butools.trace.CdfFromTrace¶
- 
butools.trace.CdfFromTrace()¶
- Matlab: - [x, y] = CdfFromTrace(trace)- Mathematica: - {x, y} = CdfFromTrace[trace]- Python/Numpy: - x, y = CdfFromTrace(trace)- Returns the empirical distribution function of the trace. - Parameters: - trace : vector of doubles - The trace data - Returns: - x : vector of doubles - The points where the empirical cdf is calculated - y : vector of doubles - The values of the empirical cdf at the given points - Examples - For Matlab: - >>> D0 = [-18., 1., 4.; 2., -18., 7.; 1., 3., -32.]; >>> D1 = [12., 1., 0.; 1., 8., 0.; 2., 1., 25.]; >>> tr = SamplesFromMAP(D0, D1, 1000000); >>> [x, y] = CdfFromTrace(tr); >>> plot(x, y) - For Mathematica: - >>> D0 = {{-18., 1., 4.},{2., -18., 7.},{1., 3., -32.}}; >>> D1 = {{12., 1., 0.},{1., 8., 0.},{2., 1., 25.}}; >>> tr = SamplesFromMAP[D0, D1, 1000000]; >>> {x, y} = CdfFromTrace[tr]; >>> ListLinePlot[{Transpose[{x, y}]}] - For Python/Numpy: - >>> D0 = ml.matrix([[-18., 1., 4.],[2., -18., 7.],[1., 3., -32.]]) >>> D1 = ml.matrix([[12., 1., 0.],[1., 8., 0.],[2., 1., 25.]]) >>> tr = SamplesFromMAP(D0, D1, 1000000) >>> x, y = CdfFromTrace(tr) >>> plt.plot(x, y)