butools.map.LagCorrelationsFromRAP¶
-
butools.map.
LagCorrelationsFromRAP
()¶ Matlab: acf = LagCorrelationsFromRAP(H0, H1, L, prec)
Mathematica: acf = LagCorrelationsFromRAP[H0, H1, L, prec]
Python/Numpy: acf = LagCorrelationsFromRAP(H0, H1, L, prec)
Returns the lag autocorrelations of a rational arrival process.
Parameters: H0 : matrix, shape (M,M)
The H0 matrix of the rational arrival process
H1 : matrix, shape (M,M)
The H1 matrix of the rational arrival process
L : double, optional
The number of lags to compute. The default value is 1
prec : double, optional
Numerical precision to check if the input is valid. The default value is 1e-14
Returns: acf : column vector of doubles, length (L)
The lag autocorrelation function up to lag L
Examples
For Matlab:
>>> H0 = [-2., 0, 0; 0, -3., 1.; 0, -1., -2.]; >>> H1 = [1.8, 0.2, 0; 0.2, 1.8, 0; 0.2, 1.8, 1.]; >>> corr = LagCorrelationsFromRAP(H0, H1, 3); >>> disp(corr); -0.0038462 0.0045604 0.0058956
For Mathematica:
>>> H0 = {{-2., 0, 0},{0, -3., 1.},{0, -1., -2.}}; >>> H1 = {{1.8, 0.2, 0},{0.2, 1.8, 0},{0.2, 1.8, 1.}}; >>> corr = LagCorrelationsFromRAP[H0, H1, 3]; >>> Print[corr]; {-0.0038461538461536634, 0.0045604395604397245, 0.005895604395604545}
For Python/Numpy:
>>> H0 = ml.matrix([[-2., 0, 0],[0, -3., 1.],[0, -1., -2.]]) >>> H1 = ml.matrix([[1.8, 0.2, 0],[0.2, 1.8, 0],[0.2, 1.8, 1.]]) >>> corr = LagCorrelationsFromRAP(H0, H1, 3) >>> print(corr) [-0.00385 0.00456 0.0059 ]