butools.map.CheckMRAPRepresentation¶
-
butools.map.
CheckMRAPRepresentation
()¶ Matlab: r = CheckMRAPRepresentation(H, prec)
Mathematica: r = CheckMRAPRepresentation[H, prec]
Python/Numpy: r = CheckMRAPRepresentation(H, prec)
Checks if the input matrixes define a continuous time MRAP.
All matrices H0...HK must have the same size, the dominant eigenvalue of H0 is negative and real, and the rowsum of H0+H1+...+HK is 0 (up to the numerical precision).
Parameters: H : list/cell of matrices, length(K)
The H0...HK matrices of the MRAP to check
Returns: r : bool
The result of the check
Examples
For Matlab:
>>> x = 0.18; >>> H0 = [-5., 0.1+x, 0.9, 1.; 1., -8., 0.9, 0.1; 0.9, 0.1, -4., 1.; 1., 2., 3., -9.]; >>> H1 = [0.1-x, 0.7, 0.1, 0.1; 0.1, 1., 1.8, 0.1; 0.1, 0.1, 0.1, 0.7; 0.7, 0.1, 0.1, 0.1]; >>> H2 = [0.1, 0.1, 0.1, 1.7; 1.8, 0.1, 1., 0.1; 0.1, 0.1, 0.7, 0.1; 0.1, 1., 0.1, 0.8]; >>> flag = CheckMRAPRepresentation({H0, H1, H2}); >>> disp(flag); 1
For Mathematica:
>>> x = 0.18; >>> H0 = {{-5., 0.1+x, 0.9, 1.},{1., -8., 0.9, 0.1},{0.9, 0.1, -4., 1.},{1., 2., 3., -9.}}; >>> H1 = {{0.1-x, 0.7, 0.1, 0.1},{0.1, 1., 1.8, 0.1},{0.1, 0.1, 0.1, 0.7},{0.7, 0.1, 0.1, 0.1}}; >>> H2 = {{0.1, 0.1, 0.1, 1.7},{1.8, 0.1, 1., 0.1},{0.1, 0.1, 0.7, 0.1},{0.1, 1., 0.1, 0.8}}; >>> flag = CheckMRAPRepresentation[{H0, H1, H2}]; >>> Print[flag]; True
For Python/Numpy:
>>> x = 0.18 >>> H0 = ml.matrix([[-5., 0.1+x, 0.9, 1.],[1., -8., 0.9, 0.1],[0.9, 0.1, -4., 1.],[1., 2., 3., -9.]]) >>> H1 = ml.matrix([[0.1-x, 0.7, 0.1, 0.1],[0.1, 1., 1.8, 0.1],[0.1, 0.1, 0.1, 0.7],[0.7, 0.1, 0.1, 0.1]]) >>> H2 = ml.matrix([[0.1, 0.1, 0.1, 1.7],[1.8, 0.1, 1., 0.1],[0.1, 0.1, 0.7, 0.1],[0.1, 1., 0.1, 0.8]]) >>> flag = CheckMRAPRepresentation([H0, H1, H2]) >>> print(flag) True