butools.dmap.DMAPFromDRAP¶
-
butools.dmap.
DMAPFromDRAP
()¶ Matlab: [D0, D1] = DMAPFromDRAP(H0, H1, precision)
Mathematica: {D0, D1} = DMAPFromDRAP[H0, H1, precision]
Python/Numpy: D0, D1 = DMAPFromDRAP(H0, H1, precision)
Obtains a Markovian representation of a discrete rational arrival process of the same size, if possible, using the procedure published in [R7].
Parameters: H0 : matrix, shape (M,M)
The H0 matrix of the discrete rational arrival process
H1 : matrix, shape (M,M)
The H1 matrix of the discrete rational arrival process
precision : double, optional
A representation is considered to be a Markovian one if it is closer to it than this precision
Returns: D0 : matrix, shape (M,M)
The D0 matrix of the discrete Markovian arrival process
D1 : matrix, shape (M,M)
The D1 matrix of the discrete Markovian arrival process
References
[R7] (1, 2) G Horvath, M Telek, “A minimal representation of Markov arrival processes and a moments matching method,” Performance Evaluation 64:(9-12) pp. 1153-1168. (2007) Examples
For Matlab:
>>> H0 = [0, 0, 0.13; 0, 0.6, 0.18; 0.31, 0.26, 0.02]; >>> H1 = [0, 1, -0.13; 0, 0.18, 0.04; 0.03, 0.09, 0.29]; >>> [D0, D1] = DMAPFromDRAP(H0, H1); >>> disp(D0); 0.051945 0.066321 0.12704 0.011717 0.56745 0.29444 0.41438 0.17501 0.00060547 >>> disp(D1); 0.085648 0.64664 0.0224 0.0054434 0.089137 0.031816 0.04656 0.068225 0.29521 >>> err = norm(LagkJointMomentsFromDRAP(D0, D1, 3, 1)-LagkJointMomentsFromDRAP(H0, H1, 3, 1)); >>> disp(err); 8.8285e-11
For Mathematica:
>>> H0 = {{0, 0, 0.13},{0, 0.6, 0.18},{0.31, 0.26, 0.02}}; >>> H1 = {{0, 1, -0.13},{0, 0.18, 0.04},{0.03, 0.09, 0.29}}; >>> {D0, D1} = DMAPFromDRAP[H0, H1]; >>> Print[D0]; {{0.051945258246527765, 0.0663208007812501, 0.1270425829475309}, {0.011716991785622438, 0.5674492730034719, 0.294436844493027}, {0.41438232421874993, 0.17501220703124998, 0.0006054687500000044}} >>> Print[D1]; {{0.08564787688078702, 0.6466430664062499, 0.022400414737654306}, {0.005443444439086077, 0.08913727936921295, 0.031816166909579335}, {0.046560058593749995, 0.06822509765625, 0.29521484375}} >>> err = Norm[LagkJointMomentsFromDRAP[D0, D1, 3, 1]-LagkJointMomentsFromDRAP[H0, H1, 3, 1]]; >>> Print[err]; 9.562315040162238*^-11
For Python/Numpy:
>>> H0 = ml.matrix([[0, 0, 0.13],[0, 0.6, 0.18],[0.31, 0.26, 0.02]]) >>> H1 = ml.matrix([[0, 1, -0.13],[0, 0.18, 0.04],[0.03, 0.09, 0.29]]) >>> D0, D1 = DMAPFromDRAP(H0, H1) >>> print(D0) [[ 0.13782 0.05942 0.11897] [ 0.01119 0.45679 0.39467] [ 0.35308 0.27994 0.02539]] >>> print(D1) [[ 0.09145 0.53681 0.05553] [ 0.00598 0.07747 0.0539 ] [ 0.03151 0.00901 0.30108]] >>> err = la.norm(LagkJointMomentsFromDRAP(D0, D1, 3, 1)-LagkJointMomentsFromDRAP(H0, H1, 3, 1)) >>> print(err) 7.00079825521e-11