} = CanonicalFromDMAP2[D0, D1]; >>> Print[H0]; {{0.37, 0.5173403532281082}, {0.16778122846668353, 0}} >>> Print[H1]; {{0, 0.11265964677189179}, {0.4722187715333161, 0.3600000000000004}} >>> Cm = SimilarityMatrix[H0, D0]; >>> err1 = Norm[H0.Cm-Cm.D0]; >>> err2 = Norm[H1.Cm-Cm.D1]; >>> Print[Max[err1, err2]]; 5.0785547211252284*^-15
For Python/Numpy:
>>> D0 = ml.matrix([[0.46, 0.28],[0.35, 0.23]]) >>> D1 = ml.matrix([[0.08, 0.18],[0.14, 0.28]]) >>> H0, H1 = CanonicalFromDMAP2(D0, D1) >>> print(H0) [[ 0.6785 0.31704] [ 0. 0.0115 ]] >>> print(H1) [[ 0. 0.00446] [ 0.6285 0.36 ]] >>> Cm = SimilarityMatrix(H0, D0) >>> err1 = la.norm(H0*Cm-Cm*D0) >>> err2 = la.norm(H1*Cm-Cm*D1) >>> print(np.max(err1, err2)) 8.9717085547e-14 >>> D0 = ml.matrix([[0.26, 0.28],[0.35, 0.23]]) >>> D1 = ml.matrix([[0.28, 0.18],[0.14, 0.28]]) >>> H0, H1 = CanonicalFromDMAP2(D0, D1) >>> print(H0) [[ 0.49 0.38875] [ 0.09826 0. ]] >>> print(H1) [[ 0.12125 0. ] [ 0.46299 0.43875]] >>> Cm = SimilarityMatrix(H0, D0) >>> err1 = la.norm(H0*Cm-Cm*D0) >>> err2 = la.norm(H1*Cm-Cm*D1) >>> print(np.max(err1, err2)) 1.74838096756e-15 >>> D0 = ml.matrix([[0.14, 0.34],[0.35, 0.23]]) >>> D1 = ml.matrix([[0.22, 0.3],[0.28, 0.14]]) >>> H0, H1 = CanonicalFromDMAP2(D0, D1) >>> print(H0) [[ 0.37 0.51734] [ 0.16778 0. ]] >>> print(H1) [[ 0. 0.11266] [ 0.47222 0.36 ]] >>> Cm = SimilarityMatrix(H0, D0) >>> err1 = la.norm(H0*Cm-Cm*D0) >>> err2 = la.norm(H1*Cm-Cm*D1) >>> print(np.max(err1, err2)) 1.92296268638e-16