butools.dmap.MarginalDistributionFromDRAP¶
-
butools.dmap.
MarginalDistributionFromDRAP
()¶ Matlab: [alpha, A] = MarginalDistributionFromDRAP(H0, H1, precision)
Mathematica: {alpha, A} = MarginalDistributionFromDRAP[H0, H1, precision]
Python/Numpy: alpha, A = MarginalDistributionFromDRAP(H0, H1, precision)
Returns the matrix geometrically distributed marginal distribution of a discrete rational arrival process.
Parameters: H0 : matrix, shape (M,M)
The H0 matrix of the discrete rational arrival process
H1 : matrix, shape (M,M)
The H1 matrix of the discrete rational arrival process
precision : double, optional
Numerical precision for checking if the input is valid. The default value is 1e-14
Returns: alpha : matrix, shape (1,M)
The initial vector of the matrix geometrically distributed marginal distribution
A : matrix, shape (M,M)
The matrix parameter of the matrix geometrically distributed marginal distribution
Examples
For Matlab:
>>> H0 = [0, 0, 0.13; 0, 0.6, 0.18; 0.31, 0.26, 0.02]; >>> H1 = [0, 1, -0.13; 0, 0.18, 0.04; 0.03, 0.09, 0.29]; >>> [a, A] = MarginalDistributionFromDRAP(H0, H1); >>> disp(a); 0.021493 0.71253 0.26598 >>> disp(A); 0 0 0.13 0 0.6 0.18 0.31 0.26 0.02
For Mathematica:
>>> H0 = {{0, 0, 0.13},{0, 0.6, 0.18},{0.31, 0.26, 0.02}}; >>> H1 = {{0, 1, -0.13},{0, 0.18, 0.04},{0.03, 0.09, 0.29}}; >>> {a, A} = MarginalDistributionFromDRAP[H0, H1]; >>> Print[a]; {0.021493050580312315, 0.7125271919655068, 0.26597975745418073} >>> Print[A]; {{0, 0, 0.13}, {0, 0.6, 0.18}, {0.31, 0.26, 0.02}}
For Python/Numpy:
>>> H0 = ml.matrix([[0, 0, 0.13],[0, 0.6, 0.18],[0.31, 0.26, 0.02]]) >>> H1 = ml.matrix([[0, 1, -0.13],[0, 0.18, 0.04],[0.03, 0.09, 0.29]]) >>> a, A = MarginalDistributionFromDRAP(H0, H1) >>> print(a) [[ 0.02149 0.71253 0.26598]] >>> print(A) [[ 0. 0. 0.13] [ 0. 0.6 0.18] [ 0.31 0.26 0.02]]