butools.map.MAPFromRAP¶
-
butools.map.
MAPFromRAP
()¶ Matlab: [D0, D1] = MAPFromRAP(H0, H1, precision)
Mathematica: {D0, D1} = MAPFromRAP[H0, H1, precision]
Python/Numpy: D0, D1 = MAPFromRAP(H0, H1, precision)
Obtains a Markovian representation of a rational arrival process of the same size, if possible, using the procedure published in [R20].
Parameters: H0 : matrix, shape (M,M)
The H0 matrix of the rational arrival process
H1 : matrix, shape (M,M)
The H1 matrix of the rational arrival process
precision : double, optional
A representation is considered to be a Markovian one if it is closer to it than this precision
Returns: D0 : matrix, shape (M,M)
The D0 matrix of the Markovian arrival process
D1 : matrix, shape (M,M)
The D1 matrix of the Markovian arrival process
References
[R20] (1, 2) G Horvath, M Telek, “A minimal representation of Markov arrival processes and a moments matching method,” Performance Evaluation 64:(9-12) pp. 1153-1168. (2007) Examples
For Matlab:
>>> D0 = [-2., 2.; 2., -9.]; >>> D1 = [-2., 2.; 3., 4.]; >>> [H0, H1] = MAPFromRAP(D0, D1); >>> disp(H0); -1.4699 -0.18514 -0.04328 -9.5301 >>> disp(H1); -0.18514 1.8401 7.3883 2.1851 >>> err = norm(LagkJointMomentsFromRAP(D0, D1, 3, 1)-LagkJointMomentsFromRAP(H0, H1, 3, 1)); >>> disp(err); 2.7443e-15 >>> D0 = [-2.4, 2.; 2., -9.]; >>> D1 = [-1.6, 2.; 3., 4.]; >>> [H0, H1] = MAPFromRAP(D0, D1); >>> disp(H0); -1.8414 0.079468 0.012509 -9.5586 >>> disp(H1); 0.024509 1.7374 7.1706 2.3755 >>> err = norm(LagkJointMomentsFromRAP(D0, D1, 3, 1)-LagkJointMomentsFromRAP(H0, H1, 3, 1)); >>> disp(err); 6.4694e-16
For Mathematica:
>>> D0 = {{-2., 2.},{2., -9.}}; >>> D1 = {{-2., 2.},{3., 4.}}; >>> {H0, H1} = MAPFromRAP[D0, D1]; >>> Print[H0]; {{-1.469865108524213, -0.18513639022235387}, {-0.04328028919559579, -9.530134891475761}} >>> Print[H1]; {{-0.1851363902223537, 1.8401378889689204}, {7.388278790449017, 2.185136390222349}} >>> err = Norm[LagkJointMomentsFromRAP[D0, D1, 3, 1]-LagkJointMomentsFromRAP[H0, H1, 3, 1]]; >>> Print[err]; 3.31611301558491*^-15 >>> D0 = {{-2.4, 2.},{2., -9.}}; >>> D1 = {{-1.6, 2.},{3., 4.}}; >>> {H0, H1} = MAPFromRAP[D0, D1]; >>> Print[H0]; {{-1.8413725353422619, 0.07946777343749967}, {0.012509334866139282, -9.558627464657736}} >>> Print[H1]; {{0.02450852167038682, 1.7373962402343748}, {7.170626651461986, 2.3754914783296126}} >>> err = Norm[LagkJointMomentsFromRAP[D0, D1, 3, 1]-LagkJointMomentsFromRAP[H0, H1, 3, 1]]; >>> Print[err]; 7.665251615940028*^-16
For Python/Numpy:
>>> D0 = ml.matrix([[-2., 2.],[2., -9.]]) >>> D1 = ml.matrix([[-2., 2.],[3., 4.]]) >>> H0, H1 = MAPFromRAP(D0, D1) >>> print(H0) [[ -1.46887e+00 -3.05193e-02] [ 4.20579e-15 -9.53113e+00]] >>> print(H1) [[-0.33715 1.83654] [ 7.19398 2.33715]] >>> err = la.norm(LagkJointMomentsFromRAP(D0, D1, 3, 1)-LagkJointMomentsFromRAP(H0, H1, 3, 1)) >>> print(err) 1.62866154301e-14 >>> D0 = ml.matrix([[-2.4, 2.],[2., -9.]]) >>> D1 = ml.matrix([[-1.6, 2.],[3., 4.]]) >>> H0, H1 = MAPFromRAP(D0, D1) >>> print(H0) [[-1.84137 0.07947] [ 0.01251 -9.55863]] >>> print(H1) [[ 0.02451 1.7374 ] [ 7.17063 2.37549]] >>> err = la.norm(LagkJointMomentsFromRAP(D0, D1, 3, 1)-LagkJointMomentsFromRAP(H0, H1, 3, 1)) >>> print(err) 4.674749869e-16