butools.map.RAPFromMomentsAndCorrelations¶
-
butools.map.
RAPFromMomentsAndCorrelations
()¶ Matlab: [H0, H1] = RAPFromMomentsAndCorrelations(moms, corr)
Mathematica: {H0, H1} = RAPFromMomentsAndCorrelations[moms, corr]
Python/Numpy: H0, H1 = RAPFromMomentsAndCorrelations(moms, corr)
Returns a rational arrival process that has the same moments and lag autocorrelation coefficients as given.
Parameters: moms : vector of doubles
The vector of marginal moments. To obtain a RAP of size M, 2*M-1 moments are required.
corr : vector of doubles
The vector of lag autocorrelation coefficients. To obtain a RAP of size M, 2*M-3 coefficients are needed.
Returns: H0 : matrix, shape (M,M)
The H0 matrix of the rational arrival process
H1 : matrix, shape (M,M)
The H1 matrix of the rational arrival process
Notes
There is no guarantee that the returned matrices define a valid stochastic process. The joint densities may be negative.
References
[R45] Mitchell, Kenneth, and Appie van de Liefvoort. “Approximation models of feed-forward G/G/1/N queueing networks with correlated arrivals.” Performance Evaluation 51.2 (2003): 137-152. Examples
For Matlab:
>>> H0 = [-6.2, 2., 0; 2., -9., 1.; 1., 0, -3.]; >>> H1 = [2.2, 0, 2.; 0, 4., 2.; 0, 1., 1.]; >>> mom = MarginalMomentsFromRAP(H0, H1); >>> disp(mom); 0.29774 0.19284 0.19448 0.26597 0.45833 >>> corr = LagCorrelationsFromRAP(H0, H1, 3); >>> disp(corr); 0.012394 0.0027412 0.00072384 >>> [G0, G1] = RAPFromMomentsAndCorrelations(mom, corr); >>> disp(G0); -8.9629 22.253 -18.544 -0.99178 -4.667 2.331 -1.2473 2.4279 -4.5701 >>> disp(G1); 2.2027 -1.3173 4.3689 1.2179 1.8217 0.28809 1.0212 0.41735 1.951 >>> rmom = MarginalMomentsFromRAP(G0, G1); >>> disp(rmom); 0.29774 0.19284 0.19448 0.26597 0.45833 >>> rcorr = LagCorrelationsFromRAP(G0, G1, 3); >>> disp(rcorr); 0.012394 0.0027412 0.00072384
For Mathematica:
>>> H0 = {{-6.2, 2., 0},{2., -9., 1.},{1., 0, -3.}}; >>> H1 = {{2.2, 0, 2.},{0, 4., 2.},{0, 1., 1.}}; >>> mom = MarginalMomentsFromRAP[H0, H1]; >>> Print[mom]; {0.29774127310061604, 0.19283643304803644, 0.19448147792730758, 0.2659732553924553, 0.45833053059627116} >>> corr = LagCorrelationsFromRAP[H0, H1, 3]; >>> Print[corr]; {0.012393574884970258, 0.0027411959690404088, 0.0007238364213571031} >>> {G0, G1} = RAPFromMomentsAndCorrelations[mom, corr]; >>> Print[G0]; {{-8.96289388087693, 22.252570107207173, -18.544098091372838}, {-0.9917815607047362, -4.666992249154709, 2.33103341018933}, {-1.247298899065379, 2.4279117893845945, -4.570113869959446}} >>> Print[G1]; {{2.2027474563394773, -1.3172514038167056, 4.368925812519816}, {1.2179262967043782, 1.8217266419760083, 0.2880874609897277}, {1.0211541630657368, 0.4173538177941065, 1.9509929987803876}} >>> rmom = MarginalMomentsFromRAP[G0, G1]; >>> Print[rmom]; {0.297741273100616, 0.19283643304803638, 0.19448147792730755, 0.2659732553924553, 0.45833053059627116} >>> rcorr = LagCorrelationsFromRAP[G0, G1, 3]; >>> Print[rcorr]; {0.012393574884970393, 0.0027411959690408086, 0.0007238364213573696}
For Python/Numpy:
>>> H0 = ml.matrix([[-6.2, 2., 0],[2., -9., 1.],[1., 0, -3.]]) >>> H1 = ml.matrix([[2.2, 0, 2.],[0, 4., 2.],[0, 1., 1.]]) >>> mom = MarginalMomentsFromRAP(H0, H1) >>> print(mom) [0.29774127310061604, 0.19283643304803644, 0.19448147792730755, 0.26597325539245531, 0.45833053059627116] >>> corr = LagCorrelationsFromRAP(H0, H1, 3) >>> print(corr) [ 0.01239 0.00274 0.00072] >>> G0, G1 = RAPFromMomentsAndCorrelations(mom, corr) >>> print(G0) [[ -8.96289 22.25257 -18.5441 ] [ -0.99178 -4.66699 2.33103] [ -1.2473 2.42791 -4.57011]] >>> print(G1) [[ 2.20275 -1.31725 4.36893] [ 1.21793 1.82173 0.28809] [ 1.02115 0.41735 1.95099]] >>> rmom = MarginalMomentsFromRAP(G0, G1) >>> print(rmom) [0.29774127310061604, 0.19283643304803638, 0.19448147792730741, 0.26597325539245492, 0.45833053059627044] >>> rcorr = LagCorrelationsFromRAP(G0, G1, 3) >>> print(rcorr) [ 0.01239 0.00274 0.00072]