butools.map.LagkJointMomentsFromRAP¶
-
butools.map.
LagkJointMomentsFromRAP
()¶ Matlab: Nm = LagkJointMomentsFromRAP(H0, H1, K, L, prec)
Mathematica: Nm = LagkJointMomentsFromRAP[H0, H1, K, L, prec]
Python/Numpy: Nm = LagkJointMomentsFromRAP(H0, H1, K, L, prec)
Returns the lag-L joint moments of a rational arrival process.
Parameters: H0 : matrix, shape (M,M)
The H0 matrix of the rational arrival process
H1 : matrix, shape (M,M)
The H1 matrix of the rational arrival process
K : int, optional
The dimension of the matrix of joint moments to compute. If K=0, the MxM joint moments will be computed. The default value is 0
L : int, optional
The lag at which the joint moments are computed. The default value is 1
prec : double, optional
Numerical precision to check if the input is valid. The default value is 1e-14
Returns: Nm : matrix, shape(K+1,K+1)
The matrix containing the lag-L joint moments, starting from moment 0.
Examples
For Matlab:
>>> H0 = [-2., 0, 0; 0, -3., 1.; 0, -1., -2.]; >>> H1 = [1.8, 0.2, 0; 0.2, 1.8, 0; 0.2, 1.8, 1.]; >>> Nm = LagkJointMomentsFromRAP(H0, H1, 4, 1); >>> disp(length(Nm)); 5 >>> moms = MarginalMomentsFromRAP(H0, H1, 4); >>> disp(moms); 0.44444 0.38095 0.48299 0.82216 >>> cjm = zeros(1,3); >>> for i=1:1:3 >>> Nx = LagkJointMomentsFromRAP(H0, H1, 1, i); >>> cjm(i) = (Nx(2, 2)-moms(1)^2)/(moms(2)-moms(1)^2); >>> end >>> disp(cjm); -0.0038462 0.0045604 0.0058956 >>> corr = LagCorrelationsFromRAP(H0, H1, 3); >>> disp(corr); -0.0038462 0.0045604 0.0058956
For Mathematica:
>>> H0 = {{-2., 0, 0},{0, -3., 1.},{0, -1., -2.}}; >>> H1 = {{1.8, 0.2, 0},{0.2, 1.8, 0},{0.2, 1.8, 1.}}; >>> Nm = LagkJointMomentsFromRAP[H0, H1, 4, 1]; >>> Print[Length[Nm]]; 5 >>> moms = MarginalMomentsFromRAP[H0, H1, 4]; >>> Print[moms]; {0.4444444444444444, 0.380952380952381, 0.48299319727891166, 0.8221574344023325} >>> cjm = Table[0,{3}]; >>> Do[ >>> Nx = LagkJointMomentsFromRAP[H0, H1, 1, i]; >>> cjm[[i]] = (Nx[[2, 2]]-moms[[1]]^2)/(moms[[2]]-moms[[1]]^2); >>> , {i,1,3,1}]; >>> Print[cjm]; {-0.0038461538461536634, 0.004560439560439573, 0.0058956043956042425} >>> corr = LagCorrelationsFromRAP[H0, H1, 3]; >>> Print[corr]; {-0.0038461538461536634, 0.0045604395604397245, 0.005895604395604545}
For Python/Numpy:
>>> H0 = ml.matrix([[-2., 0, 0],[0, -3., 1.],[0, -1., -2.]]) >>> H1 = ml.matrix([[1.8, 0.2, 0],[0.2, 1.8, 0],[0.2, 1.8, 1.]]) >>> Nm = LagkJointMomentsFromRAP(H0, H1, 4, 1) >>> print(Length(Nm)) 5 >>> moms = MarginalMomentsFromRAP(H0, H1, 4) >>> print(moms) [0.44444444444444442, 0.38095238095238093, 0.48299319727891149, 0.82215743440233213] >>> cjm = np.zeros(3) >>> for i in range(1,4,1): >>> Nx = LagkJointMomentsFromRAP(H0, H1, 1, i) >>> cjm[i-1] = (Nx[1, 1]-moms[0]**2)/(moms[1]-moms[0]**2) >>> print(cjm) [-0.00385 0.00456 0.0059 ] >>> corr = LagCorrelationsFromRAP(H0, H1, 3) >>> print(corr) [-0.00385 0.00456 0.0059 ]