butools.map.LagkJointMomentsFromMAP¶
-
butools.map.
LagkJointMomentsFromMAP
()¶ Matlab: Nm = LagkJointMomentsFromMAP(D0, D1, K, L, prec)
Mathematica: Nm = LagkJointMomentsFromMAP[D0, D1, K, L, prec]
Python/Numpy: Nm = LagkJointMomentsFromMAP(D0, D1, K, L, prec)
Returns the lag-L joint moments of a Markovian arrival process.
Parameters: D0 : matrix, shape (M,M)
The D0 matrix of the Markovian arrival process
D1 : matrix, shape (M,M)
The D1 matrix of the Markovian arrival process
K : int, optional
The dimension of the matrix of joint moments to compute. If K=0, the MxM joint moments will be computed. The default value is 0
L : int, optional
The lag at which the joint moments are computed. The default value is 1
prec : double, optional
Numerical precision to check if the input is valid. The default value is 1e-14
Returns: Nm : matrix, shape(K+1,K+1)
The matrix containing the lag-L joint moments, starting from moment 0.
Examples
For Matlab:
>>> D0 = [-5., 0, 1., 1.; 1., -8., 1., 0; 1., 0, -4., 1.; 1., 2., 3., -9.]; >>> D1 = [0, 1., 0, 2.; 2., 1., 3., 0; 0, 0, 1., 1.; 1., 1., 0, 1.]; >>> Nm = LagkJointMomentsFromMAP(D0, D1, 4, 1); >>> disp(Nm); 1 0.34247 0.25054 0.28271 0.42984 0.34247 0.1173 0.085789 0.096807 0.14721 0.25054 0.0857 0.062633 0.07066 0.10744 0.28271 0.096627 0.070589 0.079623 0.12107 0.42984 0.14686 0.10727 0.12099 0.18396 >>> moms = MarginalMomentsFromMAP(D0, D1, 4); >>> disp(moms); 0.34247 0.25054 0.28271 0.42984 >>> cjm = zeros(1,3); >>> for i=1:1:3 >>> Nx = LagkJointMomentsFromMAP(D0, D1, 1, i); >>> cjm(i) = (Nx(2, 2)-moms(1)^2)/(moms(2)-moms(1)^2); >>> end >>> disp(cjm); 0.00012012 0.00086176 -0.00022001 >>> corr = LagCorrelationsFromMAP(D0, D1, 3); >>> disp(corr); 0.00012012 0.00086176 -0.00022001
For Mathematica:
>>> D0 = {{-5., 0, 1., 1.},{1., -8., 1., 0},{1., 0, -4., 1.},{1., 2., 3., -9.}}; >>> D1 = {{0, 1., 0, 2.},{2., 1., 3., 0},{0, 0, 1., 1.},{1., 1., 0, 1.}}; >>> Nm = LagkJointMomentsFromMAP[D0, D1, 4, 1]; >>> Print[Nm]; {{1., 0.3424657534246575, 0.2505363921439181, 0.2827096943168424, 0.42984404959582045}, {0.3424657534246575, 0.11729879932812143, 0.08578883767954984, 0.09680718552353199, 0.14720828999251045}, {0.2505363921439181, 0.08570000543480039, 0.06263282590926178, 0.07065983692223346, 0.10744275082056383}, {0.28270969431684234, 0.09662651257722407, 0.07058862634724386, 0.07962311566530773, 0.1210669477207951}, {0.4298440495958204, 0.14686125208953896, 0.10726689466149464, 0.12098747565756454, 0.18395767529024404}} >>> moms = MarginalMomentsFromMAP[D0, D1, 4]; >>> Print[moms]; {0.3424657534246575, 0.2505363921439181, 0.2827096943168424, 0.42984404959582045} >>> cjm = Table[0,{3}]; >>> Do[ >>> Nx = LagkJointMomentsFromMAP[D0, D1, 1, i]; >>> cjm[[i]] = (Nx[[2, 2]]-moms[[1]]^2)/(moms[[2]]-moms[[1]]^2); >>> , {i,1,3,1}]; >>> Print[cjm]; {0.00012012478025432312, 0.0008617649366102103, -0.00022001393374426588} >>> corr = LagCorrelationsFromMAP[D0, D1, 3]; >>> Print[corr]; {0.00012012478025411484, 0.0008617649366101062, -0.00022001393374437001}
For Python/Numpy:
>>> D0 = ml.matrix([[-5., 0, 1., 1.],[1., -8., 1., 0],[1., 0, -4., 1.],[1., 2., 3., -9.]]) >>> D1 = ml.matrix([[0, 1., 0, 2.],[2., 1., 3., 0],[0, 0, 1., 1.],[1., 1., 0, 1.]]) >>> Nm = LagkJointMomentsFromMAP(D0, D1, 4, 1) >>> print(Nm) [[ 1. 0.34247 0.25054 0.28271 0.42984] [ 0.34247 0.1173 0.08579 0.09681 0.14721] [ 0.25054 0.0857 0.06263 0.07066 0.10744] [ 0.28271 0.09663 0.07059 0.07962 0.12107] [ 0.42984 0.14686 0.10727 0.12099 0.18396]] >>> moms = MarginalMomentsFromMAP(D0, D1, 4) >>> print(moms) [0.34246575342465752, 0.25053639214391815, 0.28270969431684256, 0.42984404959582057] >>> cjm = np.zeros(3) >>> for i in range(1,4,1): >>> Nx = LagkJointMomentsFromMAP(D0, D1, 1, i) >>> cjm[i-1] = (Nx[1, 1]-moms[0]**2)/(moms[1]-moms[0]**2) >>> print(cjm) [ 0.00012 0.00086 -0.00022] >>> corr = LagCorrelationsFromMAP(D0, D1, 3) >>> print(corr) [ 0.00012 0.00086 -0.00022]