butools.dmap.LagkJointMomentsFromDRAP¶
-
butools.dmap.
LagkJointMomentsFromDRAP
()¶ Matlab: Nm = LagkJointMomentsFromDRAP(H0, H1, K, L, prec)
Mathematica: Nm = LagkJointMomentsFromDRAP[H0, H1, K, L, prec]
Python/Numpy: Nm = LagkJointMomentsFromDRAP(H0, H1, K, L, prec)
Returns the lag-L joint moments of a discrete rational arrival process.
Parameters: H0 : matrix, shape (M,M)
The H0 matrix of the discrete rational arrival process
H1 : matrix, shape (M,M)
The H1 matrix of the discrete rational arrival process
K : int, optional
The dimension of the matrix of joint moments to compute. If K=0, the MxM joint moments will be computed. The default value is 0
L : int, optional
The lag at which the joint moments are computed. The default value is 1
prec : double, optional
Numerical precision to check if the input is valid. The default value is 1e-14
Returns: Nm : matrix, shape(K+1,K+1)
The matrix containing the lag-L joint moments, starting from moment 0.
Examples
For Matlab:
>>> H0 = [0, 0, 0.13; 0, 0.6, 0.18; 0.31, 0.26, 0.02]; >>> H1 = [0, 1, -0.13; 0, 0.18, 0.04; 0.03, 0.09, 0.29]; >>> Nm = LagkJointMomentsFromDRAP(H0, H1, 4, 1); >>> disp(length(Nm)); 5 >>> moms = MarginalMomentsFromDRAP(H0, H1, 4); >>> disp(moms); 3.207 16.898 130.77 1347.1 >>> cjm = zeros(1,3); >>> for i=1:1:3 >>> Nx = LagkJointMomentsFromDRAP(H0, H1, 1, i); >>> cjm(i) = (Nx(2, 2)-moms(1)^2)/(moms(2)-moms(1)^2); >>> end >>> disp(cjm); 0.014303 0.0012424 7.5868e-06 >>> corr = LagCorrelationsFromDRAP(H0, H1, 3); >>> disp(corr); 0.014303 0.0012424 7.5868e-06
For Mathematica:
>>> H0 = {{0, 0, 0.13},{0, 0.6, 0.18},{0.31, 0.26, 0.02}}; >>> H1 = {{0, 1, -0.13},{0, 0.18, 0.04},{0.03, 0.09, 0.29}}; >>> Nm = LagkJointMomentsFromDRAP[H0, H1, 4, 1]; >>> Print[Length[Nm]]; 5 >>> moms = MarginalMomentsFromDRAP[H0, H1, 4]; >>> Print[moms]; {3.20702366840782, 16.897636691953394, 130.7705457435602, 1347.0743893905096} >>> cjm = Table[0,{3}]; >>> Do[ >>> Nx = LagkJointMomentsFromDRAP[H0, H1, 1, i]; >>> cjm[[i]] = (Nx[[2, 2]]-moms[[1]]^2)/(moms[[2]]-moms[[1]]^2); >>> , {i,1,3,1}]; >>> Print[cjm]; {0.01430295723332723, 0.0012424024982963658, 7.5867553989928*^-6} >>> corr = LagCorrelationsFromDRAP[H0, H1, 3]; >>> Print[corr]; {0.01430295723332723, 0.0012424024982963658, 7.586755398724169*^-6}
For Python/Numpy:
>>> H0 = ml.matrix([[0, 0, 0.13],[0, 0.6, 0.18],[0.31, 0.26, 0.02]]) >>> H1 = ml.matrix([[0, 1, -0.13],[0, 0.18, 0.04],[0.03, 0.09, 0.29]]) >>> Nm = LagkJointMomentsFromDRAP(H0, H1, 4, 1) >>> print(Length(Nm)) 5 >>> moms = MarginalMomentsFromDRAP(H0, H1, 4) >>> print(moms) [3.2070236684078202, 16.897636691953394, 130.77054574356021, 1347.0743893905096] >>> cjm = np.zeros(3) >>> for i in range(1,4,1): >>> Nx = LagkJointMomentsFromDRAP(H0, H1, 1, i) >>> cjm[i-1] = (Nx[1, 1]-moms[0]**2)/(moms[1]-moms[0]**2) >>> print(cjm) [ 1.43030e-02 1.24240e-03 7.58676e-06] >>> corr = LagCorrelationsFromDRAP(H0, H1, 3) >>> print(corr) [ 1.43030e-02 1.24240e-03 7.58676e-06]