butools.map.MinimalRepFromMRAP¶
-
butools.map.
MinimalRepFromMRAP
()¶ Matlab: D = MinimalRepFromMRAP(H, how, precision)
Mathematica: H = MinimalRepFromMRAP[H, how, precision]
Python/Numpy: H = MinimalRepFromMRAP(H, how, precision)
Returns the minimal representation of a marked rational arrival process.
Parameters: H : list of matrices of shape (M,M)
The list of H0, H1, ..., HK matrices of the marked rational arrival process
how : {“obs”, “cont”, “obscont”}, optional
Determines how the representation is minimized. “cont” means controllability, “obs” means observability, “obscont” means that the rational arrival process is minimized in both respects. Default value is “obscont”.
precision : double, optional
Precision used by the Staircase algorithm. The default value is 1e-12.
Returns: D : list of matrices of shape (M,M)
The D0, D1, ..., DK matrices of the minimal representation
References
[R35] P. Buchholz, M. Telek, “On minimal representation of rational arrival processes.” Madrid Conference on Qeueuing theory (MCQT), June 2010. Examples
For Matlab:
>>> D0 = [-5., 1., 0; 3., -3., 0; 1., 1., -5.]; >>> D1 = [0, 0, 0.8; 0, 0, 0; 0.2, 0.2, 0.2]; >>> D2 = [0, 0, 3.2; 0, 0, 0; 0.8, 0.8, 0.8]; >>> Dm = {D0, D1, D2}; >>> H = MinimalRepFromMRAP(Dm, 'cont'); >>> disp(H{1}); -5 1 0 3 -3 0 1 1 -5 >>> disp(H{2}); 0 0 0.8 0 0 0 0.2 0.2 0.2 >>> disp(H{3}); 0 0 3.2 0 0 0 0.8 0.8 0.8 >>> Cm = SimilarityMatrix(H{1}, Dm{1}); >>> err = norm(H{1}*Cm-Cm*Dm{1})+norm(H{2}*Cm-Cm*Dm{2})+norm(H{3}*Cm-Cm*Dm{3}); >>> disp(err); 4.656e-15 >>> H = MinimalRepFromMRAP(Dm, 'obs'); >>> disp(H{1}); -4.4074 1.6931 0.84259 -2.5926 >>> disp(H{2}); 0.40741 0.13545 0.55741 -0.20741 >>> disp(H{3}); 1.6296 0.5418 2.2296 -0.82963 >>> Cm = SimilarityMatrix(H{1}, Dm{1}); >>> err = norm(H{1}*Cm-Cm*Dm{1})+norm(H{2}*Cm-Cm*Dm{2})+norm(H{3}*Cm-Cm*Dm{3}); >>> disp(err); 4.8469e-15 >>> H = MinimalRepFromMRAP(Dm, 'obscont'); >>> disp(H{1}); -4.4074 1.6931 0.84259 -2.5926 >>> disp(H{2}); 0.40741 0.13545 0.55741 -0.20741 >>> disp(H{3}); 1.6296 0.5418 2.2296 -0.82963 >>> Cm = SimilarityMatrix(H{1}, Dm{1}); >>> err = norm(H{1}*Cm-Cm*Dm{1})+norm(H{2}*Cm-Cm*Dm{2})+norm(H{3}*Cm-Cm*Dm{3}); >>> disp(err); 4.8469e-15
For Mathematica:
>>> D0 = {{-5., 1., 0},{3., -3., 0},{1., 1., -5.}}; >>> D1 = {{0, 0, 0.8},{0, 0, 0},{0.2, 0.2, 0.2}}; >>> D2 = {{0, 0, 3.2},{0, 0, 0},{0.8, 0.8, 0.8}}; >>> Dm = {D0, D1, D2}; >>> H = MinimalRepFromMRAP[Dm, "cont"]; >>> Print[H[[1]]]; {{-5., 1., 0.}, {3., -3., 0.}, {1., 1., -5.}} >>> Print[H[[2]]]; {{0., 0., 0.8}, {0., 0., 0.}, {0.2, 0.2, 0.2}} >>> Print[H[[3]]]; {{0., 0., 3.2}, {0., 0., 0.}, {0.8, 0.8, 0.8}} >>> Cm = SimilarityMatrix[H[[1]], Dm[[1]]]; >>> err = Norm[H[[1]].Cm-Cm.Dm[[1]]]+Norm[H[[2]].Cm-Cm.Dm[[2]]]+Norm[H[[3]].Cm-Cm.Dm[[3]]]; >>> Print[err]; 5.717834399042951*^-15 >>> H = MinimalRepFromMRAP[Dm, "obs"]; >>> Print[H[[1]]]; {{-4.407407407407407, 1.6931216931216932}, {0.8425925925925922, -2.592592592592593}} >>> Print[H[[2]]]; {{0.40740740740740733, 0.13544973544973554}, {0.5574074074074076, -0.20740740740740737}} >>> Print[H[[3]]]; {{1.6296296296296293, 0.5417989417989422}, {2.2296296296296303, -0.8296296296296295}} >>> Cm = SimilarityMatrix[H[[1]], Dm[[1]]]; >>> err = Norm[H[[1]].Cm-Cm.Dm[[1]]]+Norm[H[[2]].Cm-Cm.Dm[[2]]]+Norm[H[[3]].Cm-Cm.Dm[[3]]]; >>> Print[err]; 8.2600373258031*^-15 >>> H = MinimalRepFromMRAP[Dm, "obscont"]; >>> Print[H[[1]]]; {{-4.407407407407407, 1.6931216931216932}, {0.8425925925925922, -2.592592592592593}} >>> Print[H[[2]]]; {{0.40740740740740733, 0.13544973544973554}, {0.5574074074074076, -0.20740740740740737}} >>> Print[H[[3]]]; {{1.6296296296296293, 0.5417989417989422}, {2.2296296296296303, -0.8296296296296295}} >>> Cm = SimilarityMatrix[H[[1]], Dm[[1]]]; >>> err = Norm[H[[1]].Cm-Cm.Dm[[1]]]+Norm[H[[2]].Cm-Cm.Dm[[2]]]+Norm[H[[3]].Cm-Cm.Dm[[3]]]; >>> Print[err]; 8.2600373258031*^-15
For Python/Numpy:
>>> D0 = ml.matrix([[-5., 1., 0],[3., -3., 0],[1., 1., -5.]]) >>> D1 = ml.matrix([[0, 0, 0.8],[0, 0, 0],[0.2, 0.2, 0.2]]) >>> D2 = ml.matrix([[0, 0, 3.2],[0, 0, 0],[0.8, 0.8, 0.8]]) >>> Dm = [D0, D1, D2] >>> H = MinimalRepFromMRAP(Dm, "cont") >>> print(H[0]) [[-5. 1. 0.] [ 3. -3. 0.] [ 1. 1. -5.]] >>> print(H[1]) [[ 0. 0. 0.8] [ 0. 0. 0. ] [ 0.2 0.2 0.2]] >>> print(H[2]) [[ 0. 0. 3.2] [ 0. 0. 0. ] [ 0.8 0.8 0.8]] >>> Cm = SimilarityMatrix(H[0], Dm[0]) >>> err = la.norm(H[0]*Cm-Cm*Dm[0])+la.norm(H[1]*Cm-Cm*Dm[1])+la.norm(H[2]*Cm-Cm*Dm[2]) >>> print(err) 3.65128686018e-15 >>> H = MinimalRepFromMRAP(Dm, "obs") >>> print(H[0]) [[-4.40741 1.69312] [ 0.84259 -2.59259]] >>> print(H[1]) [[ 0.40741 0.13545] [ 0.55741 -0.20741]] >>> print(H[2]) [[ 1.62963 0.5418 ] [ 2.22963 -0.82963]] >>> Cm = SimilarityMatrix(H[0], Dm[0]) >>> err = la.norm(H[0]*Cm-Cm*Dm[0])+la.norm(H[1]*Cm-Cm*Dm[1])+la.norm(H[2]*Cm-Cm*Dm[2]) >>> print(err) 4.72728076906e-15 >>> H = MinimalRepFromMRAP(Dm, "obscont") >>> print(H[0]) [[-4.40741 1.69312] [ 0.84259 -2.59259]] >>> print(H[1]) [[ 0.40741 0.13545] [ 0.55741 -0.20741]] >>> print(H[2]) [[ 1.62963 0.5418 ] [ 2.22963 -0.82963]] >>> Cm = SimilarityMatrix(H[0], Dm[0]) >>> err = la.norm(H[0]*Cm-Cm*Dm[0])+la.norm(H[1]*Cm-Cm*Dm[1])+la.norm(H[2]*Cm-Cm*Dm[2]) >>> print(err) 4.72728076906e-15