butools.dmap.LagkJointMomentsFromDMMAP¶
-
butools.dmap.
LagkJointMomentsFromDMMAP
()¶ Matlab: Nm = LagkJointMomentsFromDMMAP(D, K, L, prec)
Mathematica: Nm = LagkJointMomentsFromDMMAP[D, K, L, prec]
Python/Numpy: Nm = LagkJointMomentsFromDMMAP(D, K, L, prec)
Returns the lag-L joint moments of a discrete marked Markovian arrival process.
Parameters: D : list/cell of matrices of shape(M,M), length(N)
The D0...DN matrices of the DMMAP to check
K : int, optional
The dimension of the matrix of joint moments to compute. If K=0, the MxM joint moments will be computed. The default value is 0
L : int, optional
The lag at which the joint moments are computed. The default value is 1
prec : double, optional
Numerical precision to check if the input is valid. The default value is 1e-14
Returns: Nm : list/cell of matrices of shape(K+1,K+1), length(L)
The matrices containing the lag-L joint moments, starting from moment 0.
Examples
For Matlab:
>>> D0 = [0.34, 0, 0; 0.06, 0.05, 0.03; 0.11, 0.13, 0]; >>> D1 = [0.3, 0, 0; 0.16, 0.18, 0.05; 0.15, 0.04, 0.09]; >>> D2 = [0, 0.01, 0; 0.1, 0.07, 0.08; 0.13, 0.12, 0.13]; >>> D3 = [0.35, 0, 0; 0, 0.18, 0.04; 0.06, 0.03, 0.01]; >>> Nm = LagkJointMomentsFromDMMAP({D0, D1, D2, D3}, 3, 1); >>> disp(Nm{1}); 0.45395 0.68525 1.3856 3.8671 0.68283 1.0318 2.0887 5.8339 1.3755 2.0807 4.2171 11.789 3.828 5.7954 11.756 32.887 >>> disp(Nm{2}); 0.026281 0.03323 0.053055 0.11925 0.035051 0.043866 0.068917 0.15222 0.060653 0.07477 0.11464 0.24631 0.1482 0.17996 0.26901 0.56074 >>> disp(Nm{3}); 0.51977 0.78522 1.5891 4.438 0.78582 1.1881 2.4067 6.7254 1.5917 2.4087 4.8838 13.657 4.4481 6.7354 13.666 38.235
For Mathematica:
>>> D0 = {{0.34, 0, 0},{0.06, 0.05, 0.03},{0.11, 0.13, 0}}; >>> D1 = {{0.3, 0, 0},{0.16, 0.18, 0.05},{0.15, 0.04, 0.09}}; >>> D2 = {{0, 0.01, 0},{0.1, 0.07, 0.08},{0.13, 0.12, 0.13}}; >>> D3 = {{0.35, 0, 0},{0, 0.18, 0.04},{0.06, 0.03, 0.01}}; >>> Nm = LagkJointMomentsFromDMMAP[{D0, D1, D2, D3}, 3, 1]; >>> Print[Nm[[1]]]; {{0.4539462822484643, 0.6852510653292481, 1.3856372122857255, 3.867050666477712}, {0.6828250179169082, 1.0317922106199087, 2.088678354109492, 5.833872336896188}, {1.3754547360883858, 2.08069063568443, 4.2170625241275665, 11.789140254269103}, {3.8280196252781336, 5.795448856171304, 11.75638029642303, 32.88737375149565}} >>> Print[Nm[[2]]]; {{0.02628103195085287, 0.03323044515488185, 0.05305519981654366, 0.11925159337093362}, {0.0350514750959702, 0.04386614712772344, 0.06891661923475792, 0.15221701375061739}, {0.06065278939554716, 0.07477024474361887, 0.11464021882832742, 0.24630981535186194}, {0.1481969521134317, 0.17996016640440504, 0.269014437752629, 0.5607367898805973}} >>> Print[Nm[[3]]]; {{0.5197726858006831, 0.7852158210070554, 1.5891494452486254, 4.438003130983554}, {0.7858208384783067, 1.1881008368374677, 2.4066502002309207, 6.725367887552774}, {1.5917343318669612, 2.4086996142807697, 4.883779522055594, 13.657165850576511}, {4.448088813440633, 6.7353937552523435, 13.665836661211316, 38.234808402167886}}
For Python/Numpy:
>>> D0 = ml.matrix([[0.34, 0, 0],[0.06, 0.05, 0.03],[0.11, 0.13, 0]]) >>> D1 = ml.matrix([[0.3, 0, 0],[0.16, 0.18, 0.05],[0.15, 0.04, 0.09]]) >>> D2 = ml.matrix([[0, 0.01, 0],[0.1, 0.07, 0.08],[0.13, 0.12, 0.13]]) >>> D3 = ml.matrix([[0.35, 0, 0],[0, 0.18, 0.04],[0.06, 0.03, 0.01]]) >>> Nm = LagkJointMomentsFromDMMAP([D0, D1, D2, D3], 3, 1) >>> print(Nm[0]) [[ 0.45395 0.68525 1.38564 3.86705] [ 0.68283 1.03179 2.08868 5.83387] [ 1.37545 2.08069 4.21706 11.78914] [ 3.82802 5.79545 11.75638 32.88737]] >>> print(Nm[1]) [[ 0.02628 0.03323 0.05306 0.11925] [ 0.03505 0.04387 0.06892 0.15222] [ 0.06065 0.07477 0.11464 0.24631] [ 0.1482 0.17996 0.26901 0.56074]] >>> print(Nm[2]) [[ 0.51977 0.78522 1.58915 4.438 ] [ 0.78582 1.1881 2.40665 6.72537] [ 1.59173 2.4087 4.88378 13.65717] [ 4.44809 6.73539 13.66584 38.23481]]