butools.dph.MomentsFromDPH¶
-
butools.dph.
MomentsFromDPH
()¶ Matlab: moms = MomentsFromDPH(alpha, A, K, prec)
Mathematica: moms = MomentsFromDPH[alpha, A, K, prec]
Python/Numpy: moms = MomentsFromDPH(alpha, A, K, prec)
Returns the first K moments of a discrete phase-type distribution.
Parameters: alpha : vector, shape (1,M)
The initial probability vector of the discrete phase- type distribution. The sum of the entries of pi0 is less or equal to 1.
A : matrix, shape (M,M)
The transient generator matrix of the discrete phase- type distribution.
K : int, optional
Number of moments to compute. If K=0, 2*M-1 moments are computed. The default value is 0.
prec : double, optional
Numerical precision for checking the input. The default value is 1e-14.
Returns: moms : row vector of doubles
The vector of moments.
Examples
For Matlab:
>>> a = [0.76,0,0.24]; >>> A = [0.34, 0.66, 0; 0.79, 0.05, 0.07; 0.26, 0.73, 0.01]; >>> moms = MomentsFromDPH(a, A, 5); >>> disp(moms); 26.995 1398 1.0853e+05 1.1233e+07 1.4533e+09
For Mathematica:
>>> a = {0.76,0,0.24}; >>> A = {{0.34, 0.66, 0},{0.79, 0.05, 0.07},{0.26, 0.73, 0.01}}; >>> moms = MomentsFromDPH[a, A, 5]; >>> Print[moms]; {26.995340611502304, 1397.9993695881547, 108525.47866809377, 1.1232963460675944*^7, 1.4533393399621515*^9}
For Python/Numpy:
>>> a = ml.matrix([[0.76,0,0.24]]) >>> A = ml.matrix([[0.34, 0.66, 0],[0.79, 0.05, 0.07],[0.26, 0.73, 0.01]]) >>> moms = MomentsFromDPH(a, A, 5) >>> print(moms) [26.995340611502307, 1397.9993695881547, 108525.47866809377, 11232963.460675946, 1453339339.9621518]