butools.dmap.MarginalMomentsFromDRAP¶
-
butools.dmap.
MarginalMomentsFromDRAP
()¶ Matlab: moms = MarginalMomentsFromDRAP(H0, H1, K, precision)
Mathematica: moms = MarginalMomentsFromDRAP[H0, H1, K, precision]
Python/Numpy: moms = MarginalMomentsFromDRAP(H0, H1, K, precision)
Returns the moments of the marginal distribution of a discrete rational arrival process.
Parameters: H0 : matrix, shape (M,M)
The H0 matrix of the discrete rational arrival process
H1 : matrix, shape (M,M)
The H1 matrix of the discrete rational arrival process
K : int, optional
Number of moments to compute. If K=0, 2*M-1 moments are computed. The default value is K=0.
precision : double, optional
Numerical precision for checking if the input is valid. The default value is 1e-14
Returns: moms : row vector of doubles, length K
The vector of moments.
Examples
For Matlab:
>>> H0 = [0, 0, 0.13; 0, 0.6, 0.18; 0.31, 0.26, 0.02]; >>> H1 = [0, 1, -0.13; 0, 0.18, 0.04; 0.03, 0.09, 0.29]; >>> moms = MarginalMomentsFromDRAP(H0, H1); >>> disp(moms); 3.207 16.898 130.77 1347.1 17343
For Mathematica:
>>> H0 = {{0, 0, 0.13},{0, 0.6, 0.18},{0.31, 0.26, 0.02}}; >>> H1 = {{0, 1, -0.13},{0, 0.18, 0.04},{0.03, 0.09, 0.29}}; >>> moms = MarginalMomentsFromDRAP[H0, H1]; >>> Print[moms]; {3.20702366840782, 16.897636691953394, 130.7705457435602, 1347.0743893905096, 17343.182467560622}
For Python/Numpy:
>>> H0 = ml.matrix([[0, 0, 0.13],[0, 0.6, 0.18],[0.31, 0.26, 0.02]]) >>> H1 = ml.matrix([[0, 1, -0.13],[0, 0.18, 0.04],[0.03, 0.09, 0.29]]) >>> moms = MarginalMomentsFromDRAP(H0, H1) >>> print(moms) [3.2070236684078202, 16.897636691953394, 130.77054574356021, 1347.0743893905096, 17343.182467560622]