butools.dph.MGFromMoments¶
-
butools.dph.
MGFromMoments
()¶ Matlab: [alpha, A] = MGFromMoments(moms)
Mathematica: {alpha, A} = MGFromMoments[moms]
Python/Numpy: alpha, A = MGFromMoments(moms)
Creates a matrix-geometric distribution that has the same moments as given.
Parameters: moms : vector of doubles
The list of moments. The order of the resulting matrix-geometric distribution is determined based on the number of moments given. To obtain a matrix-geometric distribution of order M, 2*M-1 moments are required.
Returns: alpha : vector, shape (1,M)
The initial vector of the matrix-geometric distribution.
A : matrix, shape (M,M)
The matrix parameter of the matrix-geometric distribution.
References
[R27] A. van de Liefvoort. The moment problem for continuous distributions. Technical report, University of Missouri, WP-CM-1990-02, Kansas City, 1990. Examples
For Matlab:
>>> moms = [4.08, 20.41, 130.45, 1054.41, 10463.73]; >>> [a, A] = MGFromMoments(moms); >>> disp(a); 0.33333 0.33333 0.33333 >>> disp(A); 0.15523 1.7289 0.10482 -0.013774 0.6823 -0.023472 -0.013847 -0.16787 0.82688 >>> memoms = MomentsFromMG(a, A, 5); >>> disp(memoms); 4.08 20.41 130.45 1054.4 10464
For Mathematica:
>>> moms = {4.08, 20.41, 130.45, 1054.41, 10463.73}; >>> {a, A} = MGFromMoments[moms]; >>> Print[a]; {1/3, 1/3, 1/3} >>> Print[A]; {{0.15522721633282086, 1.7288735256877237, 0.10482133882430097}, {-0.013773788451490479, 0.6823009288291466, -0.02347241196722473}, {-0.013846712675345957, -0.1678656131152182, 0.8268849851301606}} >>> memoms = MomentsFromMG[a, A, 5]; >>> Print[memoms]; {4.080000000000002, 20.41000000000002, 130.4500000000002, 1054.4100000000037, 10463.730000000038}
For Python/Numpy:
>>> moms = [4.08, 20.41, 130.45, 1054.41, 10463.73] >>> a, A = MGFromMoments(moms) >>> print(a) [[ 0.33333 0.33333 0.33333]] >>> print(A) [[ 0.15523 1.72887 0.10482] [-0.01377 0.6823 -0.02347] [-0.01385 -0.16787 0.82688]] >>> memoms = MomentsFromMG(a, A, 5) >>> print(memoms) [4.080000000000001, 20.410000000000029, 130.45000000000047, 1054.4100000000135, 10463.730000000427]