butools.dmap.LagkJointMomentsFromDMAP¶
-
butools.dmap.
LagkJointMomentsFromDMAP
()¶ Matlab: Nm = LagkJointMomentsFromDMAP(D0, D1, K, L, prec)
Mathematica: Nm = LagkJointMomentsFromDMAP[D0, D1, K, L, prec]
Python/Numpy: Nm = LagkJointMomentsFromDMAP(D0, D1, K, L, prec)
Returns the lag-L joint moments of a discrete Markovian arrival process.
Parameters: D0 : matrix, shape (M,M)
The D0 matrix of the discrete Markovian arrival process
D1 : matrix, shape (M,M)
The D1 matrix of the discrete Markovian arrival process
K : int, optional
The dimension of the matrix of joint moments to compute. If K=0, the MxM joint moments will be computed. The default value is 0
L : int, optional
The lag at which the joint moments are computed. The default value is 1
prec : double, optional
Numerical precision to check if the input is valid. The default value is 1e-14
Returns: Nm : matrix, shape(K+1,K+1)
The matrix containing the lag-L joint moments, starting from moment 0.
Examples
For Matlab:
>>> D0 = [0, 0.02, 0, 0; 0, 0.17, 0.2, 0.14; 0.16, 0.17, 0.02, 0.18; 0, 0, 0, 0.12]; >>> D1 = [0, 0.88, 0.1, 0; 0.18, 0.07, 0.14, 0.1; 0.13, 0.15, 0.15, 0.04; 0.31, 0.18, 0.12, 0.27]; >>> Nm = LagkJointMomentsFromDMAP(D0, D1, 4, 1); >>> disp(Nm); 1 1.4955 2.9542 7.8852 27.282 1.4955 2.2037 4.2827 11.293 38.822 2.9542 4.2875 8.1899 21.315 72.753 7.8852 11.326 21.379 55.129 187.21 27.282 38.993 73.17 187.82 636.23 >>> moms = MarginalMomentsFromDMAP(D0, D1, 4); >>> disp(moms); 1.4955 2.9542 7.8852 27.282 >>> cjm = zeros(1,3); >>> for i=1:1:3 >>> Nx = LagkJointMomentsFromDMAP(D0, D1, 1, i); >>> cjm(i) = (Nx(2, 2)-moms(1)^2)/(moms(2)-moms(1)^2); >>> end >>> disp(cjm); -0.045859 0.010753 -0.0047996 >>> corr = LagCorrelationsFromDMAP(D0, D1, 3); >>> disp(corr); -0.045859 0.010753 -0.0047996
For Mathematica:
>>> D0 = {{0, 0.02, 0, 0},{0, 0.17, 0.2, 0.14},{0.16, 0.17, 0.02, 0.18},{0, 0, 0, 0.12}}; >>> D1 = {{0, 0.88, 0.1, 0},{0.18, 0.07, 0.14, 0.1},{0.13, 0.15, 0.15, 0.04},{0.31, 0.18, 0.12, 0.27}}; >>> Nm = LagkJointMomentsFromDMAP[D0, D1, 4, 1]; >>> Print[Nm]; {{1., 1.4955358592094412, 2.954247965436847, 7.885226907678559, 27.282328108669486}, {1.4955358592094414, 2.2037182406034797, 4.282673397390962, 11.293317579798646, 38.82178903024472}, {2.9542479654368474, 4.287487747878976, 8.189899409259828, 21.31527510118519, 72.75329018362508}, {7.885226907678561, 11.326490281736413, 21.37905524531638, 55.129087442003616, 187.21290956791222}, {27.282328108669493, 38.992776912604896, 73.17046611681856, 187.8221757842213, 636.2306227476095}} >>> moms = MarginalMomentsFromDMAP[D0, D1, 4]; >>> Print[moms]; {1.4955358592094412, 2.9542479654368474, 7.885226907678561, 27.282328108669493} >>> cjm = Table[0,{3}]; >>> Do[ >>> Nx = LagkJointMomentsFromDMAP[D0, D1, 1, i]; >>> cjm[[i]] = (Nx[[2, 2]]-moms[[1]]^2)/(moms[[2]]-moms[[1]]^2); >>> , {i,1,3,1}]; >>> Print[cjm]; {-0.045858873104012064, 0.010753286512164551, -0.00479959597519405} >>> corr = LagCorrelationsFromDMAP[D0, D1, 3]; >>> Print[corr]; {-0.04585887310401268, 0.010753286512163932, -0.00479959597519405}
For Python/Numpy:
>>> D0 = ml.matrix([[0, 0.02, 0, 0],[0, 0.17, 0.2, 0.14],[0.16, 0.17, 0.02, 0.18],[0, 0, 0, 0.12]]) >>> D1 = ml.matrix([[0, 0.88, 0.1, 0],[0.18, 0.07, 0.14, 0.1],[0.13, 0.15, 0.15, 0.04],[0.31, 0.18, 0.12, 0.27]]) >>> Nm = LagkJointMomentsFromDMAP(D0, D1, 4, 1) >>> print(Nm) [[ 1. 1.49554 2.95425 7.88523 27.28233] [ 1.49554 2.20372 4.28267 11.29332 38.82179] [ 2.95425 4.28749 8.1899 21.31528 72.75329] [ 7.88523 11.32649 21.37906 55.12909 187.21291] [ 27.28233 38.99278 73.17047 187.82218 636.23062]] >>> moms = MarginalMomentsFromDMAP(D0, D1, 4) >>> print(moms) [1.4955358592094412, 2.9542479654368474, 7.885226907678561, 27.282328108669493] >>> cjm = np.zeros(3) >>> for i in range(1,4,1): >>> Nx = LagkJointMomentsFromDMAP(D0, D1, 1, i) >>> cjm[i-1] = (Nx[1, 1]-moms[0]**2)/(moms[1]-moms[0]**2) >>> print(cjm) [-0.04586 0.01075 -0.0048 ] >>> corr = LagCorrelationsFromDMAP(D0, D1, 3) >>> print(corr) [-0.04586 0.01075 -0.0048 ]