butools.dmap.CheckDMRAPRepresentation¶
-
butools.dmap.
CheckDMRAPRepresentation
()¶ Matlab: r = CheckDMRAPRepresentation(H, prec)
Mathematica: r = CheckDMRAPRepresentation[H, prec]
Python/Numpy: r = CheckDMRAPRepresentation(H, prec)
Checks if the input matrixes define a discrete time MRAP.
All matrices H0...HK must have the same size, the dominant eigenvalue of H0 is real and less than 1, and the rowsum of H0+H1+...+HK is 1 (up to the numerical precision).
Parameters: H : list/cell of matrices, length(K)
The H0...HK matrices of the DMRAP to check
Returns: r : bool
The result of the check
Examples
For Matlab:
>>> H0 = [0.15, 0.2, 0.18; -0.23, 0.17, 0.22; 0.19, 0.15, 0.16]; >>> H1 = [0.01, 0.08, 0.16; 0.02, 0.2, 0.07; 0.02, 0.15, 0.17]; >>> H2 = [0.14, 0.07, 0.01; 0.19, 0.02, 0.34; 0.06, 0.1, 0]; >>> flag = CheckDMRAPRepresentation({H0, H1, H2}); >>> disp(flag); 1
For Mathematica:
>>> H0 = {{0.15, 0.2, 0.18},{-0.23, 0.17, 0.22},{0.19, 0.15, 0.16}}; >>> H1 = {{0.01, 0.08, 0.16},{0.02, 0.2, 0.07},{0.02, 0.15, 0.17}}; >>> H2 = {{0.14, 0.07, 0.01},{0.19, 0.02, 0.34},{0.06, 0.1, 0}}; >>> flag = CheckDMRAPRepresentation[{H0, H1, H2}]; >>> Print[flag]; True
For Python/Numpy:
>>> H0 = ml.matrix([[0.15, 0.2, 0.18],[-0.23, 0.17, 0.22],[0.19, 0.15, 0.16]]) >>> H1 = ml.matrix([[0.01, 0.08, 0.16],[0.02, 0.2, 0.07],[0.02, 0.15, 0.17]]) >>> H2 = ml.matrix([[0.14, 0.07, 0.01],[0.19, 0.02, 0.34],[0.06, 0.1, 0]]) >>> flag = CheckDMRAPRepresentation([H0, H1, H2]) >>> print(flag) True