butools.map.MAP2CorrelationBounds¶
-
butools.map.
MAP2CorrelationBounds
()¶ Matlab: [lb, ub] = MAP2CorrelationBounds(moms)
Mathematica: {lb, ub} = MAP2CorrelationBounds[moms]
Python/Numpy: lb, ub = MAP2CorrelationBounds(moms)
Returns the upper and lower correlation bounds for a MAP(2) given the three marginal moments.
!!!TO CHECK!!!
Parameters: moms : vector, length(3)
First three marginal moments of the inter-arrival times
Returns: lb : double
Lower correlation bound
ub : double
Upper correlation bound
References
[R17] L Bodrog, A Heindl, G Horvath, M Telek, “A Markovian Canonical Form of Second-Order Matrix-Exponential Processes,” EUROPEAN JOURNAL OF OPERATIONAL RESEARCH 190:(2) pp. 459-477. (2008) Examples
For Matlab:
>>> D0 = [-14., 1.; 1., -25.]; >>> D1 = [6., 7.; 3., 21.]; >>> moms = MarginalMomentsFromMAP(D0, D1, 3); >>> disp(moms); 0.04918 0.0052609 0.00091819 >>> [lb, ub] = MAP2CorrelationBounds(moms); >>> disp(lb); -0.030588 >>> disp(ub); 0.074506
For Mathematica:
>>> D0 = {{-14., 1.},{1., -25.}}; >>> D1 = {{6., 7.},{3., 21.}}; >>> moms = MarginalMomentsFromMAP[D0, D1, 3]; >>> Print[moms]; {0.04918032786885247, 0.005260932876133214, 0.0009181867601560783} >>> {lb, ub} = MAP2CorrelationBounds[moms]; >>> Print[lb]; -0.030588145972596268 >>> Print[ub]; 0.0745055540503923
For Python/Numpy:
>>> D0 = ml.matrix([[-14., 1.],[1., -25.]]) >>> D1 = ml.matrix([[6., 7.],[3., 21.]]) >>> moms = MarginalMomentsFromMAP(D0, D1, 3) >>> print(moms) [0.049180327868852472, 0.005260932876133214, 0.00091818676015607825] >>> lb, ub = MAP2CorrelationBounds(moms) >>> print(lb) -0.0305881459726 >>> print(ub) 0.0745055540504