butools.dmap.MarginalDistributionFromDMRAP¶
-
butools.dmap.
MarginalDistributionFromDMRAP
()¶ Matlab: [alpha, A] = MarginalDistributionFromDMRAP(H, precision)
Mathematica: {alpha, A} = MarginalDistributionFromDMRAP[H, precision]
Python/Numpy: alpha, A = MarginalDistributionFromDMRAP(H, precision)
Returns the matrix geometrically distributed marginal distribution of a discrete marked rational arrival process.
Parameters: H : list/cell of matrices of shape(M,M), length(N)
The H0...HN matrices of the DMRAP
precision : double, optional
Numerical precision for checking if the input is valid. The default value is 1e-14
Returns: alpha : matrix, shape (1,M)
The initial vector of the matrix geometrically distributed marginal distribution
A : matrix, shape (M,M)
The matrix parameter of the matrix geometrically distributed marginal distribution
Examples
For Matlab:
>>> H0 = [0.15, 0.2, 0.18; -0.23, 0.17, 0.22; 0.19, 0.15, 0.16]; >>> H1 = [0.01, 0.08, 0.16; 0.02, 0.2, 0.07; 0.02, 0.15, 0.17]; >>> H2 = [0.14, 0.07, 0.01; 0.19, 0.02, 0.34; 0.06, 0.1, 0]; >>> [a, A] = MarginalDistributionFromDMRAP({H0, H1, H2}); >>> disp(a); 0.22615 0.35424 0.41962 >>> disp(A); 0.15 0.2 0.18 -0.23 0.17 0.22 0.19 0.15 0.16
For Mathematica:
>>> H0 = {{0.15, 0.2, 0.18},{-0.23, 0.17, 0.22},{0.19, 0.15, 0.16}}; >>> H1 = {{0.01, 0.08, 0.16},{0.02, 0.2, 0.07},{0.02, 0.15, 0.17}}; >>> H2 = {{0.14, 0.07, 0.01},{0.19, 0.02, 0.34},{0.06, 0.1, 0}}; >>> {a, A} = MarginalDistributionFromDMRAP[{H0, H1, H2}]; >>> Print[a]; {0.22614580596765838, 0.3542378174211745, 0.4196163766111672} >>> Print[A]; {{0.15, 0.2, 0.18}, {-0.23, 0.17, 0.22}, {0.19, 0.15, 0.16}}
For Python/Numpy:
>>> H0 = ml.matrix([[0.15, 0.2, 0.18],[-0.23, 0.17, 0.22],[0.19, 0.15, 0.16]]) >>> H1 = ml.matrix([[0.01, 0.08, 0.16],[0.02, 0.2, 0.07],[0.02, 0.15, 0.17]]) >>> H2 = ml.matrix([[0.14, 0.07, 0.01],[0.19, 0.02, 0.34],[0.06, 0.1, 0]]) >>> a, A = MarginalDistributionFromDMRAP([H0, H1, H2]) >>> print(a) [[ 0.22615 0.35424 0.41962]] >>> print(A) [[ 0.15 0.2 0.18] [-0.23 0.17 0.22] [ 0.19 0.15 0.16]]