butools.dmap.LagkJointMomentsFromDMRAP¶
-
butools.dmap.
LagkJointMomentsFromDMRAP
()¶ Matlab: Nm = LagkJointMomentsFromDMRAP(H, K, L, prec)
Mathematica: Nm = LagkJointMomentsFromDMRAP[H, K, L, prec]
Python/Numpy: Nm = LagkJointMomentsFromDMRAP(H, K, L, prec)
Returns the lag-L joint moments of a discrete marked rational arrival process.
Parameters: H : list/cell of matrices of shape(M,M), length(N)
The H0...HN matrices of the DMRAP to check
K : int, optional
The dimension of the matrix of joint moments to compute. If K=0, the MxM joint moments will be computed. The default value is 0
L : int, optional
The lag at which the joint moments are computed. The default value is 1
prec : double, optional
Numerical precision to check if the input is valid. The default value is 1e-14
Returns: Nm : list/cell of matrices of shape(K+1,K+1), length(L)
The matrices containing the lag-L joint moments, starting from moment 0.
Examples
For Matlab:
>>> H0 = [0.15, 0.2, 0.18; -0.23, 0.17, 0.22; 0.19, 0.15, 0.16]; >>> H1 = [0.01, 0.08, 0.16; 0.02, 0.2, 0.07; 0.02, 0.15, 0.17]; >>> H2 = [0.14, 0.07, 0.01; 0.19, 0.02, 0.34; 0.06, 0.1, 0]; >>> Nm = LagkJointMomentsFromDMRAP({H0, H1, H2}, 3, 2); >>> disp(Nm{1}); 0.48798 0.78047 1.6785 4.9029 0.77458 1.2395 2.6673 7.7945 1.6539 2.6481 5.7016 16.669 4.8092 7.7033 16.593 48.526 >>> disp(Nm{2}); 0.51202 0.81429 1.7401 5.0566 0.82019 1.3036 2.7837 8.0853 1.7647 2.8029 5.9814 17.365 5.1503 8.177 17.442 50.619
For Mathematica:
>>> H0 = {{0.15, 0.2, 0.18},{-0.23, 0.17, 0.22},{0.19, 0.15, 0.16}}; >>> H1 = {{0.01, 0.08, 0.16},{0.02, 0.2, 0.07},{0.02, 0.15, 0.17}}; >>> H2 = {{0.14, 0.07, 0.01},{0.19, 0.02, 0.34},{0.06, 0.1, 0}}; >>> Nm = LagkJointMomentsFromDMRAP[{H0, H1, H2}, 3, 2]; >>> Print[Nm[[1]]]; {{0.4879805825563548, 0.7804739995572898, 1.6784777723131161, 4.902860723736972}, {0.7745778986519039, 1.2395315649453407, 2.6672632669482894, 7.794493672457849}, {1.653860986909174, 2.648092315164064, 5.701611221347518, 16.66906590441337}, {4.80922115249553, 7.70333279203901, 16.592926073643227, 48.52561424626535}} >>> Print[Nm[[2]]]; {{0.5120194174436454, 0.8142942617124118, 1.7400542916801724, 5.0566248687873845}, {0.820190362617798, 1.3035610054097582, 2.7836656770888917, 8.085263953193856}, {1.764671077084115, 2.8029046012949106, 5.98142492574121, 17.364636197177674}, {5.1502644400288276, 8.17696708018504, 17.441960447818936, 50.61882961114629}}
For Python/Numpy:
>>> H0 = ml.matrix([[0.15, 0.2, 0.18],[-0.23, 0.17, 0.22],[0.19, 0.15, 0.16]]) >>> H1 = ml.matrix([[0.01, 0.08, 0.16],[0.02, 0.2, 0.07],[0.02, 0.15, 0.17]]) >>> H2 = ml.matrix([[0.14, 0.07, 0.01],[0.19, 0.02, 0.34],[0.06, 0.1, 0]]) >>> Nm = LagkJointMomentsFromDMRAP([H0, H1, H2], 3, 2) >>> print(Nm[0]) [[ 0.48798 0.78047 1.67848 4.90286] [ 0.77458 1.23953 2.66726 7.79449] [ 1.65386 2.64809 5.70161 16.66907] [ 4.80922 7.70333 16.59293 48.52561]] >>> print(Nm[1]) [[ 0.51202 0.81429 1.74005 5.05662] [ 0.82019 1.30356 2.78367 8.08526] [ 1.76467 2.8029 5.98142 17.36464] [ 5.15026 8.17697 17.44196 50.61883]]