butools.dmap.LagCorrelationsFromDRAP¶
-
butools.dmap.
LagCorrelationsFromDRAP
()¶ Matlab: acf = LagCorrelationsFromDRAP(H0, H1, L, prec)
Mathematica: acf = LagCorrelationsFromDRAP[H0, H1, L, prec]
Python/Numpy: acf = LagCorrelationsFromDRAP(H0, H1, L, prec)
Returns the lag autocorrelations of a discrete rational arrival process.
Parameters: H0 : matrix, shape (M,M)
The H0 matrix of the discrete rational arrival process
H1 : matrix, shape (M,M)
The H1 matrix of the discrete rational arrival process
L : double, optional
The number of lags to compute. The default value is 1
prec : double, optional
Numerical precision to check if the input is valid. The default value is 1e-14
Returns: acf : column vector of doubles, length (L)
The lag autocorrelation function up to lag L
Examples
For Matlab:
>>> H0 = [0, 0, 0.13; 0, 0.6, 0.18; 0.31, 0.26, 0.02]; >>> H1 = [0, 1, -0.13; 0, 0.18, 0.04; 0.03, 0.09, 0.29]; >>> corr = LagCorrelationsFromDRAP(H0, H1, 3); >>> disp(corr); 0.014303 0.0012424 7.5868e-06
For Mathematica:
>>> H0 = {{0, 0, 0.13},{0, 0.6, 0.18},{0.31, 0.26, 0.02}}; >>> H1 = {{0, 1, -0.13},{0, 0.18, 0.04},{0.03, 0.09, 0.29}}; >>> corr = LagCorrelationsFromDRAP[H0, H1, 3]; >>> Print[corr]; {0.01430295723332723, 0.0012424024982963658, 7.586755398724169*^-6}
For Python/Numpy:
>>> H0 = ml.matrix([[0, 0, 0.13],[0, 0.6, 0.18],[0.31, 0.26, 0.02]]) >>> H1 = ml.matrix([[0, 1, -0.13],[0, 0.18, 0.04],[0.03, 0.09, 0.29]]) >>> corr = LagCorrelationsFromDRAP(H0, H1, 3) >>> print(corr) [ 1.43030e-02 1.24240e-03 7.58676e-06]