butools.map.SamplesFromMMAP¶
-
butools.map.
SamplesFromMMAP
()¶ Matlab: x = SamplesFromMMAP(D, K, prec)
Mathematica: x = SamplesFromMMAP[D, K, prec]
Python/Numpy: x = SamplesFromMMAP(D, K, prec)
Generates random samples from a marked Markovian arrival process.
Parameters: D : list of matrices of shape(M,M), length(N)
The D0...DN matrices of the MMAP
K : integer
The number of samples to generate.
prec : double, optional
Numerical precision to check if the input MMAP is valid. The default value is 1e-14.
Returns: x : matrix, shape(K,2)
The random samples. Each row consists of two columns: the inter-arrival time and the type of the arrival.
Examples
For Matlab:
>>> D0 = [-1.78, 0.29; 0.07, -0.92]; >>> D1 = [0.15, 0.49; 0.23, 0.36]; >>> D2 = [0.11, 0.2; 0.01, 0]; >>> D3 = [0.14, 0.4; 0.11, 0.14]; >>> Dm = {D0, D1, D2, D3}; >>> x = SamplesFromMMAP(Dm, 10000); >>> mt = MarginalMomentsFromTrace(x(1:end, 1), 3); >>> disp(mt); 0.99277 2.0363 6.3483 >>> mm = MarginalMomentsFromMMAP(Dm, 3); >>> disp(mm); 1.0007 2.1045 6.8277
For Mathematica:
>>> D0 = {{-1.78, 0.29},{0.07, -0.92}}; >>> D1 = {{0.15, 0.49},{0.23, 0.36}}; >>> D2 = {{0.11, 0.2},{0.01, 0}}; >>> D3 = {{0.14, 0.4},{0.11, 0.14}}; >>> Dm = {D0, D1, D2, D3}; >>> x = SamplesFromMMAP[Dm, 10000]; >>> mt = MarginalMomentsFromTrace[x[[1;;-1, 1]], 3]; >>> Print[mt]; {0.9922207868979519, 2.0916288580876965, 7.085666983629913} >>> mm = MarginalMomentsFromMMAP[Dm, 3]; >>> Print[mm]; {1.000667111407605, 2.1044966311760755, 6.827688149434602}
For Python/Numpy:
>>> D0 = ml.matrix([[-1.78, 0.29],[0.07, -0.92]]) >>> D1 = ml.matrix([[0.15, 0.49],[0.23, 0.36]]) >>> D2 = ml.matrix([[0.11, 0.2],[0.01, 0]]) >>> D3 = ml.matrix([[0.14, 0.4],[0.11, 0.14]]) >>> Dm = [D0, D1, D2, D3] >>> x = SamplesFromMMAP(Dm, 10000) >>> mt = MarginalMomentsFromTrace(x[:, 0], 3) >>> print(mt) [1.0128822115820439, 2.125093348326891, 6.8185499625793531] >>> mm = MarginalMomentsFromMMAP(Dm, 3) >>> print(mm) [1.0006671114076049, 2.1044966311760755, 6.8276881494346]